0\(AP‘;E:TH l/
@SR

A Shri Vaishnav Vidyapeeth
"m}gm Vishwavidyalaya, Indore (M.P.)

zzma@?

é
=
I
&
<
-

s} 3‘60,

z
=)
=

_‘Z

Shri Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“alpha-beta testing”

Alpha Testing

Alpha Testing Is a type of acceptance testing;
performed to identify all possible issues and bugs
before releasing the final product to the end users.

Alpha testing Is carried out by the testers who are
Internal employees of the organization.

The main goal Is to identify the tasks that a typical
user might perform and test them.

The focus of alpha testing Is to simulate real users by
using a black box and white box techniques.

J

J

Beta Testing

Beta Testing Is a type of acceptance testing; it is the
final test before shipping a product to the customers.

Beta testing of a product Is implemented by "real
users “of the software application In a '"real
environment.”

Direct feedback from customers Is a major advantage
of Beta Testing. This testing helps to test products In
customer’s environment.

Beta Testing

1 Beta version of the software is released to a limited
number of end-users of the product to obtain
feedback on the product quality.

] Beta testing reduces product failure risks and
provides increased quality of the product through
customer validation.

Alpha Beta Testing

USer Acceptance Tsting

Unit Integration System Alpha
Testing Testing Testing Testing

Difference between Alpha and Beta Testing

S. No. Alpha

Alpha testing involves both the
white box and black box testing.

Alpha testing is performed by testers
who are usually internal employees
of the organization.

Alpha testing is performed at the
developer’s site.

Reliability and security testing are
not checked in alpha testing.

Alpha testing ensures the quality of
the product before forwarding to
beta testing.

Beta

Beta testing commonly uses black-
box testing.

Beta testing is performed by clients
who are not part of the organization.

Beta testing is performed at the end-
user of the product.

Reliability, security and robustness
are checked during beta testing.

Beta testing also concentrates on the
quality of the product but collects
users input on the product and
ensures that the product is ready for
real time users.

Difference between Alpha and Beta Testing

S. No. Functional

Alpha testing requires a testing
environment or a lab.

Alpha testing may require a long
execution cycle.

Developers can immediately
address the critical issues or
fixes in alpha testing.

Multiple test cycles
organized in alpha testing.

are

Non-Functional

Beta testing doesn’t require a
testing environment or lab.

Beta testing requires only a few
weeks of execution.

Most of the issues or feedback
collected from the beta testing
will be implemented in future
versions of the product.

Only one or two test cycles are
there in beta testing.

VABHN
41/
s} 360@.

5*?‘\

0\(APEET, H
Qgﬂﬂﬁiﬁg

A Shri Vaishnav Vidyapeeth
mgzjm Vishwavidyalaya, Indore (M.P.)

lzmﬁ@y

Vwm\r\‘1

Shri1 Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“Blackbox & Whitebox Testing”

Blackbox Testing

d In Black Box Testing we just focus on inputs and
output of the software system without bothering
about internal knowledge of the software program.

BLACK BOX TESTING

Input > Executable Output >
Program

|
|Figure of Blackbox Testing|

d The above Black Box executable program can be any
software system you want to test.

Blackbox Testing

1 By applying black-box techniques, you derive a set
of test cases that satisfy the following criteria:

d (1) test cases that reduce, by a count that Is greater
than one the number of additional test cases that must
be designed to achieve reasonable testing, and

d (2) test cases that tell you something about the
presence or absence of classes of errors, rather than
an error associated only with the specific test at hand.

Blackbox Techniques/ Methods:

d Equivalence partitioning: It is a software test design
technique that involves dividing input values iInto
valid and Invalid partitions and selecting
representative values from each partition as test data.

[Boundary Value Analysis: It is a software test design
technique that involves determination of boundaries
for Input values and selecting values that are at the
boundaries and just inside/ outside of the boundaries
as test data.

d Cause effect graphing: It i1s a software test design
technigue that involves identifying the cases (input
conditions) and effects (output conditions),
producing a Cause-Effect Graph, and generating test
cases accordingly.

Blackbox Testing 1. Equivalence partitioning:

d Equivalence Partitioning also called as equivalence
class partitioning. It can be applied at any level of
testing and Is often a good technigue to use first.

1 The idea behind this technique iIs to divide (i.e. to
partition) a set of test conditions Iinto groups or sets
that can be considered the same (i.e. the system
should handle them equivalently), hence
‘equivalence partitioning’.

[Equivalence partitioning is a testing technigue where
Input values set into classes for testing.

d Valid Input Class = Keeps all valid inputs.
d Invalid Input Class = Keeps all Invalid inputs.

Equivalence classes may be defined according to the
following guidelines:

1. If an input condition specifies a range, one valid
and two invalid equivalence classes are defined.

2. If an Input condition requires a specific value, one
valid and two invalid equivalence classes are defined.

3. If an input condition specifies a member of a set,
one valid and one Invalid equivalence class are
defined.

4. If an input condition Is Boolean, one valid and one
Invalid class are defined.

By applying the guidelines for the derivation of
equivalence classes, test cases for each input domain
data item can be developed and executed.

J
J
J

Blackbox Testing 1. Equivalence partitioning:

Example-1:A text field permits only numeric characters.

Length must be 6-10 characters long

Partition according to the requirement should be like this:

012345

Invalid

678910

Valid

11121314

Invalid

Figure- Example of Equivalence partitioning]

While evaluating Equivalence partitioning, values in all
partitions are equivalent that’s why 0-5 are equivalent, 6 —
10 are equivalent and are equivalent.

