
Notes

Subject: Artificial Intelligence

Unit- 4 Markov Decision Process

Markov Decision Process

Reinforcement Learning is a type of Machine Learning. It allows machines and software

agents to automatically determine the ideal behavior within a specific context, in order to

maximize its performance. Simple reward feedback is required for the agent to learn its

behaviour; this is known as the reinforcement signal.

There are many different algorithms that tackle this issue. As a matter of fact, Reinforcement

Learning is defined by a specific type of problem, and all its solutions are classed as

Reinforcement Learning algorithms. In the problem, an agent is supposed to decide the best

action to select based on his current state. When this step is repeated, the problem is known

as a Markov Decision Process.

A Markov Decision Process (MDP) model contains:

 A set of possible world states S.

 A set of Models.

 A set of possible actions A.

 A real valued reward function R(s,a).

 A policy the solution of Markov Decision Process.

What is a State?

A State is a set of tokens that represent every state that the agent can be in.

What is a Model?

A Model (sometimes called Transition Model) gives an action’s effect in a state. In

particular, T(S, a, S’) defines a transition T where being in state S and taking an action ‘a’

takes us to state S’ (S and S’ may be same). For stochastic actions (noisy, non-deterministic)

we also define a probability P(S’|S,a) which represents the probability of reaching a state S’

if action ‘a’ is taken in state S. Note Markov property states that the effects of an action taken

in a state depend only on that state and not on the prior history.

What are Actions?

An Action A is set of all possible actions. A(s) defines the set of actions that can be taken

being in state S.

What is a Reward?

A Reward is a real-valued reward function. R(s) indicates the reward for simply being in the

state S. R(S,a) indicates the reward for being in a state S and taking an action ‘a’. R(S,a,S’)

indicates the reward for being in a state S, taking an action ‘a’ and ending up in a state S’.

What is a Policy?

A Policy is a solution to the Markov Decision Process. A policy is a mapping from S to a. It

indicates the action ‘a’ to be taken while in state S.

Let us take the example of a grid world:

An agent lives in the grid. The above example is a 3*4 grid. The grid has a START state

(grid no 1,1). The purpose of the agent is to wander around the grid to finally reach the Blue

Diamond (grid no 4,3). Under all circumstances, the agent should avoid the Fire grid (orange

color, grid no 4,2). Also, the grid no 2,2 is a blocked grid, it acts like a wall hence the agent

cannot enter it.

The agent can take any one of these actions: UP, DOWN, LEFT, RIGHT

Walls block the agent path, i.e., if there is a wall in the direction the agent would have taken,

the agent stays in the same place. So, for example, if the agent says LEFT in the START grid

he would stay put in the START grid.

First Aim: To find the shortest sequence getting from START to the Diamond. Two such

sequences can be found:

 RIGHT RIGHT UP UP RIGHT

 UP UP RIGHT RIGHT RIGHT

Let us take the second one (UP UP RIGHT RIGHT RIGHT) for the subsequent discussion.

The move is now noisy. 80% of the time the intended action works correctly. 20% of the time

the action agent takes causes it to move at right angles. For example, if the agent says UP the

probability of going UP is 0.8 whereas the probability of going LEFT is 0.1 and probability

of going RIGHT is 0.1 (since LEFT and RIGHT is right angles to UP).

The agent receives rewards each time step: -

 Small reward each step (can be negative when can also be term as punishment, in

the above example entering the Fire can have a reward of -1).

 Big rewards come at the end (good or bad).

 The goal is to Maximize sum of rewards.

Markov Property

Markov Property

Assume that a Robot was seated on a chair, it stood up and put its right foot forward. So

currently, it is standing with its right foot forward (this is its current state).

Now, according to the Markov Property, the current state of the Robot depends only on its

immediate previous state (or the previous timestep) i.e., the state it was in when it stood up. And

evidently, it doesn’t depend on the state where it was sitting on the chair. Similarly, its next state

depends only on its current state.

