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Manifold Vector Machine ( ) 

Hao 

Summary 

Translocating data to Manifold Vector Machine (  )is a superpositioning process. The essential architectural concern of 

 is to build a superpositioning scheme to achieve general improvements through each iteration process. 

Iteration through datasets is a heavy duty for modern machines. This limit a wide range of machine learning methods, such as 

regression, interpolation, SVM, etc. If one exception, the fast developing neural network method, who overcome this issue 

with designed epoch, vectorisation, batching, etc., still face conflicting principles [ 0 ]. Reports have shown training on full 

ImageNet is possible today with models already achieved val-acc. 95% (val-acc.:validation set accuracy). But against 

expectations, these models performed worse in real use cases, often fall short 20% [ 1 ].  

To summarise, the core concept of  is we can have a handful of choices to artificially define rules on how we iterate 

datasets. A related concept is Hinton’s capsule [ 2 ] but looks at DIB-N (dimension increase by N).  should not be 

misunderstood as another DIB-N, because the dimension remain unchanged. It works with direct superposition, a concept of 

Quantum Computing. In the Use Cases session of this paper, you will see how  have achieved general improvements 

in performances even under strict measures.  

Simple Rationale 

The quality of data is at the heart of a model. When data is well prepared, there is a clear context. Iteration through each 

element of a large dataset follows monotonic marching that unavoidably result in diminishing clarity of context.  

If it is agreeable a dataset is self-explainable of its context. Then ∃ a manifold to represent the definables using the existing 

dataset whether this process is of finite or infinite span. Then ∃ exist a logic chain that can be presented using a vector chain 

end-to-end(ETE). Suggest that this vector chain is with infinite length: 

, , ,…, ,…,  :  . 

 *  : Unified compact space, unit = , 
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* Infinity  loosely defined at this moment, 

* Use of comma as concatenation.  

*  non-zero  vector 

These vectors are defined with relative distance ETE, and their length  ,  so that we have a sequence of fixed ankle-joints 

at each ETE point. As suggested the infinity is loosely defined. We are not sure the true behaviour of  except we know its 

a vector following the joint with , and the right-hand end point of the entire chain structure. A matrix representation of 

vector chain is shown below:   

( , , ,…, ,…, )  =  

Since we have  so that we cannot have all-zeros within the columns of this matrix. Therefore, the Column Rank is 

numeric equal to the total number of vectors, while Row Rank  original dimension of the dataset. Suggest all vectors are 

already normalised with the same base, since they come from the same manifold of the original dataset. Then we have:  

. 

*  : Transform Matrix 

* : Transform Ratio 

Here we introduced discrete continuity [ 3 ] since we wish to iterate the entire vector chain:  

Definition:  

A marching is a mono-directional translocation activity from left-hand end of a vector joint to the 

right-hand end, then traveling through the entire vector chain in this fashion is one oscillation 

denotable as . Then we have: 

Iteration ( ) = Floor  

* N: number of oscillation through one marching. 

* Floor: guarantees each iteration is complete. 

Therefore, we have iteration tangent space over transform matrix as:  

 

∞
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This form is an iterable chain structure  a pair of ETE fixed ankle-joints for each . As you may see,  is satisfied through 

inner product operator on  , and is iterable over the inner product space  where :=( , , …, ) which is still 

definable with  (Hausdorff distance). Hence by definition: 

Theorem: 

 

Where:  

∃  ,  

∃  . 

Special case ETE at  and :  

∃ ,  iff  

As a result in each marching, there is a definable oscillation  with a reducible distance . Interestingly, since our vector 

chain is in free form. We can artificially build manifold to hold the structure onto a durable coordinate system. This operation 

keeps the relativity of each vector and allows a definable conjunction to build a closed structure, the annotation of  is 

interchangeable with iff at the state i.e. two ends of the entire chain are met ETE, that satisfies , this allows a reliable 

build for a continuous marching through a designed range of oscillations  as  . In this state, we can build an 

iterator with maximised   since max{ ,0}>0. 

Before moving on to the algorithm section I would suggest building manifold for single-entry vector chains is rather 

computational expensive. The memory tools of modern computer systems for arrays and vectors are already very powerful. 

Building manifold architecture can be surprisingly fast and useful on large sets of data, rearrange multi-dimensional matrices. 

These structures are already computational heavy, so building manifolds with  will serve its purpose.  

Examples: 

Dot (  ) , singularity definable with . Although theoretically important as the ultimate superposition, there 

is no clear applicable use:  

 =  

Ring, Loop, Sphere, Horn-Torus, *Boy’s Surface (  ) are highly practical, some are more 

NAN(not-a-number) resilient than others depends on the dataset. In addition, tighter manifolds has higher impact on data 

point’s local regions after a full march over one oscillation that directly result in vector beams aggregation, this is similar to 

the amplitude amplification process of quantum superpositioning: 

∃
i f f
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  , where locally  = , for all  

at the same local region, with each  as a tendency of a corresponding state . 

