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Markov Decision Process 

Reinforcement Learning is a type of Machine Learning. It allows machines and software 

agents to automatically determine the ideal behavior within a specific context, in order to 

maximize its performance. Simple reward feedback is required for the agent to learn its 

behaviour; this is known as the reinforcement signal. 

There are many different algorithms that tackle this issue. As a matter of fact, Reinforcement 

Learning is defined by a specific type of problem, and all its solutions are classed as 

Reinforcement Learning algorithms. In the problem, an agent is supposed to decide the best 

action to select based on his current state. When this step is repeated, the problem is known 

as a Markov Decision Process. 

 

A Markov Decision Process (MDP) model contains: 

 A set of possible world states S. 

 A set of Models. 

 A set of possible actions A. 

 A real valued reward function R(s,a). 

 A policy the solution of Markov Decision Process. 
 

 

What is a State? 

A State is a set of tokens that represent every state that the agent can be in. 

 

What is a Model? 

A Model (sometimes called Transition Model) gives an action’s effect in a state. In 

particular, T(S, a, S’) defines a transition T where being in state S and taking an action ‘a’ 

takes us to state S’ (S and S’ may be same). For stochastic actions (noisy, non-deterministic) 

we also define a probability P(S’|S,a) which represents the probability of reaching a state S’ 

if action ‘a’ is taken in state S. Note Markov property states that the effects of an action taken 

in a state depend only on that state and not on the prior history. 



What are Actions? 

An Action A is set of all possible actions. A(s) defines the set of actions that can be taken 

being in state S. 

 

What is a Reward? 

A Reward is a real-valued reward function. R(s) indicates the reward for simply being in the 

state S. R(S,a) indicates the reward for being in a state S and taking an action ‘a’. R(S,a,S’) 

indicates the reward for being in a state S, taking an action ‘a’ and ending up in a state S’. 

 

What is a Policy? 

A Policy is a solution to the Markov Decision Process. A policy is a mapping from S to a. It 

indicates the action ‘a’ to be taken while in state S. 

Let us take the example of a grid world: 
 

An agent lives in the grid. The above example is a 3*4 grid. The grid has a START state 

(grid no 1,1). The purpose of the agent is to wander around the grid to finally reach the Blue 

Diamond (grid no 4,3). Under all circumstances, the agent should avoid the Fire grid (orange 

color, grid no 4,2). Also, the grid no 2,2 is a blocked grid, it acts like a wall hence the agent 

cannot enter it. 

The agent can take any one of these actions: UP, DOWN, LEFT, RIGHT 

Walls block the agent path, i.e., if there is a wall in the direction the agent would have taken, 

the agent stays in the same place. So, for example, if the agent says LEFT in the START grid 

he would stay put in the START grid. 

First Aim: To find the shortest sequence getting from START to the Diamond. Two such 

sequences can be found: 

 RIGHT RIGHT UP UP RIGHT 

 UP UP RIGHT RIGHT RIGHT 

Let us take the second one (UP UP RIGHT RIGHT RIGHT) for the subsequent discussion. 

The move is now noisy. 80% of the time the intended action works correctly. 20% of the time 

the action agent takes causes it to move at right angles. For example, if the agent says UP the 

probability of going UP is 0.8 whereas the probability of going LEFT is 0.1 and probability 

of going RIGHT is 0.1 (since LEFT and RIGHT is right angles to UP). 

The agent receives rewards each time step: - 

 Small reward each step (can be negative when can also be term as punishment, in 

the above example entering the Fire can have a reward of -1). 

 Big rewards come at the end (good or bad). 



 The goal is to Maximize sum of rewards. 

 

 

 

Markov Property 

 
Markov Property 

 

Assume that a Robot was seated on a chair, it stood up and put its right foot forward. So 

currently, it is standing with its right foot forward (this is its current state). 

 

Now, according to the Markov Property, the current state of the Robot depends only on its 

immediate previous state (or the previous timestep) i.e., the state it was in when it stood up. And 

evidently, it doesn’t depend on the state where it was sitting on the chair. Similarly, its next state 

depends only on its current state. 