Formally, for a state S_t to be Markov, the probability of the next state S_(t+1) being s’ should

only be dependent on the current state S_t = s_t, and not on the rest of the past states S₁ = s₁ ,

S₂ = s₂ , …

Markov Process or Markov Chain

State Transition Probability

A Markov Process is defined by (S, P) where S are the states, and P is the state-transition

probability. It consists of a sequence of random states S₁ , S₂ , … where all the states obey the

Markov Property.

The state transition probability or P_ss’ is the probability of jumping to a state s’ from the

current state s.

https://en.wikipedia.org/wiki/Markov_property

A Sample Markov Chain for the Robot Example

To get an intuition of the concept, consider the figure above. Sitting, Standing, Crashed, etc. are

the states, and their respective state transition probabilities are given.

Markov Reward Process (MRP)

State Transition Probability and Reward in an MRP

An MRP is defined by (S, P, R, γ), where S are the states, P is the state-transition

probability, R_s is the reward, and γ is the discount factor (will be covered in the coming

sections).

The state reward R_s is the expected reward over all the possible states that one can transition

to from state s. This reward is received for being at the state S_t. By convention, it is said to be

received after the agent leaves the state and hence, regarded as R_(t+1).

For example:

A Simple MRP Example

Markov Decision Process (MDP)

State Transition Probability and Reward in an MDP

An MDP is defined by (S, A, P, R, γ), where A is the set of actions. It is essentially MRP with

actions. Introduction to actions elicits a notion of control over the Markov Process, i.e.,

previously, the state transition probability and the state rewards were more or less stochastic

(random). However, now the rewards and the next state also depend on what action the agent

picks. Basically, the agent can now control its own fate (to some extent).

Now we will discuss how to use MDPs to address RL problems.

Return (G_t)

Return

Rewards are temporary. Even after picking an action that gives a decent reward, we might be

missing on a greater total reward in the long-run. This long-term total reward is the Return.

However, in practice, we consider discounted Returns.

Discount (γ)

The variable γ ∈ [0, 1] in the figure is the discount factor. The intuition behind using a discount

is that there is no certainty about the future rewards; i.e., as important it is to consider the future

rewards to increase the Return, it is also equally important to limit the contribution of the future

rewards to the Return (Since you can’t be 100% sure of the future).

And also because using a discount is mathematically convenient.

Policy (π)

Policy

As mentioned earlier, a policy defines the thought behind making a decision (picking an action).

It defines the behavior of an RL agent.

Formally, a policy is a probability distribution over the set of actions a, given the current

state s i.e., it gives the probability of picking an action a at state s.

Value Functions

A value function is the long-term value of a state or an action i.e., the expected Return over a

state or an action. This is something that we are actually interested in optimizing.

State Value Function (for MRP)

State Value Function for an MRP

The state value function v(s) is the expected Return starting from state s.

Bellman Expectation Equation (for MRP)

The Bellman Equation gives a standard representation for value functions. It essentially

decomposes the value function into two components:

1. The immediate reward R_(t+1)

2. Discounted value of the future state γ.v(S_(t+1))

Solution for the Bellman Equation of the State Value Function

Intuition on Bellman Equation

The agent can transition from the current state s to some state s’. Now, the state value function is

basically the expected value of Returns over all s’. Now, using the same definition, we can

recursively substitute the Return of the next state s’ with the value function of s’. This is exactly

what the Bellman Equation does:

The Bellman Equation

Now let’s solve this equation:

Solution for the Value Function

So, since expectation is distributive, we can solve for both R_(t+1) and v(s’) separately. We

have already seen that the expected value of R_(t+1) over S_t=s is the state reward R_s. And the

expectation of v(s’) over all s’ is taken by the definition of Expected Value.

Another way of saying this would be— the state reward is the constant value that we are

anyway going to receive for being at the state s. And the other term is the average state

value over all s’.

State Value Function (for MDP)

State Value Function for an MDP

This is similar to the value function for MRP, but there is a small difference that we’ll see

shortly.

Action Value Function (for MDP)

Action Value Function for an MDP

MDPs introduce control in MRPs by considering actions as the parameter for state transition.

So, it is necessary to evaluate actions along with states. For this, we define action value

functions that essentially give us the expected Return over actions.

https://www.statlect.com/fundamentals-of-probability/expected-value-properties
https://en.wikipedia.org/wiki/Expected_value

State value functions and action value functions are closely related. We’ll see how in the next

section.