Blackbox Testing 1. Equivalence partitioning:

1 At the time of testing, test 4 and 12 as invalid values
and /7 as valid one.

It Is easy to test input ranges 6-10 but harder to test
Input ranges

 Testing will be easy In the case of lesser test cases
but you should be very careful.

L

Assuming, valid input is 7.

L

That means, you belief that the developer coded the
correct valid range (6-10).

Blackbox Testing 2. Boundary Value Analysis:

A It’s widely recognized that input values at the
extreme ends of input domain cause more errors In
system. More application errors occur at the
boundaries of input domain.

1 ‘Boundary value analysis’ testing technique Is used
to identify errors at boundaries rather than finding
those exist in center of input domain.

1 Boundary value analysis is a next part of Equivalence
partitioning for designing test cases where test cases
are selected at the edges of the equivalence classes.

d Boundary value analysis Is the process of testing
between extreme ends or boundaries between
partitions’ of the Input values.

Blackbox Testing 2. Boundary Value Analysis:

d Boundary value analysis Is the process of testing
between extreme ends or boundaries between
partitions' of the input values.

d So these extreme ends like Start- End, Lower- Upper,
Maximum-Minimum, Just Inside-Just Outside values
are called boundary values and the testing Is called
"boundary value analysis testing".

d Example-1:Suppose you have very important tool at
office, accepts valid User Name and Password field
to work on that tool, and accepts minimum 8
characters and maximum 12 characters.

4 Valid range 8-12, Invalid range 7 or less than 7 and
Invalid range 13 or more than 13.

L

U O 0 0 O

Blackbox Testing 2. Boundary Value Analysis:

Invalid : Valid . Invalid
Partition Partition : Partition
Lessthan 8 8-12 éMore than 12

Write Test Cases for Valid partition value, Invalid partition
value and exact boundary value.

Test Cases 1: Consio
Test Cases 2: Consio
Test Cases 3: Consio

Test Cases 4: Consio

er
er
er
er

DASSWOIC
DASSWOIC
DASSWOIC

DASSWOIC

length less than 8.

of lengt
of lengt
of lengt

n exactly 8.
N between 9 & 11.

n exactly 12.

Test Cases 5: Consider password of length more than 12.

Blackbox Testing 3. Cause effect graphing:

A “Cause” stands for a separate input condition that
fetches about an internal change in the system.

d An “Effect” represents an output condition, a system
transformation or a state resulting from a
combination of causes.

d It is a testing technique that aids In choosing test
cases that logically relate Causes (inputs) to Effects
(outputs) to produce test cases.

Blackbox Testing 3. Cause effect graphing:

d According to Myer Cause & Effect Graphing Is done
through the following steps:

d Step — 1: For a module, identify the input conditions
(causes) and actions (effect).

L

Step — 2: Develop a cause-effect graph.

L

Step — 3. Transform cause-effect graph into a
decision table.

1 Step — 4: Convert decision table rules to test cases.
Each column of the decision table represents a test
case.

Blackbox Testing 3. Cause effect graphing:

Cause Ellect - Flow Diagram
Effect

|[Figure of Cause Effect-Flow Diagram|

Blackbox Testing 3. Cause effect graphing:

_Notation Meaning
& aanuy
@ [\O @ NOT
<y

-

3

AND
€2

[Symbols used in Cause Effect-Flow Diagram]

Blackbox Testing 3. Cause effect graphing:

1 Just assume that each node having the value 0 or 1
where 0 shows the ‘absent state’ and 1 shows the
‘present state’.

d The identity function states when c1 = 1,el =1 or
we can say If cO =0and e0 = 0.

d The NOT function states that, If C1 = 1, el= 0 and
ViCe-Vversa.

1 Likewise, OR function states that, iIf C1 or C2 or C3
=1,el=1elseel=0.

d The AND function states that, if both C1 and C2 =1,
el =1 elseel =0.

1 The AND and OR functions are permitted to have
any number of inputs.

Blackbox Testing 3. Cause effect graphing:

(1 Test cases can be designed for the triangle problem
in the following ways

 Firstly: Recognize and describe the input conditions
(causes) and actions (effect).

d The causes allocated by letter “C” are as follows,

Cl: Sid
C2: Sid
C3: Sid
C4: Sid
C5: Sid

C6: Sid

€6, 9% ¢

C X 1S |

€699 ¢

e “y’1s

€¢,_9%%

C Z 1S .

€6, % ¢

less t
less t
less t

e “x” 1s equal

€6, %

e “x” 1s equal

€e .9

to sid
to sid

e “y” 1s equal

to sid

cec_.9%

han sum of “y” and “z

(Y)]

€6,

hen sum of “x”’ and

e 66y99

(YD)

C Z

(YD)

C Z

(YD)

€6 9%

han sum of “x’’ and “‘z

(Y)]

¥

Blackbox Testing 3. Cause effect graphing:

The effects designated by letter “e” are as follows,
el: Not a triangle

e2: Scalene triangle

e3: Isosceles triangle.

e4. Equilateral triangle

D O 0000

e5: Impossible

Blackbox Testing 3. Cause effect graphing:

Secondly: Build up a cause-effect graph
Cause-Eliect diagram ior Triangle

@ e
C——<3el
S @
U
& D
"@
€D D S,
@

Blackbox Testing 3. Cause effect graphing:

Third: Convert cause-effect graph into a decision table

Conditions

Cl: X < ¥Y+Z7
C2: X < ¥Y+Z7?
C3: X <¥Y+ZL?
C3: X=¥7

Ca4: X=¥7

C5: X=¥7

C6: X=¥7

el: Not a Triangle
el: Scalene
e3: IsoScele
ed: Equilateral

e5: Impossible

R1

O

X

R2

R3

R4 RS

R6 R7T RB

L L 1
L L 1
L 1

R9

R10 R1M
1
1
1
O O
O O
O)

Blackbox Testing 3. Cause effect graphing:

Fourth : 11 test cases according to the 11 rules.

