
SQL Window Functions
SQL for Data Science

Learn SQL online at www.DataCamp.com

> Example dataset
We will use a dataset on the sales of bicycles as a sample. This dataset
includes:

The product table contains the types of bicycles sold, their model year, and list
price.

The order table contains the order_id and its date.

The order_items table lists the orders of a bicycle store. For each order_id, there
are several products sold (product_id). Each product_id has a discount value.

product_id product_name model_year list_price

1 Treak 820 - 2016 2016 379.99

2

4

Ritchey Timberwolf Frameset - 2016

Trek Fuel EX 8 29 - 2016

2016

2016

749.99

2899.99

3

5

Surly Wednesday Frameset - 2016

Heller Shagamaw Frame - 2016

2016

2016

999.99

1320.99

order_id product_id discount

1 20 0.2

1 8 0.07

1 16 0.05

1 10 0.05

1

2

4

20

0.2

0.07

order_id order_date

1 2016-01-01T00:00:00.000Z

2

4

2016-01-01T00:00:00.000Z

2016-01-03T00:00:00.000Z

3

5

2016-01-02T00:00:00.000Z

2016-01-03T00:00:00.000Z

The [product] table

The [order] table

The [order_items] table

> Partition by
We can use PARTITION BY together with OVER to specify the column over
which the aggregation is performed.

Comparing PARTITION BY with GROUP BY, we find the following similarity and
difference�

� Just like GROUP BY, the OVER subclause splits the rows into as many partitions
as there are unique values in a column.�

� However, while the result of a GROUP BY aggregates all rows, the result of a
window function using PARTITION BY aggregates each partition
independently. Without the PARTITION BY clause, the result set is one single
partition.

For example, using GROUP BY, we can calculate the average price of bicycles
per model year using the following query.

SELECT

 model_year,

 AVG(list_price) avg_price

FROM products

GROUP BY model_year

SELECT

 model_year,

 product_name,

 list_price,

 AVG(list_price) OVER

 (PARTITION BY model_year)  
 avg_price

 FROM products

Notice how the avg_price of 2018 is exactly the same whether we use the
PARTITION BY clause or the GROUP BY clause.

What if we want to compare each product’s price with the average price of
that year? To do that, we use the AVG() window function and PARTITION BY the
model year, as such.

> Order by
ORDER BY is a subclause within the OVER clause. ORDER BY changes the basis on
which the function assigns numbers to rows.

It is a must-have for window functions that assign sequences to rows, including
RANK and ROW_NUMBER. For example, if we ORDER BY the expression `price` on
an ascending order, then the lowest-priced item will have the lowest rank.

Let's compare the following two queries which differ only in the ORDER BY clause.

/* Rank price from LOW->HIGH */

 SELECT

 product_name,

 list_price,

 RANK() OVER

 (ORDER BY list_price DESC) rank

 FROM products

/* Rank price from HIGH->LOW */

 SELECT

 product_name,

 list_price,

 RANK() OVER

 (ORDER BY list_price ASC) rank

 FROM products

What are Window Functions?
A window function makes a calculation across multiple rows that are related to
the current row. For example, a window function allows you to calculate.�

� Running totals (i.e. sum values from all the rows before the current row�
� 7-day moving averages (i.e. average values from 7 rows before the current row�
� Rankings

Similar to an aggregate function (GROUP BY), a window function performs the
operation across multiple rows. Unlike an aggregate function, a window function
does not group rows into one single row.

AGGREGATE  
FUNCTION

WINDOW  
FUNCTION

> Syntax

SELECT

 window_function() OVER(

 PARTITION BY partition_expression

 ORDER BY order_expression

 window_frame_extent

) AS window_column_alias

 FROM table_name

Windows can be defined in the SELECT section of the query.

SELECT

 window_function() OVER(window_name)

 FROM table_name

 [HAVING ...]

 WINDOW window_name AS (

 PARTITION BY partition_expression

 ORDER BY order_expression

 window_frame_extent

)

 [ORDER BY ...]

To reuse the same window with several window functions, define a named
window using the WINDOW keyword. This appears in the query after the
HAVING section and before the ORDER BY section.

> Window frame extent
A window frame is the selected set of rows in the partition over which
aggregation will occur. Put simply, they are a set of rows that are somehow
related to the current row.

A window frame is defined by a lower bound and an upper bound relative to
the current row. The lowest possible bound is the first row, which is known as
UNBOUNDED PRECEDING. The highest possible bound is the last row, which is
known as UNBOUNDED FOLLOWING. For example, if we only want to get 5
rows before the current row, then we will specify the range using 5 PRECEDING.

M ROWS

N ROWS

UNBOUNDED

PRECEDING

N PRECEDING

CURRENT ROW

M FOLLOWING

UNBOUNDED

FOLLOWING

> Accompanying Material
You can use this to run any of the queries explained in
this cheat sheet.

https://bit.ly/3scZtOK

> LEAD, LAG

Both LEAD and LAG take three arguments�
� Expression: the name of the column from which the value is retrieve�
� Offset: the number of rows to skip. Defaults to 1�
� Default_value: the value to be returned if the value retrieved is null.

Defaults to NULL.

With LAG and LEAD, you must specify ORDER BY in the OVER clause.

LEAD and LAG are most commonly used to find the value of a previous row or
the next row. For example, they are useful for calculating the year-on-year
increase of business metrics like revenue.

Here is an example of using lag to compare this year's sales to last year's.

Similarly, we can make a comparison of each year's order with the next year's.

