Q
2
No
R
L L
Ō
$\overline{\mathbf{O}}$
\mathcal{A}

	ALGORITHM	DESCRIPTION & APPLICATI
Regression Only Models	Linear Regression	Linear Regression models a linear relationship between ing continuous numerical output variable. The default loss fun square error (MSE).
	Polynomial Regression	Polynomial Regression models nonlinear relationships betw and independent variable as the n-th degree polynomial.
	Support Vector Regression	Support Vector Regression (SVR) uses the same principle of the cost function to fit the most straight line (or plane) thr With the kernel trick it can efficiently perform a non-linear implicitly mapping their inputs into high-dimensional featu
	Gaussian Process Regression	Gaussian Process Regression (GPR) uses a Bayesian appropriate probability distribution over the possible functions that fit Gaussian process is a prior that is specified as a multivari- distribution.
	Robust Regression	Robust Regression is an alternative to least squares regres contaminated with outliers. The term "robust" refers to the to provide useful information even in the face of outliers.
Both Regression and Classification Models	Decision Trees	Decision Tree models learn on the data by making decisio variables to separate the classes in a flowchart like a tree can be used for both regression and classification.
	Random Forest	Random Forest classification models learn using an ensem The output of the random forest is based on a majority vo decision trees.
	Gradient Boosting	An ensemble learning method where weak predictive lear improve accuracy. Popular techniques include XGBoost, Li
	Ridge Regression	Ridge Regression penalizes variables with low predictive o their coefficients towards zero. It can be used for classific
	Lasso Regression	Lasso Regression penalizes features that have low predict by shrinking their coefficients to zero. It can be used for cl and regression.
	AdaBoost	Adaptive Boosting uses an ensemble of weak learners tha weighted sum that represents the final output of the boos
Classification Only Models	SVM	In its simplest form, support vector machine is a linear class kernel trick, it can efficiently perform a non-linear classific mapping their inputs into high-dimensional feature spaces of the best prediction methods.
	Nearest Neighbors	Nearest Neighbors predicts the label based on a predefine samples closest in distance to the new point.
	Logistic Regression (and its extensions)	The logistic regression models a linear relationship betwee and the response variable. It models the output as binary rather than numeric values.
	Linear Discriminant Analysis	The linear decision boundary maximizes the separability b by finding a linear combination of features.

ION

ADVANTAGES

DISADVANTAGES

ION	ADVANTAGES	DISADVAN
nput variables and a Inction is the mean	1. Fast training because there are few parameters. 2. Interpretable/Explainable results by its output coefficients.	 Assumes a linear relationship between input Sensitive to outliers. Typically generalizes worse than ridge or logging
tween the dependent,	 Provides a good approximation of the relationship between the dependent and independent variables. Capable of fitting a wide range of curvature. 	 Poor interpretability of the coefficients sind highly correlated. The model fit is nonlinear but the regressio Prone to overfitting.
as SVMs but optimizes nrough the data points. ar regression by ture spaces.	 Robust against outliers. Effective learning and strong generalization performance. Different Kernel functions can be specified for the decision function. 	 Does not perform well with large datasets. Tends to underfit in cases where the number number of observations.
proach that infers a it the data. The riate Gaussian	 Provides uncertainty measures on the predictions. It is a flexible and usable non-linear model which fits many datasets well. Performs well on small datasets as the GP kernel allows to specify a prior on the function space. 	1. Poor choice of kernel can make convergen 2. Specifying specific kernels requires deep n
ession when data is ne statistical capability	 Designed to overcome some limitations of traditional parametric and non- parametric methods. Provides better regression coefficient over classical regression methods when outliers are present. 	 More computationally intensive compared It is not a cure-all for all violations, such as If no outliers are present in the data, it may classical regression methods.
ion rules on the ee data structure. They	 Explainable and interpretable. Can handle missing values. 	 Prone to overfitting. Can be unstable with minor data drift. Sensitive to outliers.
emble of decision trees. vote of the different	 Effective learning and better generalization performance. Can handle moderately large datasets. Less prone to overfit than decision trees. 	 Large number of trees can slow down performance Predictions are sensitive to outliers. Hyperparameter tuning can be complex.
arners are combined to LightGBM and more.	 Handling of multicollinearity. Handling of non-linear relationships. Effective learning and strong generalization performance. XGBoost is fast and is often used as a benchmark algorithm. 	 Sensitive to outliers and can therefore cause High complexity due to hyperparameter tu Computationally expensive.
outcomes by shrinking ication and regression.	 Less prone to overfitting. Best suited when data suffers from multicollinearity. Explainable & Interpretable. 	 All the predictors are kept in the final mode Doesn't perform feature selection.
ctive outcomes classification	 Good generalization performance. Good at handling datasets where the number of variables is much larger than the number of observations. No need for feature selection. 	 Poor interpretability/explainability as it car from a set of highly correlated variables.
nat is combined into a osted classifier.	 Explainable & Interpretable. Less need for tweaking parameters. Usually outperforms Random Forest. 	 Less prone to overfitting as the input varial Sensitive to noisy data and outliers.
assifier. But with the ication by implicitly es. This makes SVM one	 Effective in cases with a high number of variables. Number of variables can be larger than the number of samples. Different Kernel functions can be specified for the decision function. 	 Sensitive to overfitting, regularization is cru Choosing a "good" kernel function can be Computationally expensive for big data du Performs poorly if the data is noisy (target)
ned number of	 Successful in situations where the decision boundary is irregular. Non-parametric approach as it does not make any assumption on the underlying data. 	 Sensitive to noisy and missing data. Computationally expensive because the eris required.
een input variables y values (0 or 1)	 Explainable & Interpretable. Less prone to overfitting using regularization. Applicable for multi-class predictions. 	 Makes a strong assumption about the relativariables. Multicollinearity can cause the model to each
between the classes	 Explainable & Interpretable. Applicable for multi-class predictions. 	 Multicollinearity can cause the model to over 2. Assuming that all classes share the same of 3. Sensitive to outliers. Doesn't work well with small class sizes.

nput and output variables.

r lasso regression.

since the underlying variables can be

sion function is linear.

mber of variables is much smaller than the

ence slow.

mathematical understanding.

ed to classical regression methods. as imbalanced data, poor quality data. nay not provide better results than

rformance.

ause overfitting. tuning.

del.

can keep a single variable.

riables are not jointly optimized.

crucial. be difficult. due to high training complexity. get classes overlap).

e entire set of n points for every execution

elationship between input and response

o easily overfit without regularization.