Test Expected
> ¥ -
Case Result
- A 1 > Not a triangle
- 1 a > Not a triangle
3 1 =2 3 Not a triangle

s 5 5 S Eqguilateral

9]

impossible

S 2 Es 2 Impossible
P4 =2 = = Isosceles

8 z mpossible
= =2 3 2 Isosceles
10 3 = = Isosceles

L

U O

Blackbox Testing Example:

The “Print message” Is software that read two
characters and, depending of their values, messages
must be printed.

The first character must be an “A” or a “B”’.
The second character must be a digit.

If the first character Is an “A” or “B” and the second
character is a digit, the file must be updated.

If the first character is incorrect (not an “A” or “B”),
the message X must be printed.

If the second character iIs incorrect (not a digit), the
message Y must be printed.

Blackbox Testing Example:

Scenano?

second character 1sa
digit.

3. Enter second
character as a digit

=
ID TC Name Description Steps Expected result
Validate that system 1. Open the application.
- updates the file when 2. Enter first character
TC1 ;(::i::gl:pdate first character isAand | as "A" File is updated.
second character 1s a 3. Enter second
digit. character as a digt
Validate that system 1. Open the application.
- updates the file when 2. Enter first character
TC2 12 FieUpdste first characterisBand | as "B" File is updated.

[Test cases for previous example]

Whitebox Testing :

d White Box Testing (also known as Clear Box
Testing, Open Box Testing, Glass Box Testing,
Transparent Box Testing, Code-Based Testing or
Structural Testing) Is a software testing method In
which the internal structure/ design/ implementation
of the item being tested is known to the tester.

1 White Box Testing is like the work of a mechanic
who examines the engine to see why the car is not
moving.

Whitebox Testing :

Using white-box testing methods, you can derive test
cases that

(1) guarantee that all independent paths within a
module have been exercised at least once.

(2) exercise all logical decisions on their true and
false sides.

(3) execute all loops at their boundaries and within
their operational bounds.

(4) exercise internal data structures to ensure their
validity.

Whitebox Testing :

Test Case Input

” Application Code)

Test Case Output

WHITE BOX TESTING APPROACH

[Figure of Whitebox Testing Approach]

Whitebox Testing :

Why and When White-Box Testing:

J

J

White box testing Is mainly used for detecting logical
errors In the program code.

It is used for debugging a code, finding random
typographical errors, and uncovering Incorrect
programming assumptions.

White box testing Is done at low level design and
Implementable code.

It can be applied at all levels of system development
especially Unit, system and integration testing.

White box testing can be used for other development
artifacts like requirements analysis, designing and
test cases.

D O

Whitebox Testing Technigues:

Following are Whitebox testing techniques:

Statement coverage: This technigue Is aimed at
exercising all programming statements with minimal
tests.

Branch and decision coverage: This technique IS
running a series of tests to ensure that all branches
are tested at least once.

Tools: An example of a tool that handles branch
coverage testing for C, C++ and Java applications
Is TCAT-PATH

Path coverage: This technique corresponds to testing
all possible paths which means that each statement
and branch Is covered.

Whitebox Testing 1. Statement coverage:

] Statement coverage Is a white box testing technique,
which involves the execution of all the statements at
least once in the source code.

d Through statement coverage we can identify the
statements executed and where the code Is not executed
because of blockage.

d The statement coverage covers only the true conditions.
The main drawback of this technique is that we cannot
test the false condition in It.

L

The statement coverage is count as per below formula:

L

(Statement coverage = No of statements Executed/ -
Total no of statements in the source code * 100)

Whitebox Testing Example:

Read A Read B

It A>B

Print “A is greater than B”
else

Print "'B Is greater than A"
endif

Setl:If A=5,B=2

1 No of statements Executed: 5

. Total no of statements In the source code: 7
Statement coverage =5/7*100 = 71.00%

Setl :If A =2, B =5 [False-Not supported by

Statement coverage]

1 No of statements Executed: 6

d Total no of statements in the source code: 7

Statement coverage =6/7*100 = 85.20%

D000 00

L

L

Whitebox Testing 2. Branch coverage:

Branch coverage is also known as Decision coverage
or all-edges coverage.

It covers both the true and false conditions unlikely the
statement coverage.

A branch 1s the outcome of a decision, so branch
coverage simply measures which decision outcomes
have been tested.

This sounds great because it takes a more in-depth view
of the source code than simple statement coverage

The formula to calculate decision coverage Is:

Decision Coverage=(Number of decision outcomes
executed/Total number of decision outcomes)*100%o

J
J
J

J

Whitebox Testing Example:
READ X READ Y
IF (X >Y)PRINT “X is greater that Y” ENDIF

To get 100% statement coverage only one test case IS
sufficient for this pseudo-code.

TEST CASE 1: X=10 Y=5HoweVer this test case won’t
give you 100% decision coverage as the FALSE
condition of the IF statement IS not exercised.

In order to achieve 100% decision coverage we need to
exercise the FALSE condition of the IF statement
which will be covered when X i1s less than Y.

