
FDR Control with Adaptive Sequential
Experimental Design

Kevin Jamieson†,?

Optimizely†, and

Paul G. Allen School of Computer Science & Engineering?

University of Washington
Seattle, WA 98195

October 15, 2017

1 Problem Statement

Adopting the nomenclature of multi-armed bandits (c.f., [1]), an arm is a stochastic source that when pulled
by an algorithm, emits a sample drawn i.i.d. from a stationary distribution. That is, if an arm is a Bernoulli
source with probability µ, then an algorithm that pulls the arm m times observes m i.i.d. draws of a
Bernoulli random variable with mean µ. This work considers a single control arm–a baseline distribution–
and n different alternative arms. Using as few samples as possible (or as little time as possible), the objective
is to identify which alternatives have distributions with means that differ from the control arm. This work
can be viewed as an advanced version of traditional A/B testing.

Consider a control arm with index 0 and n additional arms indexed i = 1, . . . , n where samples from the
jth arm for j ∈ 0, 1, . . . , n are sub-Gaussian1 distributed with mean µi. The arm’s distribution either follows
the null distribution H0, or the alternative distribution H1:

µi = µ0 if i ∈ H0

µi 6= µ0 if i ∈ H1.

The value of the means and the assignments to H0 or H1 are unknown. At each time t, the algorithm chooses
an index i in 0, 1, . . . , n and observes a stochastic realization Xi,t where E[Xi,t] = µi. The algorithm uses
these noisy observations to make estimates about the assignments of each i ∈ [n] to either H1 or H0.

The algorithm can pull the arms in any order it desires, and in particular, can use all the observations
up to time t− 1 to decide which arm to pull at time t. Given δ ∈ (0, 1), at every time t ∈ N the algorithm is

tasked with outputting a set St such that E[|H0∩St|
|St|] ≤ δ. The objective is to get the ratio E[|St∩H1|

|H1|] as close

to 1 as possible, as fast as possible (i.e. for small t, taking as few samples as possible), while satisfying the

constraint E[|H0∩St|
|St|] ≤ δ. The set St should be interpreted as discoveries or rejections of the null-hypothesis

(i.e., a rejection is equivalent to declaring i /∈ H0). The constraint that E[|H0∩S|
|S|] ≤ δ is known as controlling

the false discovery rate at level δ.

1.1 When does adaptivity help?

The baseline approach to the above problem is uniform sampling: at each time pull an arm chosen uniformly
at random – this is the traditional A/B/n testing approach. Alternatively, adaptive methods use the past
observations to choose which arms to pull next so that traffic allocations to the arms change over time.
Adaptivity can speed up the time to significance in a couple different ways.

To see the most clear way that adaptivity helps, consider just two coins, one with probability of heads
equal to µ0, and the other with probability µ1 6= µ0. Suppose we wish to identify which one has the largest
probability of heads by just flipping the coins (i.e., we have no knowledge of µ0, µ1). If we flip each coin

1A random variable X is said to be sub-Gaussian if E[exp(λ(X − E[X])] ≤ exp(λ2/2). Note that if X is a Bernoulli random
variable in {0, 1}, then 2X − 1, and trivially X, are sub-Gaussian.

1

m times, take the difference of their empirical means, the standard deviation of this difference up to first
approximation acts like

√
1/m. Thus, to determine the sign of (µ1−µ0), we need

√
1/m� |µ1−µ0|, which

means each coin must be flipped at least m ≥ (µ1 − µ0)−2 times. This is simple since each of the two coins
is sampled the same number of times.

Now suppose I have one control coin with mean µ0 and n alternative coins each with mean µi for
i = 1, . . . , n. If I wanted to determine all those means µi such that µi 6= µ0 (i.e., those in H1 versus H0),
an intuitive strategy would be to sample each coin in a uniform or round-robin strategy and stop sampling
the ith coin when it can safely be determined that µi 6= µ0 using the logic of the preceding paragraph. It
is intuitive that the total number of flips one would need to make before discovering all those coins µi such
that µi 6= µ0 would scale roughly as the sum of all the individual tests, plus all the coins in |H0| we haven’t
decided about yet (and shouldn’t ever declare as different than µ0). Thus,

(imprecise) # samples for a simple adaptive algorithm :
∑
i∈H1

(µi − µ0)−2 + |H0|max
j∈H1

(µj − µ0)−2 (1)

By stopping the sampling of coins we’ve already determined as being larger or smaller than µ0, we are
employing an adaptive strategy.

