Notes
Subject: Artificial Intelligence

Unit- 4 Markov Decision Process

Markov Decision Process

Reinforcement Learning is a type of Machine Learning. It allows machines and software
agents to automatically determine the ideal behavior within a specific context, in order to
maximize its performance. Simple reward feedback is required for the agent to learn its
behaviour; this is known as the reinforcement signal.

There are many different algorithms that tackle this issue. As a matter of fact, Reinforcement
Learning is defined by a specific type of problem, and all its solutions are classed as
Reinforcement Learning algorithms. In the problem, an agent is supposed to decide the best
action to select based on his current state. When this step is repeated, the problem is known
as a Markov Decision Process.

A Markov Decision Process (MDP) model contains:
e A set of possible world states S.
o A set of Models.
o A set of possible actions A.
o A real valued reward function R(s,a).
o A policy the solution of Markov Decision Process.

States: S

Model: TS, a,) —~P(CS° | S, a)
Actions: ACS), A

Reward: R(S). R(S. a), R(S. a, S?)

Policy: rnes) —a
n >

Markov Decision Process

What is a State?
A State is a set of tokens that represent every state that the agent can be in.

What is a Model?

A Model (sometimes called Transition Model) gives an action’s effect in a state. In
particular, T(S, a, S”) defines a transition T where being in state S and taking an action ‘a’
takes us to state S’ (S and S’ may be same). For stochastic actions (noisy, non-deterministic)
we also define a probability P(S’|S,a) which represents the probability of reaching a state S’
if action ‘a’ is taken in state S. Note Markov property states that the effects of an action taken
in a state depend only on that state and not on the prior history.

What are Actions?
An Action A is set of all possible actions. A(s) defines the set of actions that can be taken
being in state S.

What is a Reward?

A Reward is a real-valued reward function. R(s) indicates the reward for simply being in the
state S. R(S,a) indicates the reward for being in a state S and taking an action ‘a’. R(S,a,S”)
indicates the reward for being in a state S, taking an action ‘a’ and ending up in a state S’.

What is a Policy?

A Policy is a solution to the Markov Decision Process. A policy is a mapping from S to a. It
indicates the action ‘a’ to be taken while in state S.

Let us take the example of a grid world:

-

4

An agent lives in the grid. The above example is a 3*4 grid. The grid has a START state
(grid no 1,1). The purpose of the agent is to wander around the grid to finally reach the Blue
Diamond (grid no 4,3). Under all circumstances, the agent should avoid the Fire grid (orange
color, grid no 4,2). Also, the grid no 2,2 is a blocked grid, it acts like a wall hence the agent
cannot enter it.
The agent can take any one of these actions: UP, DOWN, LEFT, RIGHT
Walls block the agent path, i.e., if there is a wall in the direction the agent would have taken,
the agent stays in the same place. So, for example, if the agent says LEFT in the START grid
he would stay put in the START grid.
First Aim: To find the shortest sequence getting from START to the Diamond. Two such
sequences can be found:

e RIGHT RIGHT UP UP RIGHT

e UPUPRIGHT RIGHT RIGHT
Let us take the second one (UP UP RIGHT RIGHT RIGHT) for the subsequent discussion.
The move is now noisy. 80% of the time the intended action works correctly. 20% of the time
the action agent takes causes it to move at right angles. For example, if the agent says UP the
probability of going UP is 0.8 whereas the probability of going LEFT is 0.1 and probability
of going RIGHT is 0.1 (since LEFT and RIGHT is right angles to UP).
The agent receives rewards each time step: -

o Small reward each step (can be negative when can also be term as punishment, in

the above example entering the Fire can have a reward of -1).
o Big rewards come at the end (good or bad).

e The goal is to Maximize sum of rewards.

Markov Property

A state S; is Markov if and only if
P[SH—I | St] = P[St+1 l 51; ---,St]
Markov Property

Assume that a Robot was seated on a chair, it stood up and put its right foot forward. So
currently, it is standing with its right foot forward (this is its current state).

Now, according to the Markov Property, the current state of the Robot depends only on its
immediate previous state (or the previous timestep) i.e., the state it was in when it stood up. And
evidently, it doesn’t depend on the state where it was sitting on the chair. Similarly, its next state
depends only on its current state.