Whitebox Testing Example:

d So the final TEST SET for 100% decision coverage

D O

L

will be:
TEST CASE 1: X=10, Y=5
TEST CASE 2: X=2, Y=10

Note: 100% decision coverage guarantees 100%
statement coverage but 100% statement coverage does
not guarantee 100% decision coverage.

Whitebox Testing 3. Path coverage:

L The basis path method enables the test-case designer to
derive a logical complexity measure of a procedural
design and use this measure as a guide for defining a
basis set of execution paths.

(1 Test cases derived to exercise the basis set are guar-
anteed to execute every statement in the program at
least one time during testing.

Whitebox Testing 3. Path coverage:

if (A)

F1();

F2();
it (A)

F3();

F4();

&

Fl

F3

Paths:
A-F1-F2-A-F3-F4
A-F2-A-F3-F4
A-F1-F2-A-F4
A-F2-A-F4

Problem: only two

are feasible
A=T
A=F

F4 |-

[Figure of Path coverage Example]

Difference between Blackbox &Whitebox Testing

" Black Box Testing L White Box Testing
Black box testing is the Software White box testing is the software testing
1 | testing methodwhich is used to test method in which internal structure is being
the software without knowing the known to tester who is going to test the
internal structure of code or program. | software.
2 | This type of testing is carried outby Generally, this type of testing is carried out
testers. by software developers.
3 tome lt.amentatlon Bnowindge e not Implementation Knowledge is required to
required to carry out Black Box
: carry out White Box Testing.
Testing.
4 Prog?‘ = ng Knowiagge s not Programming Knowledge is required to
required to carry out Black Box ; :
carry out White Box Testing.
Testing.
5 Testing is applicable on higher levels Testingisapplicalis onlower level of
af teairip s Systex TesUng, testing like Unit Testing, Integration testin
Acceptance testing. g & g 8
6 | Blackbox testing means White box testing means structural test or
functional test or external testing. interior testing.
In White Box testing is primarily
In Bl B ting is pri
7 i s concentrate on the testing of program code

concentrate on the functionality of the
system under test.

of the system under test like code structure,
branches, conditions, loops etc.

Difference between Blackbox &Whitebox Testing

| Black Box Testing White Box Testing
8 Fhus Hhte i _Ofth}s te.estmg a C}TeCk The main aim of White Box testing to check
on what functionality is performing i B Sestani b oitorts
by the system under test. y P &
9 Black Bo.x VERURI i) ,be st'arted based White Box testing can be started based on
on Requirement Specifications . .
Detail Design documents.
documents.
The Functional testing, Behavior The Structural testing, Logic testing, Path
10 testing, Close box testing is carried testing, Loop testing, Code coverage testing,
outunder Black Box testing, so there | Open box testing is carried out under White
is no required of the programming Box testing, so there is compulsory to know
knowledge. about programming knowledge.

Cyclomatic Complexity

Cyclomatic Complexity Measures

Complexity is a software metric that given the quantitative measure of logical complexity of the
program.

The Cyclomatic complexity defines the number of independent paths in the basis set
of the program that provides the upper bound for the number of tests that must be conducted to
ensure that all the statements have been executed atleast once.

There are three methods of computing Cyclomatic complexities.

Method 1: Total number of regions in the flow graph is a Cyclomatic complexity.
Method 2: The Cyclomatic complexity, V (G) for a flow graph G can be defined as
V(G =E-N+2

Where: E is total number of edges in the flow graph.
N is the total number of nodes in the flow graph.
Method 3: The Cyclomatic complexity V (G) for a flow graph G can be defined as
V(G)=P+1

Where: P is the total number of predicate nodes contained in the flow G.

Let us understand computation of Cyclomatic complexity with the help of an

example. Consider following code fragment with line numbered

) 7N

o

(el

~

Step 2. Compute region, Predicate (i.e decision nodes) edges and total nodes in the flow graph
| / \
; / \R3

else
5. F3(); QA

} e There are 3 regions denoted by R1, R2 and
R3.

To compute Cyclomatic complexity we will follow these steps —

}
6

Step 1. Design flow graph for given code fragment.

e Nodes 1 and 3 are predicate nodes because which branch to be followed is

decided at these points.
e Totaledges=7
Total nodes =6
Step 3. Apply formulas in order to compute Cyclomatic complexity.

1) Cyclomatic complexity V(G) = Total number of region = 3
2) Cyclomatic complexity V(G) =E- N+ 2

Cyclomatic complexity V (G) =7-6+2=3

3) Cyclomatic complexity V(G) =P +1
V(@) =2+1=3
Where P is predicate nodes (node 1 and node 2) are predicate nodes because from

these nodes only the decision of which path is to be followed is taken.

Thus Cyclomatic complexity is 3 for given code.

0\(AP‘;E:TH l/
@SR

A Shri Vaishnav Vidyapeeth
"m}gm Vishwavidyalaya, Indore (M.P.)

zzma@?

é
=
I
&
<
-

s} 3‘60,

z
=)
=

_‘Z

Shri Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“Debugging”

Debugging

 To launch an application into the market, it is very
necessary to cross-check it multiple times to deliver
an error-free product.

 In the context of software engineering, debugging is
the process of fixing a bug in the software. In other
words, 1t refers to identifying, analyzing, and
removing errors.

1 Software programs undergo heavy testing, updating,
troubleshooting, and maintenance during the
development process.

Debugging

1 Debugging i1s a developer activity and effective
debugging is very important before testing begins to
Increase the quality of the system.

1 Debugging Is a developer activity and effective
debugging is very important before testing begins to
Increase the quality of the system.

d Debugging will not give confidence that the system
meets Its requirements completely, but testing gives
confidence.