Bellman Expectation Equation (for MDP)

Bellman Expectation Equations for an MDP

Since we know the basics of the Bellman Equation now, we can directly jump to the solution of

this equation and see how this differs from the Bellman Equation for MRPs:

Intuition on Bellman Equation

Note that we represent the states using circles and actions using dots; both the diagrams

above are a different level view of the same MDP, left being the ‘state-centric’ view and right

being the ‘action-centric’ view.

Let’s first understand the figure:

 Circle to dot: The agent is in a state s; it picks an action a according to the policy.

For eg: say we’re training the agent to play chess. One time step is equivalent to one

whole move (one white and one black move resp.). So in this part of the transition,

the agent picks an action (makes a move). This part is completely controllable by

the agent as it gets to pick the action.

 Dot to Circle: The environment acts on the agent and sends it to a state based on

the transition probability. For eg: continuing the chess-playing agent example, this

is the part of the transition where the opponent makes a move. After both moves, we

call it a complete state transition. This part is not controllable by the agent as it

cannot control how the environment acts, just its own behavior.

Now we treat these as two individual mini transitions:

Solution for the State Value Function

Since we have a state to action transition, we take the expected action value over all the actions.

And this completely satisfies the Bellman Equation as the same is done for the action value

function:

Solution for the Action Value Function

i.e., we can substitute this equation in the state value function to obtain the value in terms of

recursive state value functions (and vice versa) similar to MRPs:

Substituting the Action Value Function in the State Value Function and vice versa

Optimal Value Functions

Optimal State and Action Value Functions

Say, we obtain the value for all the states/actions of an MDP for all possible patterns of actions

that can be picked, i.e., all the policies. Then, we can simply pick the policy with the highest

value for the states and actions. The equations above represent this exact thing.

If we obtain q∗(s, a), the problem is solved.

We can simply assign probability 1 for the action that has the max value for q∗ and 0 for the rest

of the actions for all given states, i.e.

Optimal Policy

Bellman Optimality Equation

Bellman Optimality Equation for Optimal State Value Function

Since we are anyway going to pick the action that yields the max q∗, we can simply assign this
value as the optimal value function.

Bellman Optimality Equation for Optimal Action Value Function

Nothing much can change for this equation as this is the part of the transition where the

environment acts; hence, uncontrollable by the agent. However, since we are following the

optimal policy, the state value function will be the optimal one.

Utility Functions in Artificial Intelligence

Utility functions are one of the elements of artificial intelligence (AI) solutions that are

frequently mentioned but seldom discussed in details in AI articles. That basic AI theory has

become an essential element of modern AI solutions. In some context, we could generalize the

complete spectrum of AI applications as scenarios that involve a utility function that needs to be

maximized by a rational agent. Before venturing that far, we should answer a more basic

question: What is a utility function?

Utility functions are a product of Utility Theory which is one of the disciplines that helps to

address the challenges of building knowledge under uncertainty. Utility theory is often

combined with probabilistic theory to create what we know as decision-theoretic agents.

Conceptually, a decision-theoretic agent is an AI program that can make rational decisions

based on what it believes and what it wants. Sounds rational, right? :)

Ok, let’s get a bit more practical. In many AI scenarios, agents don’t have the luxury of

operating in an environment in which they know the final outcome of every possible state.

Those agents operate under certain degree of uncertainly and need to rely on probabilities to

quantify the outcome of possible states. That probabilistic function is what we call Utility

Functions.

Diving Into Utility Theory and MEU

Utility Theory is the discipline that lays out the foundation to create and evaluate Utility

Functions. Typically, Utility Theory uses the notion of Expected Utility (EU) as a value that

represents the average utility of all possible outcomes of a state, weighted by the probability that

the outcome occurs. The other key concept of Utility Theory is known as the Principle of

Maximum Utility(MEU) which states that any rational agent should choose to maximize the

agent’s EU.

The principle of MEU seems like an obvious way to make decisions until you start digging into

it and run into all sorts of interesting questions. Why using the average utility after all? Why not

to try to minimize the loss instead of maximizing utility? There are dozens of similar questions

that challenge the principle of MEU. However, in order to validate the principle of MEU, we

should go back to the laws of Utility Theory.