For a non-adaptive strategy, such as sampling each coin the same number of times for all time in a
uniform or round-robin order (i.e., traditional A/B/n testing), we must wait until the coin i with the mean
closest to µ0 has been sufficiently sampled before discovering all the coins with different means; this coin
must be sampled maxj∈H1

(µj − µ0)−2 times. But because we’re employing a uniform strategy, all the coins
would have had to be flipped this many times. Thus,

(imprecise) # samples for a non-adaptive algorithm : (|H1|+ |H0|) max
j∈H1

(µj − µ0)−2. (2)

The difference between Equations 1 and 2 is largest when there is a large amount of diversity in the means
of H1: some µi are very different than µ0, and some are very close to µ0. However, when the means of the
alternatives µi are all roughly equal, the claimed number of samples of the two equations above appear equal
– this is only because we were using rough, imprecise approximations. When there is a lack of diversity
between the means there are subtle statistical effects that must be taken into account, and this is the second
way adaptivity can help.

The above argument was very high-level and glosses over many statistical details that come into play
when considering multiple discoveries and many sources of independent randomness. To provide intuition,
if I flip n = 10 fair coins 100 times, we expect the vast majority of these coins to have around 50 heads.
But as n gets very large, such as n = 1000, we start to expect to observe some rare events, such as at
least one coin having greater than 90 heads. The point is that when the number of coins is very small,
we expect all the empirical means to concentrate tightly around their true means. But when the number
of coins increases, we expect at least one or a small number of coins to have large deviations about their
true mean. Adaptivity identifies these misbehaving coins and allocates more effort to them to control their
means, whereas a non-adaptive method would make every coin be sampled as much as the rare coin that
deviates the most.

The theoretical limits of adaptive methods relative to non-adaptive methods is an active area of research
[2] and beyond the scope of this work. Here we focus on the advantages of adaptivity through empirical
studies modeled on common workloads experience on the Optimizely platform, particularly in Section 3.

2 Proposed Bandit Algorithm

For any arm i ∈ [n] we will assume the existence of an anytime confidence interval φ that satisfies |(µ̂i,Ti(t)−
µ̂0,T0(t)) − (µi − µ0)| ≤ φ(µ̂i,Ti(t), Ti(t), µ̂0,T0(t), T0(t), δ) for all t simultaneously with probability at least
1− δ, where Tj(t) denotes the number of times the jth arm has been pulled up to time t and µ̂i,Ti(t) is the
empirical mean. For the purposes of our simulations, we employ the confidence interval from the Optimizely
Stats Engine that in actuality takes more information about the samples to construct the confidence bound
than just the empirical mean and number of samples.

The algorithm is based on the popular upper confidence bound heuristic that has been successfully applied
for balancing exploration-versus-exploitation [1], estimation [3], and most relevant to our situation, best-arm

2

Algorithm 1: FDR Control for MAB with control arm

1 Input: Confidence δ, confidence interval φ(·, ·), n arms and control arm
2 Initialize: Pull each arm a ∈ {0} ∪ [n] once and let Ta(t) denote the number of times arm a has been

pulled up to time t.
3 Set for all time t and a ∈ [n]
4

UCBa(t, δ) = µ̂a,Ta(t) − µ̂0,T0(t) + φ+(µ̂a,Ta(t), Ta(t), µ̂0,T0(t), T0(t), δ)

LCBa(t, δ) = µ̂a,Ta(t) − µ̂0,T0(t) − φ−(µ̂a,Ta(t), Ta(t), µ̂0,T0(t), T0(t), δ)

For rounds t = n+ 2, n+ 3, . . .
5 For all a ∈ [n], if µ̂a,Ta(t) − µ̂0,T0(t) > 0
6

pa,Ta(t) = sup
{
ρ ∈ (0, 1) : µ̂a,Ta(t) − µ̂0,T0(t) ≤ φ+(µ̂a,Ta(t), Ta(t), µ̂0,T0(t), T0(t), ρ)

