
Quarto Cheat Sheet

Previously Known as RMarkdown

Learn data reporting and communication
skills online at www.DataCamp.com

> What is Quarto?
Quarto is an open source publishing system for technical and scientific documents. You can mix text, code, and the output from
code in a single document, and publish as a report, presentation, blog post, website or book. It is considered to be the next
generation of R Markdown, and supports code in Python, R, Julia, and Observable JavaScript.

VS Code RStudio

jupyter

Jupyter Editor

Quarto documents can be authored inside Jupyter Notebooks (.ipynb files), or IDEs like VS Code or RStudio, or any text editor.
When using IDES or text editors, Quarto documents are created in .qmd files (a type of text file). For historical reasons, .Rmd R
Markdown files can also be used for R documents.

> Document options

Document options are defined using YAML. For .qmd files, this YAML should appear at the start of the text file. For
Jupyter notebooks, the YAML should appear as the first cell, which should be a raw cell. The first and last lines of this
cell consist of three hyphens (---). Elements are specified as key:value pairs, and sub-elements are indented. Below you
will find a host of document options you can edit in quarto.

> What Quarto Documents Look Like
Document authored in

QMD or IPYNB file

Project options in YAML

Code cell in triple backticks

Cell options set with #|

Use Markdown to specify

text formatting

Rendered output in viewer

Code and its output can be

included in the rendered

document

Rendering

template:

template-partial:

"tmplt.html"

"tmpltp.html"

{html, pdf, odt, revealjs, beamer, gfm, commonmark, mediawiki, epub} Path to

 # HTML/LaTeX template to override the document structure or content

{html, pdf, odt, revealjs, beamer, gfm, commonmark, mediawiki, epub}

 # Path to HTML/LaTeX template to override parts of document

Project options

project: type:
execute-dir:
output-dir:

"default"
"file
"output"

["default", "website", "book"] Type of output

["file", "project"] Working directory for computations

Generate outputs (report, images, etc.) in this directory

Format options

format: pdf # ["html", "pdf", "docx", "odt", "pptx", "revealjs", "beamer", "gfm",

 # "commonmark", "mediawiki", "epub", "ipynb"] File format for the

 # rendered document

Note on formats
There are many other output formats available than the ones listed in the comments above. The options available vary depending
upon the format that is chosen. Where options are only supported for some formats, those formats are listed inside braces, to
learn more about formats, check out the Quarto list of all formats.

Title and author

title:
date:
author:
subtitle:
abstract:

"Quarterly Marketing Funnel Performance"
"2023-12-25"
"Mark Eting-Analyst"
"Analysis of leads"

 We A/B tested the registration flow. The sign-up rate went up 39% in the treatment group. Hurrah!

Title of the document

The date shown on the document

Author(s) of the document

{html, pdf, odt, revealjs, beamer, epub} Subtitle of the document

|

{html, pdf, odt, revealjs, beamer, epub} A short summary of the document's contents

Styling

theme:

pdf-engine:
reference-doc:
quarto-required:

"quartz"

"tinytex"
"template.docx"
">= 1.2.0"

{html, revealjs} ["default", "cerulean", "cosmo", ...] Name of a built-in HTML

 # Bootswatch theme, or link to a Sassy Cascading Style Sheets (SCSS) file

{pdf, beamer} Toolchain for generating the PDF

{docx, odt, pptx} Path to a file to use as a style reference

Oldest version of Quarto that will work correctly

Table of contents

toc:
toc-depth:

 true
2
[false, true] Include a table of contents in the document

Least significant section header to include in table of contents

Section numbering

number-sections:
number-depth:

true
2

[false, true] Should section headings be numbered?

{html, pdf, docx, revealjs, beamer, epub} Least significant header to be numbered

Slides

incremental:

slide-level:

true

2

{pptx, revealjs, beamer} [false, true] Should list items be displayed one at a

 # time or all at once?

{pptx, revealjs, beamer} What header level denotes a new slide?

Fonts

mainfont:
monofont:

fontsize:

"Baskerville"
"JetBrains Mono"

14

{html, pdf, beamer} Font family for regular text

{html, pdf, beamer} Font family for code

 # Specify font families with CSS or LaTeX, depending upon the output format

{html, pdf, beamer} Set the base size of the font.

Colors

fontcolor:
linkcolor:

"#B06500"
"#007FFF"

{html} Color of text.

{html, pdf, beamer} Color of link text.

Layout

cap-location:

papersize:

page-width:
margin-top:

"top"

"a4paper"

8
20px

 # {html, pdf, revealjs, beamer} ["top", "bottom", "margin"] Location of captions

 # for figures and tables

{pdf, beamer} LaTeX paper size for the rendered document

 # Common values: letterpaper (USA), a4paper (rest of world)

{docx, odt} [6.5] Width of page in rendered document, in inches

{html, pdf, revealjs, beamer} Top margin for the page

 # Specify either a CSS margin property, or a LaTeX margin

 # For other margins set margin-right, margin-bottom, margin-left

> Execution
These options are sub-elements of the execute element, though they can also be used at the top-level of the YAML.

eval:
echo:
output:

warning:
error:
include:
cache:

false
false
"asis"

false
false
false

false

[true, false] Should code cells be evaluated?

[true, false] Include cell source code in the rendered document?

[true, false, "asis"] Include the results of executing code in the rendered document?