Formally, for a state S_t to be Markov, the probability of the next state S_(t+1) being s’ should
only be dependent on the current state S_t = s_t, and not on the rest of the past states S: =s: ,
S =%, ...

Markov Process or Markov Chain
_ Sk _
PSS’ = P[St.{_l =S | St — S]
State Transition Probability

A Markov Process is defined by (S, P) where S are the states, and P is the state-transition
probability. It consists of a sequence of random states S: , S2 , ... where all the states obey the
Markov Property.

The state transition probability or P_ss’ is the probability of jumping to a state s’ from the
current state s.

https://en.wikipedia.org/wiki/Markov_property

Shut
— Dowvwn —

P=1.0
P=o01 P=0.1
P=03 : (_

Hand(s)
Raised

A Sample Markov Chain for the Robot Example

To get an intuition of the concept, consider the figure above. Sitting, Standing, Crashed, etc. are
the states, and their respective state transition probabilities are given.

Markov Reward Process (MRP)

Psg’ — IP) [5t+]_ — 5, | St — S]
Rs =E[Rit1 | St = s}

State Transition Probability and Reward in an MRP

An MRP is defined by (S, P, R, y), where S are the states, P is the state-transition
probability, R_s is the reward, and y is the discount factor (will be covered in the coming
sections).

The state reward R_s is the expected reward over all the possible states that one can transition
to from state s. This reward is received for being at the state S_t. By convention, it is said to be
received after the agent leaves the state and hence, regarded as R_(t+1).

For example:

Shut
Down

Hand(s)
Raised

Markov Decision Process (MDP)

7_‘_)3, —]P[St_|_1 =S; | St — S}Ar = 3]

S5

Rg — ":[Rt_|_]_ | St =5,At — 3]

State Transition Probability and Reward in an MDP

A Simple MRP Example

An MDRP is defined by (S, A, P, R,), where A is the set of actions. It is essentially MRP with
actions. Introduction to actions elicits a notion of control over the Markov Process, i.e.,
previously, the state transition probability and the state rewards were more or less stochastic
(random). However, now the rewards and the next state also depend on what action the agent
picks. Basically, the agent can now control its own fate (to some extent).

Now we will discuss how to use MDPs to address RL problems.

Return (G_t)

The return G; is the total discounted reward from time-step t.
o0
k
Gt = Rey1 +YRe2 + ... = Z’Y Ret k1
k=0

Return

Rewards are temporary. Even after picking an action that gives a decent reward, we might be
missing on a greater total reward in the long-run. This long-term total reward is the Return.
However, in practice, we consider discounted Returns.

Discount (y)

The variable y € [0, 1] in the figure is the discount factor. The intuition behind using a discount
is that there is no certainty about the future rewards; i.e., as important it is to consider the future
rewards to increase the Return, it is also equally important to limit the contribution of the future
rewards to the Return (Since you can’t be 100% sure of the future).

And also because using a discount is mathematically convenient.

Policy ()

A policy m is a distribution over actions given states,
m(a|s) =P[Ar = a | S = 5]

Policy

As mentioned earlier, a policy defines the thought behind making a decision (picking an action).
It defines the behavior of an RL agent.

Formally, a policy is a probability distribution over the set of actions a, given the current
state s i.e., it gives the probability of picking an action a at state s.

Value Functions

A value function is the long-term value of a state or an action i.e., the expected Return over a
state or an action. This is something that we are actually interested in optimizing.

State Value Function (for MRP)

v(is) =1E|G: | S = s]
State Value Function for an MRP

The state value function v(s) is the expected Return starting from state s.

Bellman Expectation Equation (for MRP)

The Bellman Equation gives a standard representation for value functions. It essentially
decomposes the value function into two components:

1. The immediate reward R_(t+1)

2. Discounted value of the future state p.v(S (¢+1))

v(s) =E[G; | S; = 5]
=E [Ret1+ YRe2 + YV Reyz+ ... | Se = s]
=E[Rty1 +7(Rey2 + YR +...) | St = 9]
=E[Ri+1+7Gey1 | St = 9]
= E[Ri+1 +yv(Se+1) | St = 5]

Solution for the Bellman Equation of the State Value Function

v(s8) < s

v(s’) < s’