}
else

pa,Ta(t) = sup
{
ρ ∈ (0, 1) : −µ̂a,Ta(t) + µ̂0,T0(t) ≤ φ−(µ̂a,Ta(t), Ta(t), µ̂0,T0(t), T0(t), ρ)

}
Set S as the output of Benjamini-Hochberg acting on {pa,Ta(t)}na=1

7 Pull arm â where

â = arg max
a∈[n]\S

max{UCBa(t, δ),−LCBa(t, δ)}

If T0(t) < maxa∈[n]\S Ta(t), pull arm 0

or best-subset identification [4, 2]. Algorithm 1 combines the best-arm identification strategy of [4] with
the celebrated method of Benjamini-Hochberg [5, 6] for controlling false discovery rate. The algorithm has
known theoretical correctness and sample complexity guarantees [7] that we omit for now.

2.1 Comparing different algorithms

To benchmark the different adaptive allocation methods, we consider a control arm and n alternative arms.
Each alternative arm i ∈ [n] obeys i ∈ H0 ⇐⇒ µi = µ0 or i ∈ H1 ⇐⇒ µi = µ0 + ∆. We consider different
values of n, |H1|, µ0,∆, informed by the workloads used by Optimizely customers.

At each time t each algorithm outputs a set S. There are two metrics of interest: (1) the false-discovery-

rate |S∩H0|
|S| , and (2) the proportion of true discoveries |S∩H1|

|H1| . The first measures the rate at which what

is declared as significant, is actually not. And the second measures the proportion of true non-nulls are
declared as significant. Both are in [0, 1] and we wish the first to be bounded by δ, and the second to be as
close to 1 as fast as possible.

Because of the way we have designed these algorithms with anytime confidence bounds, they are guaran-
teed to control FDR at level δ [7]. Ideally, an algorithm would actually have an FDR rate of exactly δ (and
not much smaller) indicating that the algorithm is being as aggressive as possible while staying inbounds

of the FDR constraint. So what we really want to see is the second metric, |S∩H1|
|H1| , increasing as fast as

possible.
We consider three algorithms:

• Uniform: At each time, the arm in {0}∪ [n] that has been pulled the fewest number of times is pulled.

• Successive Elimination: At each time, the arm in {0} ∪ ([n] − S) that has been pulled the fewest
number of times is pulled. That is, if an arm is declared as a discovery on the previous round, it is not
a candidate for being pulled.

3

• Bandit: The procedure of Algorithm 1.

For various values of n and H1 the Figures 1, 2, 3 consider the performance of the algorithms for different
values of µ0 and ∆.

3 From one to B samples look-ahead

For practical reasons, one may not always immediately observe the stochastic reward Xi,t after one requests
to sample arm i at time t. Instead, at some wall-clock time τ a serving platform sets a static sampling
allocation pτ that prescribes with what probability each arm 0, 1, . . . , n should be sampled from. Until this
sampling allocation vector is replaced, all requests for an index to pull will be sampled independently from
pτ and the stochastic rewards are returned asynchronously at different times after time τ . Given a limit
on how often pτ can be replaced, the task is to choose pτ . Due to the importance of this problem in web
settings, this problem has been studied previously [8, 9]

3.1 Batching algorithm

In what follows, we make a number of simplifying assumptions. We work in discrete time such that at each
time t ∈ N the algorithm prescribes an allocation pt, exactly B samples are drawn from pt and their stochastic
rewards are immediately observed. Choosing pt with the caveat that B samples will be sampled from it before
the first stochastic reward is observed is a surrogate for the limitations on how often the allocation can be
updated and the delays in receiving the stochastic rewards of prescribed indices. The algorithm will proceed
exactly as in Algorithm 1 except Line 7 of Algorithm 1 will be replaced with sampling B indices from pt,
pulling the arms associated with those indices, and then updating the statistics. Our strategy is inspired by
the so-called “hallucination” method of [9]. Recall the notation of Algorithm 1.