 
Formally, for a state S_t to be Markov, the probability of the next state S_(t+1) being s’ should 

only be dependent on the current state S_t = s_t, and not on the rest of the past states S₁ = s₁ , 

S₂ = s₂ , … 

 

Markov Process or Markov Chain 

 
State Transition Probability 

 
A Markov Process is defined by (S, P) where S are the states, and P is the state-transition 

probability. It consists of a sequence of random states S₁ , S₂ , … where all the states obey the 

Markov Property. 

 

The state transition probability or P_ss’ is the probability of jumping to a state s’ from the 

current state s. 

https://en.wikipedia.org/wiki/Markov_property


 
A Sample Markov Chain for the Robot Example 

 

To get an intuition of the concept, consider the figure above. Sitting, Standing, Crashed, etc. are 

the states, and their respective state transition probabilities are given. 

 

Markov Reward Process (MRP) 

 
State Transition Probability and Reward in an MRP 

 

An MRP is defined by (S, P, R, γ), where S are the states, P is the state-transition 

probability, R_s is the reward, and γ is the discount factor (will be covered in the coming 

sections). 

 

The state reward R_s is the expected reward over all the possible states that one can transition 

to from state s. This reward is received for being at the state S_t. By convention, it is said to be 

received after the agent leaves the state and hence, regarded as R_(t+1). 

 

For example: 



 
A Simple MRP Example 

 

Markov Decision Process (MDP) 

 
State Transition Probability and Reward in an MDP 

 

An MDP is defined by (S, A, P, R, γ), where A is the set of actions. It is essentially MRP with 

actions. Introduction to actions elicits a notion of control over the Markov Process, i.e., 

previously, the state transition probability and the state rewards were more or less stochastic 

(random). However, now the rewards and the next state also depend on what action the agent 

picks. Basically, the agent can now control its own fate (to some extent). 

 

Now we will discuss how to use MDPs to address RL problems. 

 

Return (G_t) 

 
Return 



Rewards are temporary. Even after picking an action that gives a decent reward, we might be 

missing on a greater total reward in the long-run. This long-term total reward is the Return. 

However, in practice, we consider discounted Returns. 

 

Discount (γ) 

The variable γ ∈ [0, 1] in the figure is the discount factor. The intuition behind using a discount 

is that there is no certainty about the future rewards; i.e., as important it is to consider the future 

rewards to increase the Return, it is also equally important to limit the contribution of the future 

rewards to the Return (Since you can’t be 100% sure of the future). 

 

And also because using a discount is mathematically convenient. 

 

Policy (π) 

 
Policy 

 

As mentioned earlier, a policy defines the thought behind making a decision (picking an action). 

It defines the behavior of an RL agent. 

 

Formally, a policy is a probability distribution over the set of actions a, given the current 

state s i.e., it gives the probability of picking an action a at state s. 

 

Value Functions 

A value function is the long-term value of a state or an action i.e., the expected Return over a 

state or an action. This is something that we are actually interested in optimizing. 

 

State Value Function (for MRP) 

 
State Value Function for an MRP 

 

The state value function v(s) is the expected Return starting from state s. 



Bellman Expectation Equation (for MRP) 

 

The Bellman Equation gives a standard representation for value functions. It essentially 

decomposes the value function into two components: 

 

1. The immediate reward R_(t+1) 

2. Discounted value of the future state γ.v(S_(t+1)) 

Solution for the Bellman Equation of the State Value Function 

 
Intuition on Bellman Equation 

 

The agent can transition from the current state s to some state s’. Now, the state value function is 

basically the expected value of Returns over all s’. Now, using the same definition, we can 

recursively substitute the Return of the next state s’ with the value function of s’. This is exactly 

what the Bellman Equation does: 

The Bellman Equation 



Now let’s solve this equation: 

Solution for the Value Function 

 

So, since expectation is distributive, we can solve for both R_(t+1) and v(s’) separately. We 

have already seen that the expected value of R_(t+1) over S_t=s is the state reward R_s. And the 

expectation of v(s’) over all s’ is taken by the definition of Expected Value. 

 

Another way of saying this would be— the state reward is the constant value that we are 

anyway going to receive for being at the state s. And the other term is the average state 

value over all s’. 

 

State Value Function (for MDP) 

 
State Value Function for an MDP 

 

This is similar to the value function for MRP, but there is a small difference that we’ll see 

shortly. 