Intuition on Bellman Equation

The agent can transition from the current state s to some state s’. Now, the state value function is
basically the expected value of Returns over all s°. Now, using the same definition, we can
recursively substitute the Return of the next state s” with the value function of s’. This is exactly

what the Bellman Equation does:

v(s) = E[Res1 + Y(Ses1) | St = $]

The Bellman Equation

Now let’s solve this equation:

4
v(s) = Rs + E Pssrv(s’)
s’eS
Solution for the Value Function
So, since expectation is distributive, we can solve for both R_(t+1) and v(s’) separately. We

have already seen that the expected value of R_(t+1) over S_t=s is the state reward R_s. And the
expectation of v(s’) over all s’ is taken by the definition of Expected Value.

Another way of saying this would be— the state reward is the constant value that we are
anyway going to receive for being at the state s. And the other term is the average state
value over all s’.

State Value Function (for MDP)

The state-value function v;(s) of an MDP is the expected return
starting from state s, and then following policy 7

VW(S) = Effr [Gt | St = S]
State Value Function for an MDP

This is similar to the value function for MRP, but there is a small difference that we’ll see
shortly.

Action Value Function (for MDP)

The action-value function q.(s, a) is the expected return
starting from state s, taking action a, and then following policy 7

qﬂ-(S, 3) =]E7T [Gt ‘ St = 5, Af = a]
Action Value Function for an MDP

MDPs introduce control in MRPs by considering actions as the parameter for state transition.
So, it is necessary to evaluate actions along with states. For this, we define action value
functions that essentially give us the expected Return over actions.

https://www.statlect.com/fundamentals-of-probability/expected-value-properties
https://en.wikipedia.org/wiki/Expected_value

State value functions and action value functions are closely related. We’1l see how in the next
section.

Bellman Expectation Equation (for MDP)

Vﬂ'(s) = Eg [Rt—l—l + ')’VW(St—i-l) | St = S]

q’i’f(sa 3) = Eg [Rt+1 + qu(5r+1a At—i—l) | S5t =5,A: = 3]

Bellman Expectation Equations for an MDP

Since we know the basics of the Bellman Equation now, we can directly jump to the solution of
this equation and see how this differs from the Bellman Equation for MRPs:

vr(8) 8 | g=(s,a) < s,a
r

g (8,a) < a v (8") < 8

Intuition on Bellman Equation

Note that we represent the states using circles and actions using dots; both the diagrams
above are a different level view of the same MDP, left being the ‘state-centric’ view and right
being the ‘action-centric’ view.

Let’s first understand the figure:

o Circle to dot: The agent is in a state s; it picks an action a according to the policy.
For eg: say we’re training the agent to play chess. One time step is equivalent to one
whole move (one white and one black move resp.). So in this part of the transition,
the agent picks an action (makes a move). This part is completely controllable by
the agent as it gets to pick the action.

o Dot to Circle: The environment acts on the agent and sends it to a state based on
the transition probability. For eg: continuing the chess-playing agent example, this
is the part of the transition where the opponent makes a move. After both moves, we
call it a complete state transition. This part is not controllable by the agent as it
cannot control how the environment acts, just its own behavior.

Now we treat these as two individual mini transitions:

V?T(S) — Z ﬂ_(als)Qﬂ(Sa a)

ac A

Solution for the State Value Function
Since we have a state to action transition, we take the expected action value over all the actions.

And this completely satisfies the Bellman Equation as the same is done for the action value
function:

gr(s,3) = Rs +7 Z Pesr v (s')
s’eS

Solution for the Action Value Function

i.e., we can substitute this equation in the state value function to obtain the value in terms of
recursive state value functions (and vice versa) similar to MRPs:

va(s) — S m(als) (Rz ST P2, vw<s'))

ac. A s'eS

gr(s,a) =R+~ D> P > w(als)g(s",a")

s'esS a’'ecA

Substituting the Action Value Function in the State Value Function and vice versa

Optimal Value Functions

vi.(s) = max vi.(s)

ag.(s, a) — max g (s, 2)
Optimal State and Action Value Functions

Say, we obtain the value for all the states/actions of an MDP for all possible patterns of actions
that can be picked, i.e., all the policies. Then, we can simply pick the policy with the highest
value for the states and actions. The equations above represent this exact thing.