Why do we need Debugqging

[The process of debugging begins as soon as the code
of the software iIs written. Then, It continues In
successive stages as code Is combined with other
units of programming to form a software product.
Debugging has many benefits such as:

v It reports an error condition immediately. This
allows earlier detection of an error and makes the
process of software development stress-free and
unproblematic.

v It also provides maximum useful information of
data structures and allows easy interpretation.

Why do we need Debugqging

v Debugging assists the developer in reducing useless
and distracting information.

v Through debugging the developer can avoid complex
one-use testing code to save time and energy In
software development.

Steps involved in Debugging

Find the Error Location

|dentify the Error Analyze the Error

Fix & Validate ‘ ’ Prove the Analysis

Cover Lateral Damage

1)

2)

Steps Involved in Debugging

Identify the Error: A bad identification of an error

can lead, to wasted developing time. It is usual that
production errors reported by users are hard to
Interpret and sometimes the information we receive
Is misleading. It is import to identify the actual error.

Find the Error Location: After identifying the error
correctly, you need to go through the code to find the
exact spot where the error Is located. In this stage,
you need to focus on finding the error Instead of

understanding it.

3)

4)

Steps Involved in Debugging

Analyze the Error: In the third step, you need to use a
bottom-up approach from the error location and
analyze the code. This helps you in understanding the
error.

Prove the Analysis: Once you are done analyzing the
original bug, you need to find a few more errors that
may appear on the application. This step Is about
writing automated tests for these areas with the help
of a test framework.

°)

6)

Steps Involved in Debugging

Cover Lateral Damage: In this stage, you need to
create or gather all the unit tests for the code where
you are going to make changes. Now, If you run
these unit tests, they all should pass.

Fix & Validate: The final stage is the fix all the
errors and run all the test scripts to check If they all
pass.

N

Debuqgqing Tools

Debugging tool is a computer program that is used to
test and debug other programs. A lot of public
domain software like gdb and dbx are available for
debugging. They offer console-based command-line
Interfaces. Examples of automated debugging tools
Include code-based tracers, profilers, interpreters,
etc. Some of the widely used debuggers are:

Radare?
WinDbg
Valgrind

VABHN
41/
s} 360@.

5*?‘\

0\(APEETH |
@aﬂﬁa @_

A Shri Vaishnav Vidyapeeth
mgzjm Vishwavidyalaya, Indore (M.P.)

lzmﬁ@?

Vwm\r\‘1

Shri1 Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“Introduction to Software Testing”

Software Testing

Q Software Testing Is a process of evaluating the
functionality of a software application to find any
software bugs.

It checks whether the developed software met the
specified requirements and identifies any defect In
the software in order to produce a quality product.

It is basically executing a system in order to identify
any gaps, errors, or missing requirements in contrary
to the actual requirements.

Software Testing

4 It is also stated as the process of verifying and
validating a software product. It checks whether the
software product:

v" Meets the business and technical requirements that
guided its design and development

AN

Works as per the requirement
v Can be implemented with the same characteristics

Software Testing

[Testing Includes an examination of code and the
execution of code In various environments,
conditions as well as all the examining aspects of the
code.

4 In the current scenario of software development, a
testing team may be separate from the development
team so that Information derived from testing can be
used to correct the process of software development.

Software Testing

[The success of software depends upon acceptance of
Its targeted audience, easy graphical user interface,
strong functionality load test, etc.

1 For example, the audience of banking Is totally
different from the audience of a video game.

d Therefore, when an organization develops a software
product, It can assess whether the software product
will be beneficial to Its purchasers and other
audience.

o

AN

Software Testing

Testing objective:

To find any defects or bugs that may have been
created when the software was being developed

To increase confidence in the quality of the software
To prevent defects in the final product

To ensure the product meets customer requirements
as well as the company specifications

To provide customers with a quality product and
Increase their confidence in the company

Software Testing Principles

1) Software testing can help in detecting bugs: Testing
any software or project can help in revealing a few or
some defects that may or may not be detected by
developers. However, testing of software alone
cannot confirm that your developed project or
software Is error free. Hence, It’s essential to devise
test cases and find out as many defects as possible.

2)

3)

Software TestingPrinciples

Error free or Bug-free software is a myth: Just

because when a tester tested an application and didn’t
detect any defects in that project, doesn’t indicate or
Imply that your software Is ready for shipping

Testing must be performed in different ways and
cannot be tested In a similar way for all modules. All
testers have their own individuality, likewise the
system under test.

4)

9)

Software Testing Principles

Normally a defect Is clustered around a set of
modules or functionalities. Once they are identified,
testing can be focused on the defective areas, and yet
continue to find defects iIn other modules
simultaneously.

Testing will not be as effective and efficient If the
same kinds of tests are performed over a long
duration.

Benefits of Software Testing

d Cost-Effective: It i1s one of the important advantages
of software testing. Testing any IT project on time
helps you to save your money for the long term. In
case If the bugs caught in the earlier stage of software
testing, It costs less to fix.

d Security: It I1s the most vulnerable and sensitive
benefit of software testing. People are looking for
trusted products. It helps In removing risks and
problems earlier.