 

Action Value Function (for MDP) 

 
Action Value Function for an MDP 

 

MDPs introduce control in MRPs by considering actions as the parameter for state transition. 

So, it is necessary to evaluate actions along with states. For this, we define action value 

functions that essentially give us the expected Return over actions. 

https://www.statlect.com/fundamentals-of-probability/expected-value-properties
https://en.wikipedia.org/wiki/Expected_value


State value functions and action value functions are closely related. We’ll see how in the next 

section. 

 

Bellman Expectation Equation (for MDP) 

 
Bellman Expectation Equations for an MDP 

 

Since we know the basics of the Bellman Equation now, we can directly jump to the solution of 

this equation and see how this differs from the Bellman Equation for MRPs: 

Intuition on Bellman Equation 

 

Note that we represent the states using circles and actions using dots; both the diagrams 

above are a different level view of the same MDP, left being the ‘state-centric’ view and right 

being the ‘action-centric’ view. 

 

Let’s first understand the figure: 

 

 Circle to dot: The agent is in a state s; it picks an action a according to the policy. 

For eg: say we’re training the agent to play chess. One time step is equivalent to one 

whole move (one white and one black move resp.). So in this part of the transition, 

the agent picks an action (makes a move). This part is completely controllable by 

the agent as it gets to pick the action. 

 Dot to Circle: The environment acts on the agent and sends it to a state based on 

the transition probability. For eg: continuing the chess-playing agent example, this 

is the part of the transition where the opponent makes a move. After both moves, we 

call it a complete state transition. This part is not controllable by the agent as it 

cannot control how the environment acts, just its own behavior. 



Now we treat these as two individual mini transitions: 

Solution for the State Value Function 

 

Since we have a state to action transition, we take the expected action value over all the actions. 

 

And this completely satisfies the Bellman Equation as the same is done for the action value 

function: 

Solution for the Action Value Function 

 

i.e., we can substitute this equation in the state value function to obtain the value in terms of 

recursive state value functions (and vice versa) similar to MRPs: 

Substituting the Action Value Function in the State Value Function and vice versa 

 

Optimal Value Functions 

 



 
Optimal State and Action Value Functions 

 

Say, we obtain the value for all the states/actions of an MDP for all possible patterns of actions 

that can be picked, i.e., all the policies. Then, we can simply pick the policy with the highest 

value for the states and actions. The equations above represent this exact thing. 

 

If we obtain q∗(s, a), the problem is solved. 

 

 

We can simply assign probability 1 for the action that has the max value for q∗ and 0 for the rest 

of the actions for all given states, i.e. 

Optimal Policy 

 

Bellman Optimality Equation 

 
Bellman Optimality Equation for Optimal State Value Function 

 

Since we are anyway going to pick the action that yields the max q∗, we can simply assign this 
value as the optimal value function. 

 



 
Bellman Optimality Equation for Optimal Action Value Function 

 

Nothing much can change for this equation as this is the part of the transition where the 

environment acts; hence, uncontrollable by the agent. However, since we are following the 

optimal policy, the state value function will be the optimal one. 

 

Utility Functions in Artificial Intelligence 

Utility functions are one of the elements of artificial intelligence (AI) solutions that are 

frequently mentioned but seldom discussed in details in AI articles. That basic AI theory has 

become an essential element of modern AI solutions. In some context, we could generalize the 

complete spectrum of AI applications as scenarios that involve a utility function that needs to be 

maximized by a rational agent. Before venturing that far, we should answer a more basic 

question: What is a utility function? 

Utility functions are a product of Utility Theory which is one of the disciplines that helps to 

address the challenges of building knowledge under uncertainty. Utility theory is often 

combined with probabilistic theory to create what we know as decision-theoretic agents. 

Conceptually, a decision-theoretic agent is an AI program that can make rational decisions 

based on what it believes and what it wants. Sounds rational, right? :) 

Ok, let’s get a bit more practical. In many AI scenarios, agents don’t have the luxury of 

operating in an environment in which they know the final outcome of every possible state. 

Those agents operate under certain degree of uncertainly and need to rely on probabilities to 

quantify the outcome of possible states. That probabilistic function is what we call Utility 

Functions. 