If we obtain gx(s, a), the problem is solved.

We can simply assign probability 1 for the action that has the max value for g and O for the rest
of the actions for all given states, i.e.

1 if a = argmax g.(s, a)
m«(als) = ac.A
0O otherwise

Optimal Policy

Bellman Optimality Equation

Vi (s) = max g.(s, a)
a

Bellman Optimality Equation for Optimal State Value Function

Since we are anyway going to pick the action that yields the max gx, we can simply assign this
value as the optimal value function.

q+«(s,a) = Ri + 7y Z P:s" V*(S’)
s'eS

Bellman Optimality Equation for Optimal Action Value Function

Nothing much can change for this equation as this is the part of the transition where the
environment acts; hence, uncontrollable by the agent. However, since we are following the
optimal policy, the state value function will be the optimal one.

Utility Functions in Artificial Intelligence

Utility functions are one of the elements of artificial intelligence (Al) solutions that are
frequently mentioned but seldom discussed in details in Al articles. That basic Al theory has
become an essential element of modern Al solutions. In some context, we could generalize the
complete spectrum of Al applications as scenarios that involve a utility function that needs to be
maximized by a rational agent. Before venturing that far, we should answer a more basic
question: What is a utility function?

Utility functions are a product of Utility Theory which is one of the disciplines that helps to
address the challenges of building knowledge under uncertainty. Utility theory is often
combined with probabilistic theory to create what we know as decision-theoretic agents.
Conceptually, a decision-theoretic agent is an Al program that can make rational decisions
based on what it believes and what it wants. Sounds rational, right? :)

Ok, let’s get a bit more practical. In many Al scenarios, agents don’t have the luxury of
operating in an environment in which they know the final outcome of every possible state.
Those agents operate under certain degree of uncertainly and need to rely on probabilities to
quantify the outcome of possible states. That probabilistic function is what we call Utility
Functions.

Diving Into Utility Theory and MEU

Utility Theory is the discipline that lays out the foundation to create and evaluate Utility
Functions. Typically, Utility Theory uses the notion of Expected Utility (EU) as a value that
represents the average utility of all possible outcomes of a state, weighted by the probability that
the outcome occurs. The other key concept of Utility Theory is known as the Principle of
Maximum Utility(MEU) which states that any rational agent should choose to maximize the
agent’s EU.

The principle of MEU seems like an obvious way to make decisions until you start digging into
it and run into all sorts of interesting questions. Why using the average utility after all? Why not
to try to minimize the loss instead of maximizing utility? There are dozens of similar questions
that challenge the principle of MEU. However, in order to validate the principle of MEU, we
should go back to the laws of Utility Theory.

In Al, a utility function assigns values to certain actions that the Al system can take. An Al
agent's preferences over possible outcomes can be captured by a function that maps these
outcomes to a utility value; the higher the number the more that agent likes that outcome.

In economics, utility function is an important concept that measures preferences over a set of
goods and services. Utility represents the satisfaction that consumers receive for choosing and
consuming a product or service.

So, to create a “rational Al agent” that understands how to take the appropriate actions, the Al
programmer must define the utility function across a variety of often-conflicting value
dimensions. For example, increase financial value, while reducing operational costs and risks,
while improving customer satisfaction and likelihood to recommend, while improving societal
value and quality of life, while reducing environmental impact and carbon footprint

he agents use the utility theory for making decisions. It is the mapping from lotteries to the real
numbers. An agent is supposed to have various preferences and can choose the one which best
fits his necessity.

Utility scales and Utility assessments

To help an agent in making decisions and behave accordingly, we need to build a decision-
theoretic system. For this, we need to understand the utility function. This process is known
as preference elicitation In this, the agents are provided with some choices and using the
observed preferences, the respected utility function is chosen. Generally, there is no scale for
the utility function. But, a scale can be established by fixing the boiling and freezing point of
water. Thus, the utility is fixed as:

U(S)=uT for best possible cases

U(S)=u? for worst possible cases.

A normalized utility function uses a utility scale with value uT=1, and u? =0. For example, a
utility scale between uT and u? is given. Thereby an agent can choose a utility value between
any prize Z and the standard lottery [p, u_; (1?p), u?]. Here, p denotes the probability which is
adjusted until the agent is adequate between Z and the standard lottery.

