Curriculum: 16-Week Live Machine Learning Course

Week 1	Introduction
Week 2 - 5	Fundamentals of machine learning
Week 5 - 7	Data preprocessing and analysis
Week 7 - 9	Model building and improvement
Week 9 - 13	Supervised learning algorithms and projects
Week 13 - 15	Unsupervised learning algorithms and projects
Week 16	ML model deployment with shareable interface

Course projects

- Life expectancy prediction
- Optical character recognition
- Cancer classification
- Recommendation system
- Email spam detection
- Uber surge price calculation
- Sentiment analysis
- PUBG cheater detection
- Personality prediction
- Image compression using PCA

Week 1: Introduction	
1	Guidance: Step-wise guidance to start machine learning, Python virtual environment setup for coding.
2	Introduction to machine learning: Traditional programming vs Machine learning, Artificial intelligence vs Machine learning.
	Assignments to brush up Python programming.

Week 2 - 5: Fundamentals of machine learning	
1	Learning: How exactly "machines" learn?
2	Algorithm: Role of optimization algorithm in machine learning, Understanding Gradient Descent.
3	Types of Models: Classification of ML models on five different basis, Supervised vs. Unsupervised, Classification vs. Regression.
4	Loss Function: Popular loss and cost functions in classification and regression problems.
5	Libraries: Discussion on popular Python libraries: Numpy, Pandas, Matplotlib, Seaborn.
ML interview question discussions, Assignment on Python libraries	

Week 5 - 7: Handling Structured and Unstructured Data	
1	Data: Understanding numerical and categorical forms of data.
2	Data Pre-processing: Methods to pre-process data and make it suitable for ML models.
3	Exploratory Data Analysis: Univariate, Bivariate and Multivariate Analysis.
4	Text Data: Pre-processing and Vector encoding methods
ML interview questions discussions	
Assignment on data pre-procssing and analysis	

Week 7 - 9: Developing Model and Improving Performance	
1	Normalization: Mathematical understanding on how scaling/normalizing features help.
2	Understanding ML Problems: Underfitting and Overfitting problems and their possible cures, Bias vs. Variance Tradeoff.
3	Coding ML model from Scratch: How to develop a machine learning model without the help of libraries?
4	Scikit-Learn: Discussion on supports provided by Scikit-Learn.
5	Project Development Guidance: A general guidance on steps included in ML model development.
ML interview questions discussions	
Assignment on model development and Scikit-Learn	

Week 9 - 13: Supervised Learning Algorithms	
1	Linear and Logistic Regression: Mathematical understanding on how these algorithms learn.
2	SVMs: Support vector machines, Hyperplanes, Maximal margin classifiers and understanding kernels.
3	KNN (K-Nearest Neighbor) and Naive Bayes: Simple and most explainable algorithms in ML
4	Tree Based Algorithms: Decision Trees, Bagging and Boosting Trees, and Random forest algorithms.
5	Machine Learning Applications: ML projects discussion on every algorithm.
ML interview questions discussions and ML project assignments	

Week 13 - 15: Unsupervised Learning Algorithms	
1	Clustering: k-means and k-means++ algorithms
2	Dimensionality-Reduction: Principal component analysis (PCA) algorithm.
3	Projects: Personality prediction, Image compression mechanism.
ML interview questions discussions and ML project assignments	

Week 16: ML Model Deployment	
1	User Interface in Python: Introduction to Gradio, Developing shareable and simple user-interface.
2	Developing a Web-Application: Create an image compression web-application using PCA algorithm and share it with users.
ML interview questions discussions and ML project assignments	

If you wish to learn the topics through self-study, you can refer to these books and materials:

- EnjoyAlgorithms self-paced course.
- An introduction to statistical learning with applications in Python.
- Machine intelligence: Demystifying machine learning, Neural networks and Deep learning.
- Research papers on Algorithms like k-means, PCA, SVM and decision trees.
- Math for computer science (MIT Opencourseware)

If you have any query related to curriculum, reach us via contact@enjoyalgorithms.com.

Thank you!