* An interesting hyper compactness ( hyper superpositioning ) resulted on Boy’s Surface that blackout some entire vectors with 

NAN coordinates.  

Line ( or  loosely defined ), analogy for standard array in modern machines:  

 , iff  definable 

Recipe: 
Step One : Data Preparation  

There is no best practice, you can start with: 

 

Step Two :  Build ( UML ) 

Define a class with a Manifold_Method 

* As you can see, the  is easy to apply. There is no magic and the rationale can be applied with fine tuning techniques 

borrowed from the concepts in differential geometry. The ending part of this paper is going to present you with some use cases 

and a prototype application. 
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∞

∑
n=0
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Define Problem

↓

Adopt a Scheme

M V M

Class Manifold(Data)

__init__ Method () 
Manifold_Method:Method(Data,*args)

M V M
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Manifold Method (Data,*args)

For data in Data: 

x = data.x 
y = data.y 

// MANIFOLD BUILD // 

/* coordinate map */ 
xt,yt,zt = To_Sphere(x,y) 
/* dynamics */ 
Twist(xt,yt,zt) 
Attractor(xt,yt,zt) 
/* hyper-tuning */ 
xt*= args[0] 
yt*= args[1] 
zt*= args[2] 
/* output */ 
Vector3 build = Vector3(xt,yt,zt) 

// VECTOR BEAM // 

/* init beam origin */ 
Vector3 origin = Vector3.ones(3) 
/* polar coordination */ 
Vector2 beam = Polarize(build,origin) 

// FETCH // 

data = beam
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 ( Data Manifold Analysis ) Use Cases:  

Case One:  as an Amplifier for Image Processing 

Figure: Hubble Deep UV (HDUV) Legacy Survey image (15k galaxies; August 16, 2018) MVM shows Illusive Grid Structure ( All rights reserved © Hao ) 

Case Two:  as a Tensor Layer for training CNN with ResNET50 / InceptionResNetV2 Bases 

Setup:  

The setup comprises a standard test set with 800 images, a validation set of 80 images with corresponding 40 labeled 

categories. I ran through three epochs through the architectures with parallel settings and comparable measures. All flattened, 

densed before applied either to standard activation with LeakyRELU activation or  (so there is no activation for  

DMA architecture), the last layer is softmax with exactly the same settings. As for measurements, both accuracy and loss 

values are historically logged per epoch. As shown below,  is not only applicable as a standard layer, the performance 

is very neat, without adding any additional parameterisation, hardware upgrades, model complexity or increase of depth. The 

only issue as mentioned before is the result of NAN in more compact manifolds, vectors beams are been black-out as hyper 

superpositioning occurred, which however can be easily regularised through simple filtration. 

  

 

Figure : Architecture Comparison of the  (Above) and  (Below). ( macSVG ) ( All rights reserved © Hao ) 
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Images 800 x 224 x 224 x 3

ResNet50 / InceptionResNetV2

Flatten + Dense ( 4096, init = glorot uniform) LeakyRELU ( Leak = 0.01 )

Dense (40 num_class ) + Softmax

Images 800 x 224 x 224 x 3

ResNet50 / InceptionResNetV2

Flatten + Dense ( 4096, init = glorot uniform) MVM + Nan_Regulariser

Dense (40 num_class ) + Softmax
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Result: 

In order to compare the architectures in core functionality, subsequent optimisation are not been used, batching is full dataset, 

epoch is only set to three. GPU is not used, instead, both architecture were running on single core Intel Core i7 with Mac High 

Sierra OS. Historical *.csv log were used with native Tensorflow CSV logger together with full weighted network checkpoints for 

the epochs in *.h5. Four standard measures were taken, acc., loss, val_acc. For the test sets, and val_loss for the validation sets.   

As for reading, in general, low loss ensures preservation of learning capacity for true deep learning, higher acc. in test set implies 

better performance through a designed iteration scheme, higher val-acc. is the essential measurement for model quality. * In 

addition, low time cost assures economic value ,  is in average 8 times faster than  on exactly parallel settings. 

 

Figure: Performance Comparison of the  (Blue, Red) and  (Black). ( R native plot ) ( All rights reserved © Hao ) 

Discussion: 

Artificial Intelligence is a fast growing interdisciplinary field of Science and Engineering. With , I can build interesting 

architectures not-yet-fully tested, while at the sometime superior than its predecessors under standard performance measures. It 

is not by accident to construct virtual architecture for dataset, it is not by chance to journey through quantum phenomenons and 

differential geometry to resolve computational issues. With ever-progressing models, here we have an alternative start point with 

, that will potentially allow us to build next-generation manifold AI not far from today.  

Online Resources: 

A NodeJs application that graphically present a few constant, linear, and non-linear functions using  algorithm to build 

a collection of 1e5 discrete unit points onto a non-orient torus manifold ( https://dma-presentation-tool.herokuapp.com ). 

A MIT license Conversion Tool to simply transform your dataset to a . (Coming Soon) 

An algorithm patented Python package with code source available at request. (Coming Soon) 
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