Like in medical, transportation, and environmental decision problems, we use two
measurement units: micromort or QUALY (quality-adjusted life year) to measure the chances
of death of a person.

Money Utility

Economics is the root of utility theory. It is the most demanding thing in human life. Therefore,
an agent prefers more money to less, where all other things remain equal. The agent exhibits a
monotonic preference(more is preferred over less) for getting more money. In order to evaluate
the more utility value, the agent calculates the Expected Monetary Value(EMV) of that
particular thing. But this does not mean that choosing a monotonic value is the right decision
always.

Multi-attribute utility functions

Multi-attribute utility functions include those problems whose outcomes are categorized by two
or more attributes. Such problems are handled by multi-attribute utility theory.

Terminology used

o Dominance: If there are two choices say A and B, where A is more effective than B. It
means that A will be chosen. Thus, A will dominate B. Therefore, multi-attribute utility
function offers two types of dominance:

e Strict Dominance: If there are two websites T and D, where the cost of T is less and
provides better service than D. Obviously, the customer will prefer T rather than D.
Therefore, T strictly dominates D. Here, the attribute values are known.

o Stochastic Dominance: It is a generalized approach where the attribute value is
unknown. It frequently occurs in real problems. Here, a uniform distribution is given,
where that choice is picked, which stochastically dominates the other choices. The exact
relationship can be viewed by examing the cumulative distribution of the attributes.

o Preference Structure: Representation theorems are used to show that an agent with a

preference structure has a utility function as:
U(x1, ..., xn) =F[f1(x1), ..., fn(xn)],

where F indicates any arithmetic function such as an addition function.
Therefore, preference can be done in two ways :

o Preference without uncertainty: The preference where two attributes are
preferentially independent of the third attribute. It is because the preference between the
outcomes of the first two attributes does not depend on the third one.

o Preference with uncertainty: This refers to the concept of preference structure
with uncertainty. Here, the utility independence extends the preference
independence where a set of attributes X is utility independent of another Y set
of attributes, only if the value of attribute in X set is independent of Y set
attribute value. A set is said to be mutually utility independent (MUI) if each
subset is utility-independent of the remaining attribute.

Value lteration

Value iteration is a method of computing an optimal MDP policy and its value.

Value iteration starts at the "end" and then works backward, refining an estimate of
either Q" or V". There is really no end, so it uses an arbitrary end point. Let Vi be the value
function assuming there are k stages to go, and let Q« be the Q-function assuming there
are k stages to go. These can be defined recursively. Value iteration starts with an arbitrary
function Vo and uses the following equations to get the functions for k+1 stages to go from the
functions for k stages to go:

Qw+1(s,8) =Y P(ss,a) (R(s,a,8)+ yVk(s)) fork>0
V(s) = maxa Qk(s,a) for k>0.

It can either save the V[S] array or the Q[S,A] array. Saving the V array results in less storage,
but it is more difficult to determine an optimal action, and one more iteration is needed to
determine which action results in the greatest value.

1: Procedure Value_lteration(S,A,P,R,0)
2: Inputs
3: S is the set of all states

4 A is the set of all actions

5 P is state transition function specifying P(s'|s,a)
6: R is a reward function R(s,a,S")

7 0 a threshold, 6>0

8 Output

9: n[S] approximately optimal policy

10: V[S] value function

11 Local

12: real array V[S] is a sequence of value functions
13: action array m[S]

14: assign Vo[S] arbitrarily

15: k<0

16: repeat

17: k «k+1

18: for each state s do

19: Vi[s] = maxa Y s P(s's,a) (R(s,a,5)+ YVk-1[ST)
20: until As |Vk[s]-Vk-1[s]| <6

21: for each state s do

22: n[s] = argmaxa Y s P(s's,a) (R(s,a,8")+ yVk[s1)
23: return m, Vi

Figure 9.14: Value iteration for MDPs, storing V

Figure 9.14 shows the value iteration algorithm when the V array is stored. This procedure
converges no matter what is the initial value function Vo. An initial value function that
approximates V* converges quicker than one that does not. The basis for many abstraction
techniques for MDPs is to use some heuristic method to approximate V* and to use this as an
initial seed for value iteration.

