
Julia Basics Cheat Sheet
Learn Julia online at www.DataCamp.com

> Accessing help
Access help mode with an empty ?

Get help on a function with ?functionname

Search for help on a topic with ?topic

? 

?

?

first 

function

> Comments
This is a single-line comment #= This is a

multi-line comment =#

> Information about objects
Get the type of an object with typeof() — Example returns Int64

typeof()20

> Using packages
Packages are libraries of pre-written code (by other programmers) that we can add to our
Julia installation, which help us solve specific problems. Here’s how to install and work with
packages in Julia.

] 

add CSV  

 CSV

 CSV 

 DataFrames as df

Enter package mode with] to install and work with packages

Install a new package with add

Exit package mode with DELETE

Load a package with using

Load a package with import without an alias

Load a package with import with an alias

using

import

import

> The working directory
The working directory is a file path that Julia will use as the starting point for relative file
paths. That is, it's the default location for importing and exporting files. An example of a
working directory looks like "/Users/myname/workspace/myproject"

"/home/programming_languages/julia" 

()

Get current working director with pwd()

Set the current directory with cd()

pwd()

cd "/home/programming_languages/julia/cheatsheets"

Test greater or equal with >=

Test less than with <

Test less or equal than with <=

3 3

3 4

3 4

>=

<

<=

> Operators

Add two numbers with +

Subtract two numbers with -

Multiply two numbers with *

Divide a number by another with /

Integer divide a number with ÷

This returns 3

Inverse divide a number with \

This is equivalent to 0/5

Raise to the power using ^

Get the remainder after division with %

37 102

102 37

4 6

21 7

22 7

5 0

3 3

22 7

 +

-

*

/

÷

\

^

%

Assign a value to an object with =

Add two objects; store in left-hand object with +=

This is the same as a = a + 3

Subtract an object from another; store in left-hand object with -=

This is the same as a = a - 3

a =

a +=

a -=

5

3

3

Test for equality with ==

This returns true

Test for not-equality with !=

This returns false

Test greater than with >

3 3

3 3

3 1

 ==

 !=

>

Arithmetic operators

Assignment operators

Numeric comparison operators

Determine if a value is in an array with x in arr

This returns true

Pipe values to a function with value |> fn

This returns 43

x = []

 x

x |> (y (y) + (y))

11, 13, 19
13 in

-> length sum

Other operators

> Vectors
Vectors are one-dimensional arrays in Julia. They allow a collection of items such as floats,
integers, strings or a mix that allows duplicate values.

Create vectors with square brackets, [x1, x2, x3]

Create vectors, specifying element types using Vector{type}()

Create sequence of numbers from a to b with a:b

Create sequence of numbers from a to b in steps with a:step:b

Create vector that repeats m times and each element repeats n times

x = []

([])

(vector, inner=n, outer=m)

1, 2, 3

1, 2, 3

37 100

1 2 101

Vector{Float64}

:

: :

repeat

Creating vectors

Sorting vectors with sort(x)

Reversing vectors with reverse(x)

Reversing in-place with reverse!(x)

Get vector’s unique elements with unique()

x = []

(x)

(x)

!(x)

(x)

9, 1, 4
sort

reverse

reverse

unique

Vector functions

Logical operators

Logical not with ~

Returns false

Elementwise and with &

Returns false

~(==

(!=) & (<)

2 2)

1 1 1 1

Elementwise or with |
Returns true

Elementwise xor (exclusive or) with

Returns false

(>=) | (<)

(!=) (<)

1 1 1 1

1 1 1 1

Selecting the 6th element of a vector with x[6]

Selecting the first element of a vector with x[begin]

This is the same as x[1]

Selecting the last element of a vector with x[end]

This is the same as x[7]

Slicing elements two to six from a vector with x[2:6]

Selecting the 2nd and 6th element of a vector with x[[2, 6]]

Selecting elements equal to 5 with x[x .== 5]

Selecting elements less than 5 with x[x .< 5]

Selecting elements in the vector 2, 5, 8 with x[in([2, 5, 8]).(x)]

x = []

x[]

x[]

x[]

x[]

x[[]]

x[x .==]

x[x .<]

x[([]) (x)]

9, 1, 4, 6, 7, 11, 5
6

2 6

2,6

5

5

2, 5, 8

begin

end

:

in .