To ease notation, set

If UCBa(t, δ) ≥ −LCBa(t, δ):

∆̂a = µ̂a,Ta(t) − µ̂0,T0(t)

φa = φ+(µ̂a,Ta(t), Ta(t), µ̂0,T0(t), T0(t), δ)

Else:

∆̂a = −µ̂a,Ta(t) + µ̂0,T0(t)

φa = φ−(µ̂a,Ta(t), Ta(t), µ̂0,T0(t), T0(t), δ)

and let Ta = Ta(t), and î = arg maxa=1,...,n ∆̂a + φa. Fix some p0 that we will determine later. Now let
q ∈ Rn+ :

∑n
i=1 qi = 1 be the minimizer of

max
a=1,...,n

∆̂a +

√√√√ 1
Ta+Bqa(1−p0) + 1

T0+Bp0
1

Ta+Bqî(1−p0) + 1
T0+Bp0

φa

For any value of p0, we note that î = arg maxa=1,...,n qa since the square-root term is at least 1, and this value

is achieved with q̂i = maxni=1 qi. We conclude that the value of the optimal solution is equal to c = ∆̂î + φî,
so rearranging we find

1

Ta/B + qa(1− p0)
=

(c− ∆̂a

φa

)2

− 1

 1

T0/B + p0
+

(
c− ∆̂a

φa

)2
1

Ta/B + q̂i(1− p0)

and

qa(1− p0) =

 1((
c−∆̂a

φa

)2

− 1

)
1

T0/B+p0
+
(
c−∆̂a

φa

)2
1

Ta/B+qî(1−p0)

− Ta/B


+

for p0 given (3)

4

µ0 = 0.01, ∆ = 0.01
|H1| = 1 |H1| = 2 |H1| = 3

n
=

2
n

=
3

n
=

5
n

=
7

n
=

11

Figure 1: Each plot represents 100 trials of the different allocation methods run with confidence level 0.05.
Within each setting of (n, |H1|)

5

µ0 = 0.1, ∆ = 0.1
|H1| = 1 |H1| = 2 |H1| = 3

n
=

2
n

=
3

n
=

5
n

=
7

n
=

11

Figure 2: Each plot represents 100 trials of the different allocation methods run with confidence level 0.05.
Within each setting of (n, |H1|)

6

µ0 = 0.1, ∆ = 0.01
|H1| = 1 |H1| = 2 |H1| = 3

n
=

2
n

=
3

n
=

5
n

=
7

Figure 3: Each plot represents 100 trials of the different allocation methods run with confidence level 0.05.
Within each setting of (n, |H1|)

7

where [x]+ := max{0, x}. To solve for the optimal qa, one notes that qa is non-decreasing in q̂i, so one
can pick a value of q̂i, compute the induced values of qa, and increase or decrease the value of q̂i based on
whether

∑
i=1 qi is larger or smaller than 1 (i.e., binary search). Python code (for expository purposes only,

not actual implementation) for solving for pa using Equation 3 and assuming symmetric confidence bounds
is given below.

In some cases, the value of B will be unknown, such as in unpredictable web-environments with time-
varying traffic. A natural way to deal with this is to consider the allocation as B goes off to infinity. In this
case

qa(1− p0) =
1((

c−∆̂a

φa

)2

− 1

)
1
p0

+
(
c−∆̂a

φa

)2
1

qî(1−p0)

for p0 given, as B →∞. (4)

and, in particular,

qa
q̂i

=
1

2
(
c−∆̂a

φa

)2

− 1
for p0 = (1− p0)q̂i, as B →∞. (5)

The same Python code in the listing can be used to solve Equation 4. The allocation for Equation 5 is
trivially solved for by setting q̂i = 1, solving for each qa, and then normalizing so that

∑n
i=1 qi = 1.

3.2 Picking p0

For any value of p0, the above section prescribes an allocation for all values of B. Suppose we were going to
allocate the same probability to every arm a 6= 0 so that qa = 1/n. The variance of ∆̂a would be proportional
to 1

p0
+ 1

(1−p0)/n since the accuracy of arm 0 is relevant to the difference. Minimizing this variance with

respect to p0, we find

p0 =

{√
n−1
n−1 if n ≥ 2

1/2 if n = 1
(6)

The derivation of this value of p0 assumed that the distribution over the treatments was approximately
uniform. To see why this is not an unreasonable assumption, note that the UCB strategy of the algorithm
more or less attempts to minimize the maximum absolute confidence bound. That means that c = ∆̂î+φî ≈

∆̂a + φa for all a. Treating this approximation as equality,
(
c−∆̂a

φa

)2

= 1 for all a ∈ [n], and regardless of

the value of p0 or B, we find that qa = q̂i in Equation 3. This motivates using p0 as defined in Equation 6
for all values of B.

