Example dataset

We will use a dataset on the sales of bicycles as a sample. This dataset
includes:

The [product] table

The product table contains the types of bicycles sold, their model year, and list
price.

product_id product_name model_year list_price
1 Treak 820 - 2016 2016 379.99
2 Ritchey Timberwolf Frameset - 2016 2016 749.99
3 Surly Wednesday Frameset - 2016 2016 999.99
4 Trek Fuel EX 8 29 - 2016 2016 2899.99
5 Heller Shagamaw Frame - 2016 2016 1320.99

The [order] table

The order table contains the order_id and its date.

order_id order_date
1 2016-01-01T00:00:00.000Z
2 2016-01-01T00:00:00.000Z
3 2016-01-02T00:00:00.000Z
4 2016-01-03T00:00:00.000Z
5 2016-01-03T00:00:00.000Z

The [order_items] table

The order_items table lists the orders of a bicycle store. For each order_id, there
are several products sold (product_id). Each product_id has a discount value.

order_id product_id discount
1 20 0.2
1 8 0.07
1 10 0.05
1 16 0.05
1 4 0.2
2 20 0.07

Ranking window functions

There are several window functions for assigning rankings to rows. Each of
these functions requires an ORDER BY sub-clause within the OVER clause.

The following are the ranking window functions and their description:

Function Syntax Function Description Additional notes

ROW_NUMBER() Assigns a sequential integer

to each row within the

Row numbers are not repeated within
each partition.

What are Window Functions?

A window function makes a calculation across multiple rows that are related to
the current row. For example, a window function allows you to calculate.

 Running totals (i.e. sum values from all the rows before the current row)

 7-day moving averages (i.e. average values from 7 rows before the current row)

* Rankings

Similar to an aggregate function (GROUP BY), a window function performs the

operation across multiple rows. Unlike an aggregate function, a window function
does not group rows into one single row.

AGGREGATE
FUNCTION

N~
-
= -

Syntax

WINDOW
FUNCTION

 EdEl
 EdEl
 EdBl

Windows can be defined in the SELECT section of the query.

SELECT
window_function() OVER(
PARTITION BY partition_expression
ORDER BY order_expression
window_frame_extent
) AS window_column_alias
FROM table_name

To reuse the same window with several window functions, define a named
window using the WINDOW keyword. This appears in the query after the
HAVING section and before the ORDER BY section.

SELECT
window_function() OVER(window_name)
FROM table_name
[HAVING ...]
WINDOW window_name AS (
PARTITION BY partition_expression
ORDER BY order_expression
window_frame_extent

)
[ORDER BY ...]

Order by

ORDER BY is a subclause within the OVER clause. ORDER BY changes the basis on
which the function assigns numbers to rows.

It is a must-have for window functions that assign sequences to rows, including
RANK and ROW_NUMBER. For example, if we ORDER BY the expression "price’ on
an ascending order, then the lowest-priced item will have the lowest rank.

Let's compare the following two queries which differ only in the ORDER BY clause.

/* Rank price from LOW->HIGH x/
SELECT
product_name,
list_price,
RANK() OVER
(ORDER BY 1list_price DESC) rank
FROM products

product_name Vv list_price v rank
Strider Classic 12 Balance Bike - 2018 89.99
Sun Bicycles Lil Kitt'n - 2017 109.99
Trek Boy's Kickster - 2015/2017 149.99

/* Rank price from HIGH->LOW x/
SELECT
product_name,
list_price,
RANK() OVER
(ORDER BY 1list_price ASC) rank
FROM products

product_name Vv list_price Vv rank Vv
Trek Domane SLR 9 Disc - 2018 11999.99
Trek Domane SLR 8 Disc - 2018 7499.99
Trek Domane SL Frameset - 2018 6499.99

Value window functions

FIRST_VALUE() and LAST_VALUE() retrieve the first and last value respectively
from an ordered list of rows, where the order is defined by ORDER BY.

Value window function

Function

FIRST_VALUE(value_to_return) OVER
(ORDER BY value_to_order_by)

Returns the first value in an ordered set of
values

LAST_VALUE(value_to_return) OVER
(ORDER BY value_to_order_by)

Returns the last value in an ordered set of
values

NTH_VALUE(value_to_return, n) OVER
(ORDER BY value_to_order_by)

Returns the nth value in an ordered set of
values.

To compare the price of a particular bicycle model with the cheapest (or most
expensive) alternative, we can use the FIRST_VALUE (or LAST_VALUE).