Selecting vector elements

Learn Julia Online at
www.DataCamp.com

Julia Basics Cheat Sheet
Learn Julia online at www.DataCamp.com

> Math functions
Example vector

Get the logarithm of a number with log()

Get the element-wise logarithm of a vector with log.()

Get the exponential of a number with exp()

Get the element-wise exponential of a vector with exp.()

Get the maximum of a vector with maximum()

Get the minimum of a vector with minimum()

Get the sum of a vector with sum()

Enter package mode

Add the Statistics package

Add the StatsBase package

Load the package with using

Load the package with using

Get the mean of a vector with mean()

Get the median of a vector with median()

Get quantiles of a vector with quantile(x, p)

Round values of a vector with round.(x, digits = n)

Get the ranking of vector elements with StatsBase.ordinalrank()

Get the variance of a vector with var()

Get the standard deviation of a vector with std()

Get the correlation between two vectors with cor(x, y)

x = []

()

(x)

()

(x)

(x)

(x)

(x)

The following code requires installing and loading the Statistics and StatsBase packages.
This can be done with the command below

]
add Statistics
add StatsBase
using Statistics
using StatsBase

(x)

(x)

(x, [])

(x,)

(x)

(x)

(x)

y = []

(x, y)

9, 1, 4, 6, 7, 11, 5

2

0.25, 0.75

2

1, 4, 2, 10, 23, 16, 5

log

log

exp 2

exp

maximum

minimum

sum

mean

median

quantile

round

ordinalrank

var

std

cor

.

.

.

> Getting started with DataFrames
Install the DataFrames and CSV packages

Create a DataFrame with DataFrame()

Vector of integers

Vector of characters

Fill whole column with one integer

Fill whole column with one string

Select a row from a data frame with [and column number

Return the third row and all columns

Select a column from a DataFrame using . and column name

Select a column from a DataFrame using [and column number

Select an element from a DataFrame using [and row and column numbers

Return the first row of the second column

]

add DataFrames

add CSV

using DataFrames

using CSV

df = (

 numeric_column = ,
 string_column= [],
 a_number = ,
 a_string =
)

df[,]

df.string_column

df[:,] # Return the second column and all rows

df[,]

DataFrame
1 4
'M', 'F', 'F', 'M'

0
"data frames"

3

2

1 2

:

:

> Manipulating data frames
Concatenate two data frames horizontally with hcat()

Returns 4-column DataFrame with columns A, B, C, D

Filter for rows of a df3 with filter() where column_A > 2

Select columns of a data frame with select()

Return the second column

Drop columns of a data frame with select(Not())

Return everything except second column

Rename columns of a data frame with rename(old -> new)

Get rows of a df3 with distinct values in column_A with unique(df, :col)

Order the rows of a data frame with sort()

Get data frame summary statistics with describe()

df1 = (column_A = , column_B =)

df2 = (column_C = , column_D =)

df3 = (df1, df2)

df_filter = (row row column_A > , df3)

(df3, 2)

(df3, ())

(df3, [])

(df3,)

(df3,)

(df3)

DataFrame
DataFrame

hcat

filter

select

select Not

rename

unique

sort

describe

1 3 1 3
4 6 4 6

2

2

"column_A" "first_column"

: :
: :

-> .

->

:column_A

:numeric_column

> Getting started with characters and strings

Characters and strings are text data types in Julia. Characters refer to text data with exactly one
character, and are created with single quotes, . Strings are sequences of characters, and are
created with double or triple-double quotes, or .

char =

string =

string =

string =

string[]
string[]
string[]

string[]
string[]
string[- :]

''
" " """ """

'a'

"Hello World!"

"""Hello

 World!""" 

 "Hello World!"

1

1:3
4

2

Create a character variable with single quotes

Create a string variable with double quotes

Create a string variable with triple double quotes

Extract a single character from a string

This extracts the first character

This extracts the first character

This extracts the last character

Extract a string from a string

Extract first three characters as a string

Extract first four characters as a string

Extract last three characters as a string

begin
end

begin:
end end

Combine strings with *

This returns "Listen to DataFramed!"

Repeat strings with ^

Returns "Echo! Echo! Echo! "

Interpolate strings with "$value"

Returns "I'm learning Julia"

Split strings on a delimiter with split()

Returns 3-element vector

"Listen" " to " "DataFramed!"

"Echo! " 3

"Julia"

"I'm learning "

"lions and tigers and bears" " and "

* *

 ^

language =
$language

(,) split

Detect the presence of a pattern in a string with occursin()

This returns true

Find the position of the first match in a string with findfirst()

This returns 1:5

Convert a string to upper case with uppercase()

Returns "JULIA"

Convert a string to lower case with lowercase()

Returns "julia"

Convert a string to title case case with titlecase()

Returns "Julia Programming"

Replace matches of a pattern with a new string with replace()

occursin

findfirst

uppercase

lowercase

titlecase

replace

(,)

(,)

()

()

()

(,)

"Julia" "Julia for data science is cool"

"Julia" "Julia for data science is cool"

"Julia"

"Julia"

"Julia programming"

"Learn Python on DataCamp." "Python" "Julia"=>

Combining and splitting strings

Finding and mutating strings

Learn Julia Online at
www.DataCamp.com