Benefits of Software Testing

4 Produect Quality: It is an essential requirement of any
software product. Testing ensures a quality product is
delivered to customers.

d Customer Satisfaction: The main aim of any product
IS to give satisfaction to their customers. Ul/UX
Testing ensures the best user experience.

o

o

Software Testing Issues

Testing the Complete Application

It IS not possible to test each combination in both
Manual as well as Automation Testing. If you try all
these combinations, you will never ship the product

Misunderstanding of Company Processes

There are some myths In testers that they should only
go with the company processes even If these
processes are not applicable for their current testing
scenario. This results in incomplete and inappropriate
Application Testing

Software Testing Issues

O Inadequate schedule of testing:

v' Testing is a time-consuming affair. It must be so
since it i1s done to bring out the defects or
Inadequacies of the system under different conditions
and not to show that it works. Testing needs to go
hand in hand with development.

Software Testing Issues

d Insufficient testing environment and tools:

v' Tools and environments are backbones of proper
software testing. However, testing is often carried out
In Inadequate testing environment. Moreover, some
of the environmental components themselves suffer
from defects.

v' Team managers must ensure that actual or close
enough hardware and software requirements are met
In a testing environment.

Software Testing Issues

d Wrong testing mindset

v’ Often the mindset of the software testing team
revolves around finding out functionality of the
system rather than finding defects in it. This itself
prohibits the team from finding out flaws in the
software.

v It is the duty of team lead to instruct the idea that
testing Is done to find fault with the system or
software under different conditions and not to prove
that it works

Types of Software Testing

 Testing Is an integral part of any successful software
project. The type of testing depends on various
factors, including project requirements, budget,
timeline, expertise, and suitability. Software testing
IS a huge domain, but it can be broadly categorized
Into two areas such as

L

Types of Software Testing

Manual Testing

Manual Testing Is a type of Software Testing where
Testers manually execute test cases without using any
automation tools.

It means the application is tested manually by QA
testers.

Tests need to be performed manually in every
environment, using a different data set and the success
or failure rate of every transaction should be recorded.

This type of testing requires the tester’s knowledge,
experience, analytical/logical skills, creativity, and
Intuition.

Types of Software Testing

1 Some of the tools used for Manual Testing are:Stryka
Bugzilla

Jira

Mantis

Trac

Redmine

~0gbuz

ST OORSCIREE- (O JgIoN

_ighthouse

o

Types of Software Testing

Automated Testing

Automation testing is an Automatic technigue where
the tester writes scripts by own and uses suitable
software to test the software.

t 1s basically an automation process of a manual
DroCess.

_1ke regression testing, Automation testing also used
to test the application from load, performance and
stress point of view

Types of Software Testing

1 Some of the tools used for Automated Testing are :
1. Selenium

2. TestingWhiz

3. Ranorex

4. Sahi

5. Waltir

6. WaitiN

/. Tosca TestSuite

0\(AP‘;E:TH l/
@SR

A Shri Vaishnav Vidyapeeth
"m}gm Vishwavidyalaya, Indore (M.P.)

zzma@?

é
=
I
&
<
-

s} 3‘60,

z
=)
=

_‘Z

Shri Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“System Testing”

System Testing

System Testing Is a level of testing that validates the
complete and fully integrated software product.

The purpose of a system test Is to evaluate the end-
to-end system specifications.

The goal of iIntegration testing Is to detect any
Irregularity between the units that are integrated
together.

System testing detects defects within both the
Integrated units and the whole system.

System Testing

The result of system testing iIs the observed behavior
of a component or a system when it is tested.

System testing tests the design and behavior of the
system and the expectations of the customer.

It is performed to test the system beyond the bounds
mentioned In the software requirements specification
(SRS).

System Testing Is basically performed by a testing
team that Is independent of the development team
that helps to test the quality of the system impartial.

System Testing

Acceptance Testing

System Testing

Integration Testing

Unit Testing

System Testing Process

Test Environment Setup: Create testing environment
for the better-quality testing.

Create Test Case: Generate test case for the testing
process.

Create Test Data: Generate the data that Is to be
tested.

Execute Test Case: After the generation of the test
case and the test data, test cases are executed.

System Testing

d Defect Reporting: Defects in the system are detected.

 Regression Testing: It is carried out to test the side
effects of the testing process.

Q Log Defects: Defects are fixed in this step.

d Retest: If the test Is not successful then again test is
nerformed.

System Testing

Setup Test Generate Generate Execute Test
Environment Test Cases Testing Data Cases

Regression Defect

Retest Log Defects , :
Testing Reporting

Types of System Testing

d Performance Testing: Performance Testing Is a type
of software testing that iIs carried out to test the
speed, scalability, stability and reliability of the
software product or application.

d Load Testing: Load Testing Is a type of software
Testing which Is carried out to determine the
behavior of a system or software product under
extreme load.

System Testing

 Stress Testing: Stress Testing Is a type of software
testing performed to check the robustness of the
system under the varying loads.

d Secalability Testing: Scalability Testing Is a type of
software testing which Is carried out to check the
performance of a software application or system In
terms of its capability to scale up or scale down the
number of user request load.

55 A ; Shri Vaishnav Vidyapeeth
. < Vishwavidyalaya, Indore (M.P.)

Shri1 Vaishnav Institute of Information Technology
Department of Computer Science and Engineering
Lecture

on

“Testing Conventional Applications”

Prepared By
Virendra Dani

L

Testing Conventional Applications

What is it?

Once source code has been generated, software must
be tested to uncover (and correct) as many errors as
possible before delivery to your customer.

Your goal Is to design a series of test cases that have
a high likelihood of finding errors—but how?

That’s where software testing techniqgues enter the
picture.

Testing Conventional Applications

[These techniques provide systematic guidance for
designing tests that

v (1) exercise the internal logic and interfaces of every
software component and

v' (2) exercise the input and output domains of the
program to uncover errors In program function,
behavior, and performance

Testing Conventional Applications

d Who does it?

