
Data Visualization 
with Plotly Express in Python

Learn Plotly online at www.DataCamp.com

> What is plotly?
Plotly Express is a high-level data visualization package that allows you to create
interactive plots with very little code. It is built on top of Plotly Graph Objects, which
provides a lower-level interface for developing custom visualizations.

Plotly plots have interactive controls shown in the top-right of the plot. The controls allow
you to do the following:

Download plot as a png: Save your interactive plot as a static PNG.

Zoom: Zoom in on a region of interest in the plot.

Pan: Move around in the plot.

Box Select: Select a rectangular region of the plot to be highlighted.

Lasso Select: Draw a region of the plot to be highlighted.

Autoscale: Zoom to a "best" scale.

Reset axes: Return the plot to its original state.

Toggle Spike Lines: Show or hide lines to the axes whenever you hover over data.

Show closest data on hover: Show details for the nearest data point to the cursor.

Compare data on hover: Show the nearest data point to the x-coordinate of the
cursor.

> Interactive controls in Plotly

The code pattern for creating plots is to call the plotting function, passing a data frame as
the first argument. The x argument is a string naming the column to be used on the x-axis.
The y argument can either be a string or a list of strings naming column(s) to be used on
the y-axis.

px.plotting_fn(dataframe,
 x=[],
 y=[],
 title= ,
 xaxis_title= ,
 yaxis_title= ,
 width=width_in_pixels,
 height=height_in_pixels)

Dataframe being visualized

Accepts a string or a list of strings

Accepts a string or a list of strings 
Accepts a string

Accepts a string

Accepts a string

Accepts an integer

Accepts an integer

"column-for-x-axis"
"columns-for-y-axis"

"Overall plot title"
"X-axis title"
"Y-axis title"

> Plotly Express code pattern

Create a scatterplot on a DataFrame named clinical_data 
px.scatter(clinical_data, x= , y=)

Set the size argument to the name of a numeric column to control
the size of the points and create a bubble plot.

"experiment_1" "experiment_2"

Create a lineplot on a DataFramed named stock_data

px.line(stock_data, x= , y=[])

Set the line_dash argument to the name of a categorical
column to have dashes or dots for different lines.

"date" "FB" "AMZN",

Create a barplot on a DataFramed named commodity_data

px.bar(commodity_data, x= , y=[, ,],

 color_discrete_map={ : ,  
 : ,

 : })

Swap the x and y arguments to draw horizontal bars.

"nation" "gold" "silver" "bronze"
"gold" "yellow"
"silver" "grey"
"bronze" "brown"

Create a histogram on a DataFramed named bill_data

px.histogram(bill_data, x=)

Set the nbins argument to control the number of bins shown in the
histogram.

"total_bill"

Create a heatmap on a DataFramed named iris_data

px.imshow(iris_data.corr(numeric_only=),

 zmin= , zmax= , color_continuous_scale=)

Set the text_auto argument to to display text values for each cell.

True

True

-1 1 'rdbu'

> Common plot types

import plotly express as px

import as plotly.express px

Scatter plots

Import plotly

Line plots

Bar plots

Histograms

Heatmaps

Customizing lines in Plotly

In this example, we’re updating a scatter plot named fig_ln 
fig_ln.update_traces(patch={ : { : ,

 : ,

 : }})

fig_ln.show()

"line" "dash" "dot"
"shape" "spline"
 "width" 6

When working with visualizations that contain lines, you can customize them according
to certain properties. These include:

� color: set the line colo�
� dash: set the dash style ("solid",
"dot", "dash", "longdash",
"dashdot", "longdashdot")

� shape: set how values are connected
("linear", "spline", "hv", "vh",
"hvh","vhv"�

� width: set the line width

Customizing bars in Plotly

When working with barplots and histograms, you can update the bars themselves
according to the following properties�

� size: set the marker siz�
� color: set the marker colo�
� opacity: set the marker transparency

fig_bar.update_traces(marker={ : ,

: ,

: { : , : }})

fig_bar.show()

fig_hst.update_traces(marker={ : ,

: ,

: { : , : }})

fig_hst.show()

In this example, we’re updating a scatter plot named fig_bar

In this example, we’re updating a histogram named fig_hst

"color" "magenta"
 "opacity" 0.5
 "line" "width" 2 "color" "cyan"

"color" "magenta"
 "opacity" 0.5
 "line" "width" 2 "color" "cyan"

Learn Data Skills Online at
www.DataCamp.com

� line: set the width and color of a borde�
� symbol: set the shape of the marker

> Customizing plots in plotly
The code pattern for customizing a plot is to save the figure object returned
from the plotting function, call its .update_traces() method, then call its .show()
method to display it.

fig = px.some_plotting_function()

fig.update_traces()

fig.show()

Create a plot with plotly (can be of any type)

Customize and show it with .update_traces() and .show()

In this example, we’re updating a scatter plot named fig_sct

fig_sct.update_traces(marker={ : ,

: ,

: ,

{ : : },

: })

fig_sct.show()

"size" 24
 "color" "magenta"
 	 "opacity" 0.5
 	 "line": "width" 2, "color" "cyan"
 	 "symbol" "square"

Customizing markers in Plotly

� line: set the width and color of a borde�
� symbol: set the shape of the marker

When working with visualizations like scatter plots, lineplots, and more, you can customize
markers according to certain properties. These include�

� size: set the marker siz�
� color: set the marker colo�
� opacity: set the marker transparency