In AI, a utility function assigns values to certain actions that the AI system can take. An AI

agent's preferences over possible outcomes can be captured by a function that maps these

outcomes to a utility value; the higher the number the more that agent likes that outcome.

In economics, utility function is an important concept that measures preferences over a set of

goods and services. Utility represents the satisfaction that consumers receive for choosing and

consuming a product or service.

So, to create a “rational AI agent” that understands how to take the appropriate actions, the AI

programmer must define the utility function across a variety of often-conflicting value

dimensions. For example, increase financial value, while reducing operational costs and risks,

while improving customer satisfaction and likelihood to recommend, while improving societal

value and quality of life, while reducing environmental impact and carbon footprint

he agents use the utility theory for making decisions. It is the mapping from lotteries to the real

numbers. An agent is supposed to have various preferences and can choose the one which best

fits his necessity.

Utility scales and Utility assessments

To help an agent in making decisions and behave accordingly, we need to build a decision-

theoretic system. For this, we need to understand the utility function. This process is known

as preference elicitation In this, the agents are provided with some choices and using the

observed preferences, the respected utility function is chosen. Generally, there is no scale for

the utility function. But, a scale can be established by fixing the boiling and freezing point of

water. Thus, the utility is fixed as:

U(S)=uT for best possible cases

U(S)= u? for worst possible cases.

A normalized utility function uses a utility scale with value uT=1, and u? =0. For example, a

utility scale between uT and u? is given. Thereby an agent can choose a utility value between

any prize Z and the standard lottery [p, u_; (1?p), u?]. Here, p denotes the probability which is

adjusted until the agent is adequate between Z and the standard lottery.

Like in medical, transportation, and environmental decision problems, we use two

measurement units: micromort or QUALY(quality-adjusted life year) to measure the chances

of death of a person.

Money Utility

Economics is the root of utility theory. It is the most demanding thing in human life. Therefore,

an agent prefers more money to less, where all other things remain equal. The agent exhibits a

monotonic preference(more is preferred over less) for getting more money. In order to evaluate

the more utility value, the agent calculates the Expected Monetary Value(EMV) of that

particular thing. But this does not mean that choosing a monotonic value is the right decision

always.

Multi-attribute utility functions

Multi-attribute utility functions include those problems whose outcomes are categorized by two

or more attributes. Such problems are handled by multi-attribute utility theory.

Terminology used

 Dominance: If there are two choices say A and B, where A is more effective than B. It

means that A will be chosen. Thus, A will dominate B. Therefore, multi-attribute utility

function offers two types of dominance:

 Strict Dominance: If there are two websites T and D, where the cost of T is less and

provides better service than D. Obviously, the customer will prefer T rather than D.

Therefore, T strictly dominates D. Here, the attribute values are known.

 Stochastic Dominance: It is a generalized approach where the attribute value is

unknown. It frequently occurs in real problems. Here, a uniform distribution is given,

where that choice is picked, which stochastically dominates the other choices. The exact

relationship can be viewed by examing the cumulative distribution of the attributes.

 Preference Structure: Representation theorems are used to show that an agent with a

preference structure has a utility function as:

U(x1, . . . , xn) = F[f1(x1), . . . , fn(xn)],

where F indicates any arithmetic function such as an addition function.

Therefore, preference can be done in two ways :

 Preference without uncertainty: The preference where two attributes are

preferentially independent of the third attribute. It is because the preference between the

outcomes of the first two attributes does not depend on the third one.

 Preference with uncertainty: This refers to the concept of preference structure

with uncertainty. Here, the utility independence extends the preference

independence where a set of attributes X is utility independent of another Y set

of attributes, only if the value of attribute in X set is independent of Y set

attribute value. A set is said to be mutually utility independent (MUI) if each

subset is utility-independent of the remaining attribute.

Value Iteration

Value iteration is a method of computing an optimal MDP policy and its value.