J

J

During early stages of testing, a software engineer
performs all tests.

However, as the testing process progresses, testing
specialists may become involved

L

Testing Conventional Applications

What are the steps?

For conventional applications, software Is tested
from two different perspectives:

(1) internal program logic is exercised using “white box”
test-case design technigues and

(2) software requirements are exercised using “black
box” test-case design techniques.

Use cases assist in the design of tests to uncover errors at
the software validation level.

In every case, the intent is to find the maximum number
of errors with the minimum amount of effort and time.

Testing Conventional Applications

d What is the work product?

v A set of test cases designed to exercise both internal
logic, interfaces, component collaborations, and
external requirements Is designed and documented,

expected results are defined, and actual results are
recorded.

L

Testing Conventional Applications

How do you ensure that you’ve done it right?
When you begin testing, change your point of view.

Try hard to “break’ the software! Design test cases in
a disciplined fashion and review the test cases you do
create for thoroughness.

In addition, you can evaluate test coverage and track
error detection activities.

55 A ; Shri Vaishnav Vidyapeeth
. < Vishwavidyalaya, Indore (M.P.)

Shri1 Vaishnav Institute of Information Technology
Department of Computer Science and Engineering
Lecture

on

“Testing Object Oriented Applications”

Prepared By
Virendra Dani

Testing Object Oriented Applications

d What s it?

v' The architecture of object-oriented (OO) software
results in a series of layered subsystems that
collaborating classes.

v’ Each of these system elements (subsystems and
classes) performs functions that help to achieve
system requirements.

v It is necessary to test an OO system at a variety of
different levels in an effort to uncover errors that may
occur as classes collaborate with one another and
subsystems communicate across architectural layers

Testing Object Oriented Applications

J Who does Iit?

v Object-oriented testing is performed by software
engineers and testing specialists.

d Why is it important?

v" You must execute the program before it gets to the
customer with the specific intent of removing all
errors, so that the customer will not experience the
frustration associated with a poor-quality product.

v" In order to find the highest possible number of errors,
tests must be conducted systematically, and test cases
must be designed using disciplined techniques.

Testing Object Oriented Applications

d What are the steps?

v' 0O testing is strategically analogous to the testing of
conventional systems, but it is intentionally different.

v" Because the OO analysis and design models are similar in
structure and content to the resultant OO program,
“testing” Is Initiated with the review of these models.

v Once code has been generated, OO testing begins “in the
small” with class testing.

v A series of tests are designed that exercise class
operations and examine whether errors exist as one class
collaborates with other classes

J
4

v

L

Testing Object Oriented Applications

What is the work product?
A set of test cases, designed to exercise classes, them

collaborations, and behaviors 1Is designed and
documented; expected results are defined, and actual
results are recorded.

How do you ensure that you’ve done it right?
When you begin testing, change your point of view.

Try hard to “break” the software! Design test cases In
a disciplined fashion, and review the tests cases you
do create for thoroughness

0\(AP‘;E:TH l/
@SR

A Shri Vaishnav Vidyapeeth
"m}gm Vishwavidyalaya, Indore (M.P.)

zzma@?

é
=
I
&
<
-

s} 3‘60,

z
=)
=

_‘Z

Shri Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“Types of Testing”

Classification of Manual Testing

A In software testing, manual testing can be further
classified into three different types of testing, which

are as follows

White
Box
Testing

Black
box
Testing

Grey
box

Testing

White Box Testing

d White Box Testing Is a testing technigue in which
software’s Internal structure, design, and coding are
tested to verify input-output flow and Improve
design, usability, and security.

A In white box testing, code Is visible to testers, so it Is
also called Clear box testing, Open box testing,
Transparent box testing, Code-based testing, and
Glass box testing

D O

White Box Testing

Working process of white box testing:

Input: Requirements, Functional specifications,
design documents, source code.

Processing: Performing risk analysis for guiding
through the entire process.

Proper test planning: Designing test cases so as to
cover entire code. Execute rinse-repeat until error-
free software Is reached. Also, the results are
communicated.

Output: Preparing final report of the entire testing
process

White Box Testing

White Box Testing

Application Code

> ;_L,_
S -
|_|—

Black Box Testing

d Black box testing is a type of software testing In
which the functionality of the software is not known.

The testing is done without the internal knowledge of
the products.

d Black Box Testing mainly focuses on input and
output of software applications, and it iIs entirely
based on software requirements and specifications. It
Is also known as Behavioral Testing.

Testing of Testing

Testing of Testing

d The above Black-Box can be any software system

J

you want to test.

For Example, an operating system like Windows, a
website like Google, a database like Oracle or even
your own custom application.

Under Black Box Testing, you can test these
applications by just focusing on the Inputs and
outputs without knowing their internal code
Implementation.

J

J

How to do Black Box Testing

Initially, the requirements and specifications of the
system are examined.

Tester chooses valid inputs (positive test scenario) to
check whether SUT processes them correctly. Also,
some invalid Inputs (negative test scenario) are
chosen to verify that the SUT can detect them.

Tester determines expected outputs for all those
Inputs.

i

How to do Black Box Testing

Software tester constructs test cases with the selected
Inputs.

The test cases are executed.

Software tester compares the actual outputs with the
expected outputs.

Defects if any are fixed and re-tested.

Types of Black Box Testing

Q Functional testing — This black box testing type Is
related to the functional requirements of a system; it
IS done by software testers.