Function Syntax Function Description

LEAD(expression
[,offset[,default_value]])
OVER(ORDER BY columns)

LAG(expression
[,offset[,default_value]])
OVER(ORDER BY columns)

Accesses the value stored in a row after the
current row.

Accesses the value stored in a row before
the current row.

The LEAD and LAG locate a row relative to the current row.

/* Find the number of orders in a year */

WITH yearly_orders AS (

 SELECT

	year(order_date) AS year,

	COUNT(DISTINCT order_id) AS num_orders

	FROM sales.orders

	GROUP BY year(order_date)

)

/* Compare this year's sales to last year's */

SELECT

 *,

 LAG(num_orders) OVER (ORDER BY year) last_year_order,

 LAG(num_orders) OVER (ORDER BY year) - num_orders diff_from_last_year

FROM yearly_orders

/* Find the number of orders in a year */

WITH yearly_orders AS (

 SELECT

	year(order_date) AS year,

	COUNT(DISTINCT order_id) AS num_orders

	FROM sales.orders

	GROUP BY year(order_date)

)

/* Compare the number of years compared to next year */

SELECT *,

 LEAD(num_orders) OVER (ORDER BY year) next_year_order,

 LEAD(num_orders) OVER (ORDER BY year) - num_orders diff_from_next_year

FROM yearly_orders

> Ranking window functions
There are several window functions for assigning rankings to rows. Each of
these functions requires an ORDER BY sub-clause within the OVER clause.

The following are the ranking window functions and their description:

We can use these functions to rank the product according to their prices.

/* Rank all products by price */

SELECT

 product_name,

 list_price,

 ROW_NUMBER() OVER (ORDER BY list_price) AS row_num,

 DENSE_RANK() OVER (ORDER BY list_price) AS dense_rank,

 RANK() OVER (ORDER BY list_price) AS rank,

 PERCENT_RANK() OVER (ORDER BY list_price) AS pct_rank,

 NTILE(75) OVER (ORDER BY list_price) AS ntile,

 CUME_DIST() OVER (ORDER BY list_price) AS cume_dist

FROM products

Assigns the rank number of
each row in a partition as a
percentage.

PERCENT_RANK()

CUME_DIST()

Function Syntax Function Description Additional notes

ROW_NUMBER()
 Assigns a sequential integer
to each row within the
partition of a result set.

Row numbers are not repeated within
each partition.

� Tied values are given the same rank�
� Computed as the fraction of rows
less than the current row, i.e., the
rank of row divided by the largest
rank in the partition.

NTILE(n_buckets) Distributes the rows of a
partition into a specified
number of buckets.

� For example, if we perform the
window function NTILE(5) on a table
with 100 rows, they will be in bucket
1, rows 21 to 40 in bucket 2, rows 41
to 60 in bucket 3, et cetera.

The cumulative distribution: the
percentage of rows less than or
equal to the current row.

� It returns a value larger than 0 and
at most 1.�

� Tied values are given the same
cumulative distribution value.

RANK()

 Assigns a rank number to
each row in a partition.

� Tied values are given the same rank�
� The next rankings are skipped.

> Value window functions
FIRST_VALUE() and LAST_VALUE() retrieve the first and last value respectively
from an ordered list of rows, where the order is defined by ORDER BY.

To compare the price of a particular bicycle model with the cheapest (or most
expensive) alternative, we can use the FIRST_VALUE (or LAST_VALUE).

Value window function Function

FIRST_VALUE(value_to_return) OVER
(ORDER BY value_to_order_by)

LAST_VALUE(value_to_return) OVER
(ORDER BY value_to_order_by)

NTH_VALUE(value_to_return, n) OVER
(ORDER BY value_to_order_by)

Returns the first value in an ordered set of
values

Returns the last value in an ordered set of
values

Returns the nth value in an ordered set of
values.

/* Find the difference in price from
the cheapest alternative */

SELECT

 product_name,

 list_price,

 FIRST_VALUE(list_price) OVER (

 ORDER BY list_price

 ROWS BETWEEN

 UNBOUNDED PRECEDING

 AND

 UNBOUNDED FOLLOWING

) AS cheapest_price,

FROM products

/* Find the difference in price from
the priciest alternative */

SELECT

 product_name,

 list_price,

 LAST_VALUE(list_price) OVER (

 ORDER BY list_price

 ROWS BETWEEN

 UNBOUNDED PRECEDING

 AND

 UNBOUNDED FOLLOWING

) AS highest_price

FROM products

> Aggregate window functions
Aggregate functions available for GROUP BY, such as COUNT(), MIN(), MAX(),
SUM(), and AVG() are also available as window functions.

Suppose we want to find the average, maximum and minimum discount for
each product, we can achieve it as such.

Function Syntax Function Description

COUNT(expression) OVER (PARTITION
BY partition_column)

MAX(expression) OVER (PARTITION BY
partition_column)

MIN(expression) OVER (PARTITION BY
partition_column)

AVG(expression) OVER (PARTITION BY
partition_column)

Count the number of rows that have a non-
null expression in the partition.

Find the maximum of the expression in the
partition.

Find the minimum of the expression in the
partition.

Find the mean (average) of the expression
in the partition.

SELECT

 order_id,

 product_id,

 discount,

 AVG(discount) OVER (PARTITION BY product_id) AS avg_discount,

 MIN(discount) OVER (PARTITION BY product_id) AS min_discount,

 MAX(discount) OVER (PARTITION BY product_id) AS max_discount

FROM order_items

SQL Window Functions
SQL for Data Science

Learn SQL online at www.DataCamp.com

https://bit.ly/3scZtOK