Value iteration starts at the "end" and then works backward, refining an estimate of

either Q* or V*. There is really no end, so it uses an arbitrary end point. Let Vk be the value

function assuming there are k stages to go, and let Qk be the Q-function assuming there
are k stages to go. These can be defined recursively. Value iteration starts with an arbitrary

function V0 and uses the following equations to get the functions for k+1 stages to go from the
functions for k stages to go:

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) for k ≥ 0

Vk(s) = maxa Qk(s,a) for k>0.

It can either save the V[S] array or the Q[S,A] array. Saving the V array results in less storage,

but it is more difficult to determine an optimal action, and one more iteration is needed to

determine which action results in the greatest value.

1: Procedure Value_Iteration(S,A,P,R,θ)

2: Inputs

3: S is the set of all states

4: A is the set of all actions

5: P is state transition function specifying P(s'|s,a)

6: R is a reward function R(s,a,s')

7: θ a threshold, θ>0

8: Output

9: π[S] approximately optimal policy

10: V[S] value function

11: Local

12: real array Vk[S] is a sequence of value functions

13: action array π[S]

14: assign V0[S] arbitrarily

15: k ←0

16: repeat

17: k ←k+1

18: for each state s do

19: Vk[s] = maxa ∑s' P(s'|s,a) (R(s,a,s')+ γVk-1[s'])

20: until As |Vk[s]-Vk-1[s]| < θ

21: for each state s do

22: π[s] = argmaxa ∑s' P(s'|s,a) (R(s,a,s')+ γVk[s'])

23: return π,Vk

Figure 9.14: Value iteration for MDPs, storing V

Figure 9.14 shows the value iteration algorithm when the V array is stored. This procedure

converges no matter what is the initial value function V0. An initial value function that

approximates V* converges quicker than one that does not. The basis for many abstraction

techniques for MDPs is to use some heuristic method to approximate V* and to use this as an

initial seed for value iteration.

Example 9.26: Consider the 9 squares around the +10 reward of Example 9.25. The discount

is γ=0.9. Suppose the algorithm starts with V0[s]=0 for all states s.
The values of V1, V2, and V3 (to one decimal point) for these nine cells is

0 0 -0.1

0 10 -0.1

0 0 -0.1

https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_224.html#gridworld-ex
https://artint.info/html/ArtInt_224.html#gridworld-ex

0 6.3 -0.1

6.3 9.8 6.2

0 6.3 -0.1

4.5 6.2 4.4

6.2 9.7 6.6

4.5 6.1 4.4

After the first step of value iteration, the nodes get their immediate expected reward. The center

node in this figure is the +10 reward state. The right nodes have a value of -0.1, with the

optimal actions being up, left, and down; each of these has a 0.1 chance of crashing into the

wall for a reward of -1.

The middle grid shows V2, the values after the second step of value iteration. Consider the node

that is immediately to the left of the +10 rewarding state. Its optimal value is to go to the right;

it has a 0.7 chance of getting a reward of 10 in the following state, so that is worth 9 (10 times

the discount of 0.9) to it now. The expected reward for the other possible resulting states is 0.

Thus, the value of this state is 0.7×9=6.3.

Consider the node immediately to the right of the +10 rewarding state after the second step of

value iteration. The agent's optimal action in this state is to go left. The value of this state is

 Prob Reward Future Value

0.7×(0 + 0.9×10) Agent goes left

+ 0.1×(0 + 0.9×-0.1) Agent goes up

+ 0.1×(-1 + 0.9×-0.1) Agent goes right

+ 0.1×(0 + 0.9×-0.1) Agent goes down

which evaluates to 6.173.

Notice also how the +10 reward state now has a value less than 10. This is because the agent

gets flung to one of the corners and these corners look bad at this stage.

After the next step of value iteration, shown on the right-hand side of the figure, the effect of

the +10 reward has progressed one more step. In particular, the corners shown get values that

indicate a reward in 3 steps.

An applet is available on the book web site showing the details of value iteration for this

example.

The value iteration algorithm of Figure 9.14 has an array for each stage, but it really only must

store the current and the previous arrays. It can update one array based on values from the

other.

A common refinement of this algorithm is asynchronous value iteration. Rather than

sweeping through the states to create a new value function, asynchronous value iteration

updates the states one at a time, in any order, and store the values in a single array.