A Non-functional testing — This type of black box
testing I1s not related to testing of specific
functionality, but non-functional requirements such
as performance, scalability, usability.

d Regression testing — Regression Testing Is done after
code fixes, upgrades or any other system
maintenance to check the new code has not affected
the existing code.

Tools for Black Box Testing

Tools used for Black box testing largely depends on
the type of black box testing you are doing.

For Functional/ Regression Tests you can use — QTP,
Selentum

For Non-Functional Tests, you can use -
LLoadRunner, Jmeter

Functional Testing

d Functional testing is a type of testing which verifies
that each function of the software application
operates In conformance with the requirement
specification.

[This testing mainly involves black box testing, and it
IS not concerned about the source code of the
application.

Functional Testing

d Every functionality of the system is tested by
providing appropriate input, verifying the output and
comparing the actual results with the expected
results.

A This testing Involves checking of User Interface,
APIls, Database, security, client/ server applications
and functionality of the Application Under Test.

d The testing can be done either manually or using
automation

Non-Functional Testing

[Non-functional testing Is a type of testing to check
non-functional aspects (performance, usability,
reliability, etc.) of a software application.

It 1s explicitly designed to test the readiness of a
system as per nonfunctional parameters which are
never addressed by functional testing.

It verifies whether the behavior of the system Is as
per the requirement or not.

Difference between Functional and Non-

Parameters

fuctional Testing

Functional

Non-Functional

Execution

Focus area

Requirement

Usage

Objective

It is performed before
non-functional testing.

It i1s based on customer’s
requirements.

It I1s easy to define
functional requirements.

Helps to validate the
behavior of the
application.

Carried out to validate
software actions.

It is performed after the
functional testing.

It focusses on customer’s
expectation.

It is difficult to define the
requirements for non-functional
testing.

Helps to validate the
performance of the application.

It is done to validate the
performance of the software.

Difference between Functional and Non-
fuctional Testing

Parameters Functional Non-Functional

Functional testing is easy
Manual testing to execute by manual
testing.

It’s very hard to perform non-
functional testing manually.

It describes what the

Functionality It describes how the product works.

product does.

Example Test Check login The dashboard should load in 2

Case functionality. seconds.
Examples of Examples of Non-functional
Functional Testing Testing Types
Types Performance Testing

: Unit testing Volume Testing

Testing Types Smoke testing Scalability
User Acceptance Usability Testing
Integration Testing Load Testing

System Testing Portability Testing

VABHN
i
st I/

5*?‘\

0\(APEET, H
Qgﬂﬂﬁiﬁg

A Shri Vaishnav Vidyapeeth
mgzjm Vishwavidyalaya, Indore (M.P.)

e %
lzmﬁ@y

Vwm\r\‘1

Shri1 Vaishnav Institute of Information Technology
Department of Computer Science and Engineering

Lecture

on

“Validation Testing and Verification Testing

J

Validation Testing

The process of evaluating software during the
development process or at the end of the
development process to determine whether it satisfies
specified business requirements.

 Validation Testing ensures that the product meets the

J

client's needs.

It can also be defined as to demonstrate that the
product fulfills its intended use when deployed on
appropriate environment.

Validation Testing

Validation testing iIs also known as dynamic testing,
where we are ensuring that "we have developed the
product right."

And It also checks that the software meets the
business needs of the client.

It Is the process of checking the validation of product
l.e., It checks what we are developing is the right
product.

Validation testing can be best demonstrated using V-
Model. The Software/product under test Is evaluated
during this type of testing.

Validation Testing

Requirement User Acceptance
Specifications Testing

High Level System
Design Testing o
/ N
>
RS
Detail Integration &

Design Testing

/

Program Unit
Specification Testing

SRR O\ W

Validation Testing

Activities involved in validation:
Black box testing

White box testing

Unit testing

Integration testing

Verification Testing

A Verification iIs the process of evaluating work-
products of a development phase to determine
whether they meet the specified requirements.

d Verification ensures that the product 1Is built
according to the requirements and design
specifications.

It also answers to the question, Are we building the
product, right?

Validation Testing

1 Verification testing includes different activities such
as business requirements, system requirements,
design review, and code walkthrough while
developing a product.

4 It 1s also known as static testing, where we are

ensuring that "we are developing the right product
or not".

Verification Testing

CRS
{Customer
Requirements
Specification)

SRS
{Software
Requirements
Specification)

igh Level Design)
LLD

(Low Level design)

Difference between Verification and
Validation Testing

4 Verification and Validation is the process of
Investigating that a software system satisfies
specifications and standards, and it fulfills the
required purpose. Barry Boehm described
verification and validation as the following:

d Verification: Are we building the product, right?

A Validation: Are we building the right product?

Validation Testing

S. No. Verification

Validation

1 It consists of checking of
documents/files and is
performed by human.

2 It comes before validation.

3 Quality assurance team does
verification

4 The goal of verification is

application and software
architecture and specification

5 It can find the bugs in the early
stage of the development

It consists of execution of
program and is performed by
computer.

It comes after verification

Validation is executed on
software code with the help of
testing team.

The goal of validation is an actual
product.

It can only find the bugs that
could not be found by the
verification process

S.

NoO.

6

8

9

Validation Testing

Verification Validation

Verification is the static testing. Validation is the dynamic testing.

It does not include the execution Validation is the dynamic testing.
of the code

QA team does verification and ~ With the involvement of testing
make sure that the software isas team validation is executed on
per the requirement in the SRS software code.

document.

Methods used in verification are Methods used in validation are

reviews, walkthroughs, Black Box Testing, White Box

Inspections and desk-checking. Testing and non-functional
testing.