 

Diving Into Utility Theory and MEU 

Utility Theory is the discipline that lays out the foundation to create and evaluate Utility 

Functions. Typically, Utility Theory uses the notion of Expected Utility (EU) as a value that 

represents the average utility of all possible outcomes of a state, weighted by the probability that 

the outcome occurs. The other key concept of Utility Theory is known as the Principle of 

Maximum Utility(MEU) which states that any rational agent should choose to maximize the 

agent’s EU. 

The principle of MEU seems like an obvious way to make decisions until you start digging into 

it and run into all sorts of interesting questions. Why using the average utility after all? Why not 

to try to minimize the loss instead of maximizing utility? There are dozens of similar questions 

that challenge the principle of MEU. However, in order to validate the principle of MEU, we 

should go back to the laws of Utility Theory. 

 

 

In AI, a utility function assigns values to certain actions that the AI system can take. An AI 

agent's preferences over possible outcomes can be captured by a function that maps these 

outcomes to a utility value; the higher the number the more that agent likes that outcome. 



In economics, utility function is an important concept that measures preferences over a set of 

goods and services. Utility represents the satisfaction that consumers receive for choosing and 

consuming a product or service. 

 

So, to create a “rational AI agent” that understands how to take the appropriate actions, the AI 

programmer must define the utility function across a variety of often-conflicting value 

dimensions. For example, increase financial value, while reducing operational costs and risks, 

while improving customer satisfaction and likelihood to recommend, while improving societal 

value and quality of life, while reducing environmental impact and carbon footprint 

 

he agents use the utility theory for making decisions. It is the mapping from lotteries to the real 

numbers. An agent is supposed to have various preferences and can choose the one which best 

fits his necessity. 

 

Utility scales and Utility assessments 

To help an agent in making decisions and behave accordingly, we need to build a decision- 

theoretic system. For this, we need to understand the utility function. This process is known 

as preference elicitation In this, the agents are provided with some choices and using the 

observed preferences, the respected utility function is chosen. Generally, there is no scale for 

the utility function. But, a scale can be established by fixing the boiling and freezing point of 

water. Thus, the utility is fixed as: 

U(S)=uT for best possible cases 

U(S)= u? for worst possible cases. 

A normalized utility function uses a utility scale with value uT=1, and u? =0. For example, a 

utility scale between uT and u? is given. Thereby an agent can choose a utility value between 

any prize Z and the standard lottery [p, u_; (1?p), u?]. Here, p denotes the probability which is 

adjusted until the agent is adequate between Z and the standard lottery. 

Like in medical, transportation, and environmental decision problems, we use two 

measurement units: micromort or QUALY(quality-adjusted life year) to measure the chances 

of death of a person. 

 

Money Utility 

Economics is the root of utility theory. It is the most demanding thing in human life. Therefore, 

an agent prefers more money to less, where all other things remain equal. The agent exhibits a 

monotonic preference(more is preferred over less) for getting more money. In order to evaluate 

the more utility value, the agent calculates the Expected Monetary Value(EMV) of that 

particular thing. But this does not mean that choosing a monotonic value is the right decision 

always. 

Multi-attribute utility functions 

Multi-attribute utility functions include those problems whose outcomes are categorized by two 

or more attributes. Such problems are handled by multi-attribute utility theory. 

Terminology used 

 Dominance: If there are two choices say A and B, where A is more effective than B. It 

means that A will be chosen. Thus, A will dominate B. Therefore, multi-attribute utility 

function offers two types of dominance: 

 Strict Dominance: If there are two websites T and D, where the cost of T is less and 

provides better service than D. Obviously, the customer will prefer T rather than D. 

Therefore, T strictly dominates D. Here, the attribute values are known. 



 Stochastic Dominance: It is a generalized approach where the attribute value is 

unknown. It frequently occurs in real problems. Here, a uniform distribution is given, 

where that choice is picked, which stochastically dominates the other choices. The exact 

relationship can be viewed by examing the cumulative distribution of the attributes. 

 Preference Structure: Representation theorems are used to show that an agent with a 

preference structure has a utility function as: 

U(x1, . . . , xn) = F[f1(x1), . . . , fn(xn)], 

where F indicates any arithmetic function such as an addition function. 

Therefore, preference can be done in two ways : 

 Preference without uncertainty: The preference where two attributes are 

preferentially independent of the third attribute. It is because the preference between the 

outcomes of the first two attributes does not depend on the third one. 