 # "asis": Include the results, treating them as raw Markdown

[true, false] Display warnings in the rendered document?

[true, false] Display errors in the rendered document?

[true, false] Set echo, output, warning, and error together

[true, false, "refresh"] Cache the results of computations so repeated generation of the

 # rendered document is faster

 # "refresh": Force a refresh, even when cache has not been invalidated

Figures

fig-width:
fig-height:
fig-format:
fig-dpi:
fig-align:

fig-cap-location:

8
6
"png"

300
"center"

"bottom"

Width for figures in inches

Height for figures in inches

File format for figures (Matplotlib or R graphics only)

Figure resolution (Matplotlib or R graphics only) in dots per inch

{html, pdf, docx, odt, revealjs, beamer, epub} ["default", "left", "right",

 # "center"] Horizontal alignment of figures

{html, pdf, revealjs, beamer} ["top", "bottom", "margin"] Location of

 # figure captions

Tables

tbl-colwidths:

tbl-cap-location:

[70, 30]

"margin"

["auto", true, false, <array>] Should tables wider than

 # 72 characters have explicit column widths?

 # "auto": Use Markdown column widths unless the column

 # contains a hyperlink

 # true: Always use markdown column widths

 # false: Never use markdown table widths

 # <array>: Column widths as the %age of table width

{html, pdf, revealjs, beamer} ["top", "bottom", "margin"] Location of

 # figure captions

Links

link-external-newwindow: true # {html, revealjs} [false, true] Open external pages in new browser tab?

References

bibliography: "refs.bib" # Path to BibTeX/Citation Style Language bibliography file

Citation

-07-22

How to cite the document, specified in Citation Style Language format

citation:

title:
submitted:
publisher:

Language Models are Few-Shot Learners

2020
arXiv

doi = 10.48550/ARXIV.2005.14165

Footnotes

reference-location: "margin" # {html, pdf, revealjs, gfm, commonmark} ["block", "section", "margin",

 # "document"] Footnote location

 # block: End of current top-level block

 # section: End of current section

 # margin: At the margin

 # document: End of document

Language

lang: "fr-CA" # Main language for document in IETF language tag format

Metadata

keywords: ["data", "marketing"] # {html, pdf, revealjs, beamer} List of keywords

> Code Cells
Including code cells
Code can be included in documents. The method depends on the authoring file format. For Jupyter notebooks, add a code cell.
For .qmd files, create a code block using three backticks, and name the programming language in braces. Supported languages
are Python, R, Julia, and OJS (Observable JavaScript). Here is an example of adding a python code block in a .qmd file below.

```{python}

# Your Python code goes here

```

Code Cell Options
Cells can be given options, similar to those provided in the YAML header for document options.�

� Cell options are comment lines containing a name:value pair�
� For Python, R, and Julia, the lines begin with #�
� For Observable JavaScript, the lines begin with //�
� This is different from R Markdown! Do not add cell options inside the braces.

```{python}

#| name: value

``` 
```{ojs}

//| name: value

```

Note on cell options
� For a given format, most of the document-level options for Code, Execution, Figures, and Tables are available at the cell level.

When provided for that cell, they will override the document-level option for that cell only�
� Additional cell-level options are described below.

Attributes

label:
classes:

"import-df"
"banner"

ID label for the cell, for cross-references

Apply HTML/LaTeX classes to the cell, allowing for style rules

Page Columns

column: "page" # ["body", ...] Define limits for the width of the output

 # body: Output limited to the width of the document body column

 # body-outset: Slightly wider than the body column

 # page: Output is limited to the width of the document page

 # screen-inset: Output is slightly less than the screen width

 # screen: Output is the width of the screen

 # margin: Output is contained in the document margin

> Generating the Document
Creating a Preview
While authoring your document, use the preview to quickly see its current state. The generated preview will open in a browser.
Consider having your Jupyter notebook, IDE, or text editor and the preview visible on-screen at the same time.

�� Open a termina�
�� Type quarto preview {document_filename}

To update the preview

�� Change the contents of some cells�
�� Rerun those cells�
�� Save the notebook or .qmd file.

Rendering the document
Once you have finished authoring your document, you can render the final version.

�� Open a termina�
�� Type quarto render {document_filename}

This will create rendered documents in the file formats specified in the YAML header. To override the file format, use the following
command variant:

quarto render {document_filename} --to {format}

Some IDEs have shortcuts for rendering the document. In RStudio, or VS Code with the Quarto VS Code Extension, type
Ctrl+Shift+K (Windows) or Cmd+Shift+K (macOS) to render the output document.

Code

code-line-numbers:

highlight-style:

code-fold:

code-overflow:

true

"breeze"

"show"

"wrap"

{html, pdf, docx, revealjs, beamer, epub} [false, true] Should line numbers

 # be included for code?

{html, pdf, docx, revealjs, beamer, epub} ["default", "a11y", "arrow",

 # ...] Theme for code highlighting

{html, revealjs, epub} [false, true, show] Should code be contained in a

 # collapsible HTML <details> block?

 # false: Don't put code in a collapsible block

 # true: Put code in a collapsible block; start block collapsed

 # "show": Put code in a collapsible block; start block expanded

{html, revealjs, epub} ["scroll", "wrap"] How should long code lines behave?

Learn Reporting Online at
www.DataCamp.com

https://quarto.org/docs/output-formats/all-formats.html