Asynchronous value iteration can store either the Q[s,a] array or

the V[s] array. Figure 9.15 shows asynchronous value iteration when the Q array is stored. It

https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_227.html#async-val-iteration-fig
https://artint.info/html/ArtInt_227.html#async-val-iteration-fig

converges faster and uses less space than value iteration and is the basis of some of the

algorithms for reinforcement learning. Termination can be difficult to determine if the agent

must guarantee a particular error, unless it is careful about how the actions and states are

selected. Often, this procedure is run indefinitely and is always prepared to give its best

estimate of the optimal action in a state when asked.

1: Procedure Asynchronous_Value_Iteration(S,A,P,R)

2: Inputs

3: S is the set of all states

4: A is the set of all actions

5: P is state transition function specifying P(s'|s,a)

6: R is a reward function R(s,a,s')

7: Output

8: π[s] approximately optimal policy

9: Q[S,A] value function

10: Local

11: real array Q[S,A]

12: action array π[S]

13: assign Q[S,A] arbitrarily

14: repeat

15: select a state s

16: select an action a
17: Q[s,a] = ∑s' P(s'|s,a) (R(s,a,s')+ γmaxa' Q[s',a'])

18: until termination

19: for each state s do
20: π[s] = argmaxa Q[s,a]

21: return π,Q

Figure 9.15: Asynchronous value iteration for MDPs

Asynchronous value iteration could also be implemented by storing just the V[s] array. In that

case, the algorithm selects a state s and carries out the update:

V[s]=maxa ∑s' P(s'|s,a) (R(s,a,s')+ γV[s']).

Although this variant stores less information, it is more difficult to extract the policy. It

requires one extra backup to determine which action a results in the maximum value. This can

be done using

π[s]= argmaxa ∑s' P(s'|s,a) (R(s,a,s')+ γV[s']).

Policy Iteration

Once a policy, , has been improved using to yield a better policy, , we can then

compute and improve it again to yield an even better . We can thus obtain a sequence of

monotonically improving policies and value functions:

https://artint.info/html/ArtInt_262.html

where denotes a policy evaluation and denotes a policy improvement. Each policy is

guaranteed to be a strict improvement over the previous one (unless it is already optimal).

Because a finite MDP has only a finite number of policies, this process must converge to an

optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is given

in Figure 4.3. Note that each policy evaluation, itself an iterative computation, is started with

the value function for the previous policy. This typically results in a great increase in the speed

of convergence of policy evaluation (presumably because the value function changes little from

one policy to the next).

Figure 4.3: Policy iteration (using iterative policy evaluation) for . In the " " step in

3, it is assumed that ties are broken in a consistent order.

http://incompleteideas.net/book/first/ebook/node43.html#fig%3Apolicy-iteration

Policy iteration often converges in surprisingly few iterations. This is illustrated by the example

in Figure 4.2. The bottom-left diagram shows the value function for the equiprobable random

policy, and the bottom-right diagram shows a greedy policy for this value function. The policy

improvement theorem assures us that these policies are better than the original random policy.

In this case, however, these policies are not just better, but optimal, proceeding to the terminal

states in the minimum number of steps. In this example, policy iteration would find the optimal

policy after just one iteration.

Partially observable Markov decision process

A partially observable Markov decision process (POMDP) is a generalization of a Markov

decision process (MDP). A POMDP models an agent decision process in which it is assumed

that the system dynamics are determined by an MDP, but the agent cannot directly observe the

underlying state. Instead, it must maintain a sensor model (the probability distribution of

different observations given the underlying state) and the underlying MDP. Unlike the policy

function in MDP which maps the underlying states to the actions, POMDP's policy is a

mapping from the observations (or belief states) to the actions.

The POMDP framework is general enough to model a variety of real-world sequential decision

processes. Applications include robot navigation problems, machine maintenance, and planning

under uncertainty in general. The general framework of Markov decision processes

with imperfect information was described by Karl Johan Åström in 1965 [1] in the case of a

discrete state space, and it was further studied in the operations research community where the

acronym POMDP was coined. It was later adapted for problems in artificial

intelligence and automated planning by Leslie P. Kaelbling and Michael L. Littman.