/* Find the difference in price from
the cheapest alternative */
SELECT

product_name,
list_price,
FIRST_VALUE(list_price) OVER (
ORDER BY list_price
ROWS BETWEEN
UNBOUNDED PRECEDING
AND
UNBOUNDED FOLLOWING
) AS cheapest_price,
FROM products

/* Find the difference in price from
the priciest alternative */
SELECT

product_name,

list_price,

LAST_VALUE(list_price) OVER (

ORDER BY list_price
ROWS BETWEEN
UNBOUNDED PRECEDING
AND
UNBOUNDED FOLLOWING
) AS highest_price
FROM products

Partition by

We can use PARTITION BY together with OVER to specify the column over
which the aggregation is performed.

Comparing PARTITION BY with GROUP BY, we find the following similarity and
difference:

e Just like GROUP BY, the OVER subclause splits the rows into as many partitions
as there are unique values in a column.

* However, while the result of a GROUP BY aggregates all rows, the result of a
window function using PARTITION BY aggregates each partition
independently. Without the PARTITION BY clause, the result set is one single
partition.

For example, using GROUP BY, we can calculate the average price of bicycles
per model year using the following query.

SELECT
model_year v avg_price Vv
model_year,
. .) 2016 980.29923
AVG(list_price) avg_price 2017 1279.931176
FROM products 2018 1658. 470441
GROUP BY model_year Gt bbb

What if we want to compare each product’s price with the average price of
that year? To do that, we use the AVG() window function and PARTITION BY the
model year, as such.

SELECT
mo d e -L_y ear , model_year v product_name Vv list_price v avg_price Vv

2018 Electra Amsterdam Fashion 3i Ladies' - 899.99 1658.470441

product_name, 2017/2018

list_price, 2017 Electra Amsterdam Fashion 7i Ladies' - 1099.99 1279.931176
AVG(list_price) OVER o
2017 Electra Amsterdam Original 3i - 659.99 1279.931176
(PARTITION BY model_year) 2015/2017
avg_price

FROM products

Notice how the avg_price of 2018 is exactly the same whether we use the
PARTITION BY clause or the GROUP BY clause.

Window frame extent

A window frame is the selected set of rows in the partition over which
aggregation will occur. Put simply, they are a set of rows that are somehow
related to the current row.

A window frame is defined by a lower bound and an upper bound relative to
the current row. The lowest possible bound is the first row, which is known as
UNBOUNDED PRECEDING. The highest possible bound is the last row, which is
known as UNBOUNDED FOLLOWING. For example, if we only want to get 5
rows before the current row, then we will specify the range using 5 PRECEDING.

UNBOUNDED
PRECEDING

N PRECEDING

CURRENT ROW

M FOLLOWING

UNBOUNDED
FOLLOWING

Accompanying Material

You can use this https://bit.lu/3scZtOK| to run any of the queries explained in
this cheat sheet.

LEAD, LAG

The LEAD and LAG locate a row relative to the current row.

Function Syntax Function Description

LEAD (expression Accesses the value stored in a row after the
[,offset[,default_valuell) current row.

OVER(ORDER BY columns)

LAG(expression Accesses the value stored in a row before

[,offset[,default_value]])
OVER(ORDER BY columns)

the current row.

Both LEAD and LAG take three arguments:
e Expression: the name of the column from which the value is retrieved
o Offset: the number of rows to skip. Defaults to 1.

e Default_value: the value to be returned if the value retrieved is null.
Defaults to NULL.

With LAG and LEAD, you must specify ORDER BY in the OVER clause.
LEAD and LAG are most commonly used to find the value of a previous row or
the next row. For example, they are useful for calculating the year-on-year

increase of business metrics like revenue.

Here is an example of using lag to compare this year's sales to last year's.

/* Find the number of orders in a year %/

proauct_name VvV nsy_price v cneapest_price Vv aiTr Vv product_nqme v |ist_price v highest_price v diff v

partition of a result set. Strider Classic 12 Balance Bike 89.99 89.99 ® Strider Classic 12 Balance Bike 89.99 11999.99 11910 WITH yearly_orders AS (
- 2018 - 2018 SELECT
Sun Bicycles Lil Kitt'n - 2017 169.99 89.99 20 syn Bicycles Lil Kitt'n - 2017 109.99 11999.99 11890 year(order_date) AS year
RANK () Assigns a rank number to » Tied values are given the same rank. (LR ROy S Hicketer - ealai2t i el 9 Trek Boy's Kickster - 2015/2017 149.99 11999.99 11850 - N
h) it Th ; Ki Ki d Trek Girl's Kickster - 2017 149.99 89.99 | T ST ST PR COUNT(DISTINCT order_id) AS num_orders
L]
each row in a partition. e next rankings are skipped. — —— — — EROM sales.orders