3.3 Experiments

The set S that is output from Algorithm 1 has controlled FDR at all times regardless of the sampling
procedure. This means it does not matter whether samples are taken one at a time in a very complicated
way, uniformly, or from some other arbitrary sampling procedure, the set S will always have controlled FDR.
Said another way, FDR control and the sampling strategy are decoupled so we can explore many different
strategies for sampling. In what follows we consider:

• uniform-max-p0: samples the control arm and treatment arms {0, 1, . . . , n} uniformly, sampling each
arm with probability 1/(n+ 1) for all time t. That is, this method never stops sampling an arm. This
is equivalent to “standard” A/B/n testing with FDR control.

• uniform-auto-p0: performs just as uniform-max-p0 except that the control arm probability p0 is
defined as in Equation 6 and pi = (1− p0)/n for all treatment arms i = 1, . . . , n.

• succ-elim-auto-p0: similar to uniform-auto-p0 except that it sets pi = 0 for all i ∈ S. Specifically,

it sets p0 in Equation 6 except with n ← n − |S| so that p0 =

√
n−|S|−1

n−|S|−1 , pi = (1 − p0)/(n − |S|) for

i ∈ [n] − S, and pi = 0 for i ∈ S. That is, it stops samping arms that it has already declared as
significant and then behaves as uniform-auto-p0.

8

Listing 1: Procedure for solving for the probability allocations for B samples

def ucb batch allocation(self, B, mu hat , phi, T, p0):

”””
Returns probability vector prescribing proportion to sample arms

Input:
B: int or float (’ inf ’) , number of samples to be sampled
mu hat: (n+1) array, empirical means of arms (arm 0 is control)
phi : (n+1) array, confidence bound s . t . |mu hat−mu| < phi with high probability
T: (n+1) array, number of times arms pulled
p0: float , probability that control arm will be sampled in final output

Output:
p: (n+1) array, probability vector with p[0]=p0

”””
n = len(mu hat)−1
p = np.zeros(n+1)

p[0] = p0

Delta hat = abs(mu hat−mu hat[0])
Delta hat[0] = −float(’inf’)
i hat = np.argmax(Delta hat + phi)

c = Delta hat[i hat] + phi[i hat]

a = 0.

b = 1.

while (b−a)>EPS TOL:
p[i hat] = (a+b)/2.

for i in range(1, n):

if i != i hat:

alpha = (c−Delta hat[i])/phi[i]
den = (alpha∗alpha−1)/(T[0]/B+p[0]) + alpha∗alpha/(T[i]/B+p[i hat])
p[i] = max(0, 1./den − T[i]/B)

if sum(p) > 1.:

b = (a+b)/2.

else:

a = (a+b)/2.

return p/sum(p)

9

• Bandit-B-auto-p0: takes B as input, sets p0 =

√
n−|S|−1

n−|S|−1 , and samples each arm a with probability

pa = (1− p0)qa where qa and p0 is defined in Equation 3.

• Bandit-Binf-auto-p0: samples each arm a with probability pa = (1−p0)qa where qa and p0 is defined
in Equation 4.

• Bandit-Binf-max-p0: samples each arm a with probability pa = (1− p0)qa where qa and p0 is defined
in Equation 5.

• Bandit-auto-p0: samples control arm 0 with probability p0 =

√
n−|S|−1

n−|S|−1 and the arm prescribed by

Algorithm 1 (i.e. î = arg maxi µ̂i + φi) with probability 1− p0.

Something to keep in mind is that as B → ∞ we have Bandit-B-auto-p0 → Bandit-Binf-auto-p0. And
as B → 0 we have Bandit-B-auto-p0 → Bandit-auto-p0. Thus, if one uses Bandit-B-auto-p0 even
with an incorrectly specified value of B, its performance should not be too far from Bandit-B-auto-p0 or
Bandit-Binf-auto-p0.