Example 9.26: Consider the 9 squares around the +10 reward of Example 9.25. The discount
is y=0.9. Suppose the algorithm starts with Vo[s]=0 for all states s.

The values of V1, V2, and Vs (to one decimal point) for these nine cells is

https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_224.html#gridworld-ex
https://artint.info/html/ArtInt_224.html#gridworld-ex

63 98 6.2
0 63 -01
45 6.2 44
62 97 66
45 61 44

After the first step of value iteration, the nodes get their immediate expected reward. The center
node in this figure is the +10 reward state. The right nodes have a value of -0.1, with the
optimal actions being up, left, and down; each of these has a 0.1 chance of crashing into the
wall for a reward of -1.

The middle grid shows V>, the values after the second step of value iteration. Consider the node
that is immediately to the left of the +10 rewarding state. Its optimal value is to go to the right;
it has a 0.7 chance of getting a reward of 10 in the following state, so that is worth 9 (10 times
the discount of 0.9) to it now. The expected reward for the other possible resulting states is 0.
Thus, the value of this state is 0.7%9=6.3.

Consider the node immediately to the right of the +10 rewarding state after the second step of
value iteration. The agent's optimal action in this state is to go left. The value of this state is

Prob Reward Future Value

0.7x(0 + 0.9x10) Agent goes left
+ 01x(O + 0.9%-0.1) Agent goes up
+ 01x(-1 + 0.9%-0.1) Agent goes right
+ 01x(O + 0.9%-0.1) Agent goes down

which evaluates to 6.173.

Notice also how the +10 reward state now has a value less than 10. This is because the agent
gets flung to one of the corners and these corners look bad at this stage.

After the next step of value iteration, shown on the right-hand side of the figure, the effect of
the +10 reward has progressed one more step. In particular, the corners shown get values that
indicate a reward in 3 steps.

An applet is available on the book web site showing the details of value iteration for this
example.

The value iteration algorithm of Figure 9.14 has an array for each stage, but it really only must
store the current and the previous arrays. It can update one array based on values from the
other.

A common refinement of this algorithm is asynchronous value iteration. Rather than
sweeping through the states to create a new value function, asynchronous value iteration
updates the states one at a time, in any order, and store the values in a single array.
Asynchronous value iteration can store either the Q[s,a] array or
the V[s] array. Figure 9.15 shows asynchronous value iteration when the Q array is stored. It

https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_227.html#val-iteration-fig
https://artint.info/html/ArtInt_227.html#async-val-iteration-fig
https://artint.info/html/ArtInt_227.html#async-val-iteration-fig

converges faster and uses less space than value iteration and is the basis of some of the
algorithms for reinforcement learning. Termination can be difficult to determine if the agent
must guarantee a particular error, unless it is careful about how the actions and states are
selected. Often, this procedure is run indefinitely and is always prepared to give its best
estimate of the optimal action in a state when asked.

1: Procedure Asynchronous_Value_lteration(S,A,P,R)
2 Inputs

3: S is the set of all states

4: A is the set of all actions

5: P is state transition function specifying P(s'|s,a)
6 R is a reward function R(s,a,")

7 Output

8: r/s] approximately optimal policy

9: Q[S,A] value function

10: Local

11: real array Q[S,A]

12: action array z/S]

13: assign Q[S,A] arbitrarily

14: repeat

15: select a state s

16: select an action a

17: Q[s,a] =Y P(s'|s,a) (R(s,a,s")+ ymaxa Q[s',a])
18: until termination

19: for each state s do

20: n[s] = argmaxa Q[s,a]

21: return z,Q

Figure 9.15: Asynchronous value iteration for MDPs

Asynchronous value iteration could also be implemented by storing just the V[s] array. In that
case, the algorithm selects a state s and carries out the update:

V[s]=maxa Y s P(s'|s,a) (R(s,a,s")+ yV/s']).
Although this variant stores less information, it is more difficult to extract the policy. It

requires one extra backup to determine which action a results in the maximum value. This can
be done using

z[s]=argmaxa >« P(s'|s,a) (R(s,a,8")+ yV/s']).