An exact solution to a POMDP yields the optimal action for each possible belief over the world

states. The optimal action maximizes (or minimizes) the expected reward (or cost) of the agent

over a possibly infinite horizon. The sequence of optimal actions is known as the optimal

policy of the agent for interacting with its environment.

http://incompleteideas.net/book/first/ebook/node41.html#fig%3A4gridconv
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Imperfect_information
https://en.wikipedia.org/wiki/Karl_Johan_%C3%85str%C3%B6m
https://en.wikipedia.org/wiki/Partially_observable_Markov_decision_process#cite_note-1
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Automated_planning
https://en.wikipedia.org/wiki/Leslie_P._Kaelbling
https://en.wikipedia.org/wiki/Michael_L._Littman

What is Policy Iteration?

Policy Iteration is another dynamic programming algorithm used to compute the optimal

policy. It alternates between two steps:

Policy Iteration

 Policy Evaluation: For a given policy ππ, the value function Vπ(s)Vπ(s) is computed

using the Bellman Expectation Equation:

Vπ(s)=R(s,π(s))+γ∑s′P(s′∣s,π(s))Vπ(s′)Vπ(s)=R(s,π(s))+γ∑s′P(s′∣s,π(s))Vπ(s′)

 Policy Improvement: Once the value function for the current policy is calculated the

policy is updated to improve it by selecting the action that maximizes the expected return

from each state:

π′(s)=arg⁡max⁡a[R(s,a)+γ∑s′P(s′∣s,a)Vπ(s′)]π′(s)=argmaxa[R(s,a)+γ∑s′

P(s′∣s,a)Vπ(s′)]

This process repeats until the policy converges meaning it no longer changes between

iterations.
.

Comparison Between Value Iteration and Policy Iteration

Feature Value Iteration Policy Iteration

Approach
Updates the value function

iteratively until convergence.

Alternates between policy evaluation and

policy improvement.

Convergence
Converges when the value function

converges.

Converges when the policy stops

changing.

Computational

Cost

More computationally expensive
per iteration due to full evaluation

of all states.

Requires more iterations but may
converge faster in terms of fewer

iterations.

Policy Output The policy is derived after the The policy is updated during each

Feature Value Iteration Policy Iteration

value function has converged. iteration.

Speed of

Convergence

May require many iterations for

convergence, especially in large

state spaces.

Tends to converge faster in practice,

especially when the policy improves

significantly at each iteration.

State Space

Typically suited for smaller state

spaces due to computational

complexity.

Can handle larger state spaces more

efficiently.

When to Use Value Iteration and Policy Iteration

Use Value Iteration:

 When you have a small state space and can afford the computational cost of updating the

value function for each state.

 When you want to compute the value function first and derive the policy later.

Use Policy Iteration:

 When you have a larger state space and want to reduce the number of iterations for

convergence.

 When you can afford the computational cost of policy evaluation but want faster policy

improvement.

Value Iteration is simpler and more direct in its approach and Policy Iteration often converges

faster in practice by improving the policy iteratively. The choice between the two methods

depends largely on the problem’s scale and the computational resources available. In many

real-world applications Policy Iteration may be preferred for its faster convergence especially

in problems with large state spaces.

	 RIGHT RIGHT UP UP RIGHT
	Markov Property
	Markov Process or Markov Chain
	Markov Reward Process (MRP)
	Markov Decision Process (MDP)
	Discount (γ)
	Policy (π)
	Value Functions
	State Value Function (for MRP)
	Bellman Expectation Equation (for MRP)
	State Value Function (for MDP)
	Action Value Function (for MDP)
	Bellman Expectation Equation (for MDP)
	Optimal Value Functions
	Bellman Optimality Equation
	Diving Into Utility Theory and MEU
	Utility scales and Utility assessments
	Money Utility
	Multi-attribute utility functions
	Terminology used
	Therefore, preference can be done in two ways :
	Partially observable Markov decision process
	What is Policy Iteration?
	Comparison Between Value Iteration and Policy Iteration
	When to Use Value Iteration and Policy Iteration