Figure 4 shows the first way adaptivity can benefit over non-adaptive methods, when the means in
H1 are all very diverse, as described in Section 1.1. Here the control arm has probability µ0 and each
treatment arm has mean µi = µ0 + ∆10−(i−1)/(n−1) so that µi ∈ [∆,∆/10] for all i ∈ H1. We observe that
succ-elim-auto-p0 and the Bandit methods behave well, with the exception of Bandit-auto-p0. All the
methods that are behaving well here are optimal up to log factors that account for the subtle statistical
effects that we study next.

Figures 5, 6 study the second way adaptivity can benefit over non-adaptive methods, when the means in
H1 are all roughly equal. Here the control arm has probability µ0 and the treatment size µi − µ0 = ∆ for
i ∈ H1 (by definition, µi = µ0 for i ∈ H0). The different panels of the figures study the effect of the size
of |H1|, ∆, and n. We see that the non-adaptive methods are outperformed by the Bandit methods which
are all comparable with the exception of the performance of Bandit-auto-p0 which wanes as B gets very
large (which is expected since it is pulling just one treatment arm per batch). We also note that in these
situations there is almost no difference between succ-elim-auto-p0 and the non-adaptive methods.

We conclude that the Bandit-B-auto-p0 and Bandit-Binf-auto-p0 methods are the overall
best-performers. Conveniently, these are the same algorithm, just with different values of
input B (finite if known, infinite if not).

10

µi = µ0 + ∆10−(i−1)/(n−1), µ0 = 0.01, ∆ = 0.01
B = 100 B = 1000 B = 10000

n
=

2
n

=
3

n
=

5
n

=
7

n
=

11

Figure 4: Diverse gap experiment from Section 3. A “pull” here is a single allocation of B samples.

11

|H1| = 1, µ0 = 0.01, ∆ = 0.01
B = 100 B = 1000 B = 10000

n
=

2
n

=
3

n
=

5
n

=
7

n
=

11

Figure 5: Fixed gap experiment from Section 3. A “pull” here is a single allocation of B samples.

12

|H1| = max{2, bn/2c}, µ0 = 0.01, ∆ = 0.01
B = 100 B = 1000 B = 10000

n
=

2
n

=
3

n
=

5
n

=
7

n
=

11

Figure 6: Fixed gap experiment from Section 3. A “pull” here is a single allocation of B samples.

13

References

[1] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs. Journal of Machine Learning
Research, 3(Nov):397–422, 2002.

[2] Max Simchowitz, Kevin Jamieson, and Benjamin Recht. The simulator: Understanding adaptive sam-
pling in the moderate-confidence regime. Conference on Learning Theory (COLT), 2017.

[3] Alexandra Carpentier, Alessandro Lazaric, Mohammad Ghavamzadeh, Rémi Munos, and Peter Auer.
Upper-confidence-bound algorithms for active learning in multi-armed bandits. In International Confer-
ence on Algorithmic Learning Theory, pages 189–203. Springer, 2011.

[4] Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. lilucb: An optimal exploration
algorithm for multi-armed bandits. In Conference on Learning Theory, pages 423–439, 2014.

[5] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), pages
289–300, 1995.

[6] Yoav Benjamini and Daniel Yekutieli. The control of the false discovery rate in multiple testing under
dependency. Annals of statistics, pages 1165–1188, 2001.

[7] Kevin Jamieson. On the sample complexity of null rejection under adaptive sequential experimental
design and false discovery rate control. Unpublished, 2017.

[8] Kirthevasan Kandasamy, Akshay Krishnamurthy, Jeff Schneider, and Barnabas Poczos. Asynchronous
parallel bayesian optimisation via thompson sampling. arXiv preprint arXiv:1705.09236, 2017.

[9] Thomas Desautels, Andreas Krause, and Joel W Burdick. Parallelizing exploration-exploitation tradeoffs
in gaussian process bandit optimization. The Journal of Machine Learning Research, 15(1):3873–3923,
2014.

14

	Problem Statement
	When does adaptivity help?

	Proposed Bandit Algorithm
	Comparing different algorithms

	From one to B samples look-ahead
	Batching algorithm
	Picking p0
	Experiments