Policy Iteration

P

Once a policy, m, has been improved using "™ to yield a better policy, =, we can then
compute '™ and improve it again to yield an even better 7". We can thus obtain a sequence of
monotonically improving policies and value functions:

https://artint.info/html/ArtInt_262.html

E_ trmp ! E yrmwy | E I + E yrx
TI-'_.["_?']V —"?TT|—.¥'I/ — Ty —> ¢+ — T _3."{:

E I

where -~ denotes a policy evaluation and —— denotes a policy improvement. Each policy is
guaranteed to be a strict improvement over the previous one (unless it is already optimal).
Because a finite MDP has only a finite number of policies, this process must converge to an
optimal policy and optimal value function in a finite number of iterations.

This way of finding an optimal policy is called policy iteration. A complete algorithm is given
in Figure 4.3. Note that each policy evaluation, itself an iterative computation, is started with
the value function for the previous policy. This typically results in a great increase in the speed
of convergence of policy evaluation (presumably because the value function changes little from
one policy to the next).

1. Initialization
V(s) € R and 7(s) € A(s) arbitrarily for all s € §

2. Policy Evaluation
Repeat
A0
For each s € §:
v +— V(s)
V(s) = S, PR R +9V(s)|
A — max(A, [v — V(s)])

until A < 6 (a small positive number)

3. Policy Improvement
policy-stable «— true
For each s € &:
b« 7(s)

m(s) < argmax, y_, P2, [Ger T M,(ﬁ’}]

If b # m(s), then policy-stable «— false
If policy-stable, then stop; else go to 2

Figure 4.3: Policy iteration (using iterative policy evaluation) for "%, In the "4rg£Iax" step in
3, it is assumed that ties are broken in a consistent order.

http://incompleteideas.net/book/first/ebook/node43.html#fig%3Apolicy-iteration

Policy iteration often converges in surprisingly few iterations. This is illustrated by the example
in Figure 4.2. The bottom-left diagram shows the value function for the equiprobable random
policy, and the bottom-right diagram shows a greedy policy for this value function. The policy
improvement theorem assures us that these policies are better than the original random policy.
In this case, however, these policies are not just better, but optimal, proceeding to the terminal
states in the minimum number of steps. In this example, policy iteration would find the optimal
policy after just one iteration.

Partially observable Markov decision process

A partially observable Markov decision process (POMDP) is a generalization of a Markov
decision process (MDP). A POMDP models an agent decision process in which it is assumed
that the system dynamics are determined by an MDP, but the agent cannot directly observe the
underlying state. Instead, it must maintain a sensor model (the probability distribution of
different observations given the underlying state) and the underlying MDP. Unlike the policy
function in MDP which maps the underlying states to the actions, POMDP's policy is a
mapping from the observations (or belief states) to the actions.

The POMDP framework is general enough to model a variety of real-world sequential decision
processes. Applications include robot navigation problems, machine maintenance, and planning
under uncertainty in general. The general framework of Markov decision processes
with imperfect information was described by Karl Johan Astrom in 1965 [in the case of a
discrete state space, and it was further studied in the operations research community where the
acronym POMDP was coined. It was later adapted for problems in artificial
intelligence and automated planning by Leslie P. Kaelbling and Michael L. Littman.

An exact solution to a POMDP yields the optimal action for each possible belief over the world
states. The optimal action maximizes (or minimizes) the expected reward (or cost) of the agent
over a possibly infinite horizon. The sequence of optimal actions is known as the optimal
policy of the agent for interacting with its environment.

Formal definition |[edit]
A discrete-time POMDP models the relationship between an agent and its environment. Formally, a POMDP is a 7-tuple (S, A, T, R, 2, 0, v), where

o Sisaset of states

o Als asetof actions

« T'is a set of conditional transition probabilities between states
o R: 8 x A— Risthe reward function

o () is a set of observations

« (s a set of conditional observation probabilities, and

o v € [0,1] is the discount factor

At each time period, the environment is in some state s € S. The agent takes an action a G A, which causes the environment to transition to state s’ with probability T(a' | 8,a). At
the same time, the agent receives an observation o € §2 which depends on the new state of the environment, s’ and on the just taken action, a, with probability 0o s a) (or
sometimes O(o | s') depending on the sensor model). Finally, the agent receives a reward 7 equal to R(8, a). Then the process repeats. The goal is for the agent to choose actions
00
at each time step that maximize its expected future discounted reward: E [Z o r,] where 7y is the reward earned at time £. The discount factor - determines how much
t=0
immediate rewards are favored over more distant rewards. When y = 0 the agent only cares about which action will yield the largest expected immediate reward; when y = 1 the
agent cares about maximizing the expected sum of future rewards