 Preference with uncertainty: This refers to the concept of preference structure 

with uncertainty. Here, the utility independence extends the preference 

independence where a set of attributes X is utility independent of another Y set 

of attributes, only if the value of attribute in X set is independent of Y set 

attribute value. A set is said to be mutually utility independent (MUI) if each 

subset is utility-independent of the remaining attribute. 

 

Value Iteration 
 

 

Value iteration is a method of computing an optimal MDP policy and its value. 

Value iteration starts at the "end" and then works backward, refining an estimate of 

either Q* or V*. There is really no end, so it uses an arbitrary end point. Let Vk be the value 

function assuming there are k stages to go, and let Qk be the Q-function assuming there 
are k stages to go. These can be defined recursively. Value iteration starts with an arbitrary 

function V0 and uses the following equations to get the functions for k+1 stages to go from the 
functions for k stages to go: 

 

Qk+1(s,a) = ∑s' P(s'|s,a) (R(s,a,s')+ γVk(s')) for k ≥ 0 

Vk(s) = maxa Qk(s,a) for k>0. 

It can either save the V[S] array or the Q[S,A] array. Saving the V array results in less storage, 

but it is more difficult to determine an optimal action, and one more iteration is needed to 

determine which action results in the greatest value. 
 

 

 

1: Procedure Value_Iteration(S,A,P,R,θ) 

2: Inputs 

3: S is the set of all states 



4: A is the set of all actions 

5: P is state transition function specifying P(s'|s,a) 

6: R is a reward function R(s,a,s') 

7: θ a threshold, θ>0 

8: Output 

9: π[S] approximately optimal policy 

10:  V[S] value function 

11: Local 

12: real array Vk[S] is a sequence of value functions 

13: action array π[S] 

14: assign V0[S] arbitrarily 

15: k ←0 

16: repeat 

17: k ←k+1 

18: for each state s do 

19: Vk[s] = maxa ∑s' P(s'|s,a) (R(s,a,s')+ γVk-1[s']) 

20: until As |Vk[s]-Vk-1[s]| < θ 

21: for each state s do 

22: π[s] = argmaxa ∑s' P(s'|s,a) (R(s,a,s')+ γVk[s']) 

23: return π,Vk 

Figure 9.14: Value iteration for MDPs, storing V 

 

 

Figure 9.14 shows the value iteration algorithm when the V array is stored. This procedure 

converges no matter what is the initial value function V0. An initial value function that 

approximates V* converges quicker than one that does not. The basis for many abstraction 

techniques for MDPs is to use some heuristic method to approximate V* and to use this as an 

initial seed for value iteration. 

Example 9.26: Consider the 9 squares around the +10 reward of Example 9.25. The discount 

is γ=0.9. Suppose the algorithm starts with V0[s]=0 for all states s. 
The values of V1, V2, and V3 (to one decimal point) for these nine cells is 

 

0 0 -0.1 

0 10 -0.1 

0 0 -0.1 

https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_224.html#gridworld-ex
https://artint.info/html/ArtInt_224.html#gridworld-ex


 

0 6.3 -0.1 

6.3 9.8 6.2 

0 6.3 -0.1 

 

 

4.5 6.2 4.4 

6.2 9.7 6.6 

4.5 6.1 4.4 

After the first step of value iteration, the nodes get their immediate expected reward. The center 

node in this figure is the +10 reward state. The right nodes have a value of -0.1, with the 

optimal actions being up, left, and down; each of these has a 0.1 chance of crashing into the 

wall for a reward of -1. 

The middle grid shows V2, the values after the second step of value iteration. Consider the node 

that is immediately to the left of the +10 rewarding state. Its optimal value is to go to the right; 

it has a 0.7 chance of getting a reward of 10 in the following state, so that is worth 9 (10 times 

the discount of 0.9) to it now. The expected reward for the other possible resulting states is 0. 

Thus, the value of this state is 0.7×9=6.3. 

