Evaluation Of Deflection

Exposure Case 1 (on two stilts, distributed load)

Exposure Case 2 (fixed one-sided, point load)

Exposure Case 3 (on two stilts, point load)

Exposure Case 4 (fixt two-sided, point load)

To calculate deflection the following calculations are to be used:

Exposure Case 1

$$f = \frac{5 \cdot F \cdot L^3}{384 \cdot E \cdot I \cdot 10^4}$$

Exposure Case 1

$$f = \frac{F \cdot L^3}{3 \cdot E \cdot I \cdot 10^4}$$

Exposure Case 3

$$f = \frac{F \cdot L^3}{48 \cdot E \cdot I \cdot 10^4}$$

$$f = \frac{F \cdot L^3}{3 \cdot E \cdot I \cdot 10^4}$$

$$= \frac{F \cdot L^3}{48 \cdot E \cdot I \cdot 10^4}$$

Exposure Case 4

$$f = \frac{F \cdot L^3}{192 \cdot E \cdot I \cdot 10^4}$$

To calculate deflection caused by dead weight the following calculations are to be used:

Exposure Case 2

$$f = \frac{F \cdot L^3}{8 \cdot E \cdot I \cdot 10^4}$$

Exposure Case 3

$$f = \frac{5 \cdot F \cdot L^3}{384 \cdot E \cdot I \cdot 10^4}$$

Exposure Case 4

$$f = \frac{F \cdot L^3}{384 \cdot E \cdot I \cdot 10^4}$$

$$= \frac{5 \cdot F \cdot L^3}{384 \cdot E \cdot I \cdot 10^4}$$

$$= \frac{F \cdot L^3}{384 \cdot F \cdot I \cdot 10^4}$$

- load [N] F
- profile length [mm]
- moment of inertia [cm4]
- modulus of elasticity [N/mm²] $E_{Al} = 70,000 \text{ N} / \text{mm}^2$

Control Of The Deflection

$$s = \frac{M_b}{W \cdot 10^3}$$

deflection [N/mm²]

M_b maximum bending [N/mm]

resistive moment [cm³]

Example

Profile 40 x 80 double bridge, upright known values:

> F = 10,000 N $L = 500 \, \text{mm}$ $I = 73.74 \text{ cm}^4$

to calculate: deflection f

Results

Exposure Case 1: f = 1.17 mm Exposure Case 2: f = 8.07 mm Exposure Case 3: f = 0.50 mm Exposure Case 4: f = 0.126 mm