GROUP BY year(order_date)
)

PERCENT_RANK() Assigns the rank number of » Tied values are given the same rank.
. oy . [J []
each row in a partition as a e Computed as the fraction of rows Ag g reg dte WI ndOW fu nCtlonS /% Compare this year's sales to last year's x/
percentage. less than the current row, i.e., the SELECT

rank of row divided by the largest *,

rank in the partition. . . LAG(num_orders) OVER (ORDER BY year) last_year_order,
Aggregate functions available for GROUP BY, such as COUNTO’ M|N(), MAXO, LAG(num_orders) OVER (ORDER BY year) - num_orders diff_from_last_year
SUM(), and AVG() are also available as window functions.

FROM yearly_orders
NTILE(n_buckets) Distributes the rows of a e For example, if we perform the

partition into a specified window function NTILE(5) on a table
number of buckets. with 100 rows, they will be in bucket
1, rows 21 to 40 in bucket 2, rows 41
to 60 in bucket 3, et cetera.

Function Syntax Function Description year Vv num_orders Vv last_year_order v diff_from_last_year v

Count the number of rows that have a non- 2016 635 null null
null expression in the partition.

COUNT (expression) OVER (PARTITION
BY partition_column)

2017 688 635 -53
CUME_DIST() . S MIN(expression) OVER (PARTITION BY Find the minimum of the expression in the 2018 292 688 396
- The cumulative distribution: the * It returns a value larger than O and partition_column) partition.
percentage of rows less than or at most 1. . . . ' . '
) , Similarly, we can make a comparison of each year's order with the next year's.
equal to the current row. » Tied values are given the same

MAX(expression) OVER (PARTITION BY
partition_column) partition.

Find the maximum of the expression in the

cumulative distribution value. /% Find the number of orders in a year +/

WITH yearly_orders AS (
Find the mean (average) of the expression SELECT

in the partition. year(order_date) AS year,
COUNT(DISTINCT order_id) AS num_orders

FROM sales.orders
GROUP BY year(order_date)

AVG(expression) OVER (PARTITION BY

We can use these functions to rank the product according to their prices. partition_column)

/* Rank all products by price */

SELECT Suppose we want to find the average, maximum and minimum discount for)
product_name,

list_price, each product, we can achieve it as such.

ROW_NUMBER() OVER (ORDER BY list_price) AS row_num, /* Compare the number of years compared to next year */

DENSE_RANK() OVER (ORDER BY list_price) AS dense_rank, SELECT SELECT *,

RANK() OVER (ORDER BY list_price) AS rank, order_id, LEAD(num_orders) OVER (ORDER BY year) next_year_order,

PERCENT_RANK() OVER (ORDER BY list_price) AS pct_rank, product_id, LEAD(num_orders) OVER (ORDER BY year) - num_orders diff_from_next_year
NTILE(75) OVER (ORDER BY list_price) AS ntile, discount, FROM yearly_orders

AVG(discount) OVER (PARTITION BY product_id) AS avg_discount,

MIN(discount) OVER (PARTITION BY product_id) AS min_discount,

MAX(discount) OVER (PARTITION BY product_id) AS max_discount year Vv
FROM order_items

CUME_DIST() OVER (ORDER BY 1list_price) AS cume_dist

FROM products

num_orders Vv next_year_order Vv diff_from_next_year Vv

product_name Vv list_price v row_num VvV dense_rank Vv rank Vv pct_rank v ntile v cume_dist v
2016 635 688 53

Strider Classic 12 Balance Bike 89.99 1 1 1 0 1 0.0031152648
- 2018 order_id v product_id v discount v avg_discount v min_discount v max_discount v 2017 688 292 -394
Sun Bicycles Lil Kitt'n - 2017 109.99 2 2 2 0.003125 1 0.0062305296 2 16 0.05 0.113191 0.05 9.2
Trek Boy's Kickster - 2015/2017 149.99 3 3 3 0.00625 1 0.0124610592 5 y y g 2018 292 null null
Trek Girl's Kickster - 2017 149.99 4 3 3 0.00625 1 0.0124610592 2 20 0.07 0.11253 0.05 0.2
Trek Kickster - 2018 159.99 5 4 5 0.0125 1 0.015576324 3 20 0.05 0.11253 0.05 0.2
Trek Precaliber 12 Boys - 2017 189.99 6 5 6 0.015625 2 0.0218068536

, _ 9 3 0.05 0.105581 0.05 0.2
Trek Precaliber 12 Girls - 2017 189.99 7 5 6 0.015625 2 0.0218068536

https://bit.ly/3scZtOK