http://incompleteideas.net/book/first/ebook/node41.html#fig%3A4gridconv
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Markov_decision_process
https://en.wikipedia.org/wiki/Imperfect_information
https://en.wikipedia.org/wiki/Karl_Johan_%C3%85str%C3%B6m
https://en.wikipedia.org/wiki/Partially_observable_Markov_decision_process#cite_note-1
https://en.wikipedia.org/wiki/Operations_research
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Artificial_intelligence
https://en.wikipedia.org/wiki/Automated_planning
https://en.wikipedia.org/wiki/Leslie_P._Kaelbling
https://en.wikipedia.org/wiki/Michael_L._Littman

What is Policy Iteration?
Policy Iteration is another dynamic programming algorithm used to compute the optimal
policy. It alternates between two steps:

|—b Value Function Q™ j
Policy Evaluation POI'C_Y Policy Improvement
(Critic) Iteration (Actor)
'y

Model

Policy <

Policy Iteration

« Policy Evaluation: For a given policy 7z, the value function V7t(s)Vz(S) is computed
using the Bellman Expectation Equation:

Va(s)=R(s,7(s))+y> s P(s'ls,n(s)) Va(s")Vz(s)=R(s,7(S)) +7> sP(s'ls,7(S)) V=(s)
« Policy Improvement: Once the value function for the current policy is calculated the

policy is updated to improve it by selecting the action that maximizes the expected return
from each state:

'(s)=arg/oimaxi/oa[R(s,a)+yY s'P(s'ls,a) Vn(s")]z (s)=argmaxa[R(s,a) +y3 s
P(s's,a)Vz(s)]
This process repeats until the policy converges meaning it no longer changes between
iterations.

Comparison Between Value Iteration and Policy Iteration

Feature Value Iteration Policy Iteration
Aporoach Updates the value function Alternates between policy evaluation and
PP iteratively until convergence. policy improvement.

Converaence Converges when the value function Converges when the policy stops

g converges. changing.
Combutational More computationally expensive Requires more iterations but may
%ost per iteration due to full evaluation converge faster in terms of fewer

of all states. iterations.

Policy Output The policy is derived after the The policy is updated during each

Feature Value Iteration Policy Iteration

value function has converged. iteration.
Speed of May require many iterations for Tends to converge faster in practice,
ConF\)/er ence convergence, especially in large especially when the policy improves
g state spaces. significantly at each iteration.
Typically suited for small_er state Can handle larger state spaces more
State Space spaces due to computational

complexity. efficiently.

When to Use Value Iteration and Policy Iteration

Use Value Iteration:

« When you have a small state space and can afford the computational cost of updating the
value function for each state.

« When you want to compute the value function first and derive the policy later.

Use Policy Iteration:

« When you have a larger state space and want to reduce the number of iterations for
convergence.

« When you can afford the computational cost of policy evaluation but want faster policy
improvement.

Value Iteration is simpler and more direct in its approach and Policy Iteration often converges

faster in practice by improving the policy iteratively. The choice between the two methods

depends largely on the problem’s scale and the computational resources available. In many

real-world applications Policy Iteration may be preferred for its faster convergence especially

in problems with large state spaces.

	 RIGHT RIGHT UP UP RIGHT
	Markov Property
	Markov Process or Markov Chain
	Markov Reward Process (MRP)
	Markov Decision Process (MDP)
	Discount (γ)
	Policy (π)
	Value Functions
	State Value Function (for MRP)
	Bellman Expectation Equation (for MRP)
	State Value Function (for MDP)
	Action Value Function (for MDP)
	Bellman Expectation Equation (for MDP)
	Optimal Value Functions
	Bellman Optimality Equation
	Diving Into Utility Theory and MEU
	Utility scales and Utility assessments
	Money Utility
	Multi-attribute utility functions
	Terminology used
	Therefore, preference can be done in two ways :
	Partially observable Markov decision process
	What is Policy Iteration?
	Comparison Between Value Iteration and Policy Iteration
	When to Use Value Iteration and Policy Iteration