Consider the node immediately to the right of the +10 rewarding state after the second step of 

value iteration. The agent's optimal action in this state is to go left. The value of this state is 

 

 Prob Reward  Future Value  

 
0.7×( 0 + 0.9×10) Agent goes left 

+ 0.1×( 0 + 0.9×-0.1) Agent goes up 

+ 0.1×( -1 + 0.9×-0.1) Agent goes right 

+ 0.1×( 0 + 0.9×-0.1) Agent goes down 

which evaluates to 6.173. 

Notice also how the +10 reward state now has a value less than 10. This is because the agent 

gets flung to one of the corners and these corners look bad at this stage. 

After the next step of value iteration, shown on the right-hand side of the figure, the effect of 

the +10 reward has progressed one more step. In particular, the corners shown get values that 

indicate a reward in 3 steps. 

An applet is available on the book web site showing the details of value iteration for this 

example. 

The value iteration algorithm of Figure 9.14 has an array for each stage, but it really only must 

store the current and the previous arrays. It can update one array based on values from the 

other. 

A common refinement of this algorithm is asynchronous value iteration. Rather than 

sweeping through the states to create a new value function, asynchronous value iteration 

updates the states one at a time, in any order, and store the values in a single array. 

Asynchronous   value   iteration   can   store   either   the Q[s,a] array   or 

the V[s] array. Figure 9.15 shows asynchronous value iteration when the Q array is stored. It 

https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_227.html#async-val-iteration-fig
https://artint.info/html/ArtInt_227.html#async-val-iteration-fig


converges faster and uses less space than value iteration and is the basis of some of the 

algorithms for reinforcement learning. Termination can be difficult to determine if the agent 

must guarantee a particular error, unless it is careful about how the actions and states are 

selected. Often, this procedure is run indefinitely and is always prepared to give its best 

estimate of the optimal action in a state when asked. 

 

1: Procedure Asynchronous_Value_Iteration(S,A,P,R) 

2: Inputs 

3: S is the set of all states 

4: A is the set of all actions 

5: P is state transition function specifying P(s'|s,a) 

6: R is a reward function R(s,a,s') 

7: Output 

8: π[s] approximately optimal policy 

9:  Q[S,A] value function 

10: Local 

11: real array Q[S,A] 

12:  action array π[S] 

13: assign Q[S,A] arbitrarily 

14: repeat 

15: select a state s 

16: select an action a 
17: Q[s,a] = ∑s' P(s'|s,a) (R(s,a,s')+ γmaxa' Q[s',a']) 

18: until termination 

19: for each state s do 
20: π[s] = argmaxa Q[s,a] 

21: return π,Q 

Figure 9.15: Asynchronous value iteration for MDPs 

 

Asynchronous value iteration could also be implemented by storing just the V[s] array. In that 

case, the algorithm selects a state s and carries out the update: 

V[s]=maxa ∑s' P(s'|s,a) (R(s,a,s')+ γV[s']). 

Although this variant stores less information, it is more difficult to extract the policy. It 

requires one extra backup to determine which action a results in the maximum value. This can 

be done using 

π[s]= argmaxa ∑s' P(s'|s,a) (R(s,a,s')+ γV[s']). 

 

 

Policy Iteration 

 

Once a policy, , has been improved using  to yield a better policy, , we can then 

compute  and improve it again to yield an even better . We can thus obtain a sequence of 

monotonically improving policies and value functions: 

https://artint.info/html/ArtInt_262.html


 
 

 

 

where  denotes a policy evaluation and  denotes a policy improvement. Each policy is 

guaranteed to be a strict improvement over the previous one (unless it is already optimal). 

Because a finite MDP has only a finite number of policies, this process must converge to an 

optimal policy and optimal value function in a finite number of iterations. 

 

This way of finding an optimal policy is called policy iteration. A complete algorithm is given 

in Figure  4.3. Note that each policy evaluation, itself an iterative computation, is started with 

the value function for the previous policy. This typically results in a great increase in the speed 

of convergence of policy evaluation (presumably because the value function changes little from 

one policy to the next). 

 

 

Figure 4.3: Policy iteration (using iterative policy evaluation) for . In the " " step in 

3, it is assumed that ties are broken in a consistent order. 

http://incompleteideas.net/book/first/ebook/node43.html#fig%3Apolicy-iteration


Policy iteration often converges in surprisingly few iterations. This is illustrated by the example 

in Figure  4.2. The bottom-left diagram shows the value function for the equiprobable random 

policy, and the bottom-right diagram shows a greedy policy for this value function. The policy 

improvement theorem assures us that these policies are better than the original random policy. 

In this case, however, these policies are not just better, but optimal, proceeding to the terminal 

states in the minimum number of steps. In this example, policy iteration would find the optimal 

policy after just one iteration. 

 

Partially observable Markov decision process 

A partially observable Markov decision process (POMDP) is a generalization of a Markov 

decision process (MDP). A POMDP models an agent decision process in which it is assumed 

that the system dynamics are determined by an MDP, but the agent cannot directly observe the 

underlying state. Instead, it must maintain a sensor model (the probability distribution of 

different observations given the underlying state) and the underlying MDP. Unlike the policy 

function in MDP which maps the underlying states to the actions, POMDP's policy is a 

mapping from the observations (or belief states) to the actions. 

The POMDP framework is general enough to model a variety of real-world sequential decision 

processes. Applications include robot navigation problems, machine maintenance, and planning 

under uncertainty in general. The general framework of Markov decision processes 

with imperfect information was described by Karl Johan Åström in 1965 [1] in the case of a 

discrete state space, and it was further studied in the operations research community where the 

acronym POMDP was coined. It was later adapted for problems in artificial 

intelligence and automated planning by Leslie P. Kaelbling and Michael L. Littman. 

An exact solution to a POMDP yields the optimal action for each possible belief over the world 

states. The optimal action maximizes (or minimizes) the expected reward (or cost) of the agent 

over a possibly infinite horizon. The sequence of optimal actions is known as the optimal 

policy of the agent for interacting with its environment. 
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What is Policy Iteration? 

Policy Iteration is another dynamic programming algorithm used to compute the optimal 

policy. It alternates between two steps: 

 

 

 

 
Policy Iteration 

 Policy Evaluation: For a given policy ππ, the value function Vπ(s)Vπ(s) is computed 

using the Bellman Expectation Equation: 

Vπ(s)=R(s,π(s))+γ∑s′P(s′∣s,π(s))Vπ(s′)Vπ(s)=R(s,π(s))+γ∑s′P(s′∣s,π(s))Vπ(s′) 

 Policy Improvement: Once the value function for the current policy is calculated the 

policy is updated to improve it by selecting the action that maximizes the expected return 

from each state: 

π′(s)=arg⁡max⁡a[R(s,a)+γ∑s′P(s′∣s,a)Vπ(s′)]π′(s)=argmaxa[R(s,a)+γ∑s′

P(s′∣s,a)Vπ(s′)] 

This process repeats until the policy converges meaning it no longer changes between 

iterations. 
. 

 

Comparison Between Value Iteration and Policy Iteration 

Feature Value Iteration Policy Iteration 

Approach 
Updates the value function 

iteratively until convergence. 

Alternates between policy evaluation and 

policy improvement. 

Convergence 
Converges when the value function 

converges. 

Converges when the policy stops 

changing. 

Computational 

Cost 

More computationally expensive 
per iteration due to full evaluation 

of all states. 

Requires more iterations but may 
converge faster in terms of fewer 

iterations. 

Policy Output The policy is derived after the The policy is updated during each 



Feature Value Iteration Policy Iteration 

value function has converged. iteration. 

Speed of 

Convergence 

May require many iterations for 

convergence, especially in large 

state spaces. 

Tends to converge faster in practice, 

especially when the policy improves 

significantly at each iteration. 

State Space 

Typically suited for smaller state 

spaces due to computational 

complexity. 

Can handle larger state spaces more 

efficiently. 

When to Use Value Iteration and Policy Iteration 

Use Value Iteration: 

 When you have a small state space and can afford the computational cost of updating the 

value function for each state. 

 When you want to compute the value function first and derive the policy later. 

Use Policy Iteration: 

 When you have a larger state space and want to reduce the number of iterations for 

convergence. 

 When you can afford the computational cost of policy evaluation but want faster policy 

improvement. 

Value Iteration is simpler and more direct in its approach and Policy Iteration often converges 

faster in practice by improving the policy iteratively. The choice between the two methods 

depends largely on the problem’s scale and the computational resources available. In many 

real-world applications Policy Iteration may be preferred for its faster convergence especially 

in problems with large state spaces. 
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