
Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“alpha-beta testing”

.

Shri Vaishnav Vidyapeeth 

Vishwavidyalaya, Indore (M.P.)



Alpha Testing

 Alpha Testing is a type of acceptance testing;

performed to identify all possible issues and bugs

before releasing the final product to the end users.

 Alpha testing is carried out by the testers who are

internal employees of the organization.

 The main goal is to identify the tasks that a typical

user might perform and test them.

 The focus of alpha testing is to simulate real users by

using a black box and white box techniques.



Beta Testing

 Beta Testing is a type of acceptance testing; it is the

final test before shipping a product to the customers.

 Beta testing of a product is implemented by "real

users “of the software application in a "real

environment.”

 Direct feedback from customers is a major advantage

of Beta Testing. This testing helps to test products in

customer’s environment.



Beta Testing

 Beta version of the software is released to a limited

number of end-users of the product to obtain

feedback on the product quality.

 Beta testing reduces product failure risks and

provides increased quality of the product through

customer validation.



Alpha Beta Testing



Difference between Alpha and Beta Testing

S. No. Alpha Beta

1
Alpha testing involves both the

white box and black box testing.

Beta testing commonly uses black-

box testing.

2
Alpha testing is performed by testers

who are usually internal employees

of the organization.

Beta testing is performed by clients

who are not part of the organization.

3
Alpha testing is performed at the

developer’s site.

Beta testing is performed at the end-

user of the product.

4
Reliability and security testing are

not checked in alpha testing.

Reliability, security and robustness

are checked during beta testing.

5
Alpha testing ensures the quality of

the product before forwarding to

beta testing.

Beta testing also concentrates on the

quality of the product but collects

users input on the product and

ensures that the product is ready for

real time users.



Difference between Alpha and Beta Testing

S. No. Functional Non-Functional

1
Alpha testing requires a testing

environment or a lab.

Beta testing doesn’t require a

testing environment or lab.

2
Alpha testing may require a long

execution cycle.

Beta testing requires only a few

weeks of execution.

3
Developers can immediately

address the critical issues or

fixes in alpha testing.

Most of the issues or feedback

collected from the beta testing

will be implemented in future

versions of the product.

4
Multiple test cycles are

organized in alpha testing.

Only one or two test cycles are

there in beta testing.



Thank -You



Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Blackbox & Whitebox Testing”

.

Shri Vaishnav Vidyapeeth 

Vishwavidyalaya, Indore (M.P.)



Blackbox Testing

 In Black Box Testing we just focus on inputs and

output of the software system without bothering

about internal knowledge of the software program.

 The above Black Box executable program can be any

software system you want to test.



Blackbox Testing

 By applying black-box techniques, you derive a set

of test cases that satisfy the following criteria:

 (1) test cases that reduce, by a count that is greater

than one the number of additional test cases that must

be designed to achieve reasonable testing, and

 (2) test cases that tell you something about the

presence or absence of classes of errors, rather than

an error associated only with the specific test at hand.



Blackbox Techniques/ Methods:

 Equivalence partitioning: It is a software test design

technique that involves dividing input values into

valid and invalid partitions and selecting

representative values from each partition as test data.

 Boundary Value Analysis: It is a software test design

technique that involves determination of boundaries

for input values and selecting values that are at the

boundaries and just inside/ outside of the boundaries

as test data.

 Cause effect graphing: It is a software test design

technique that involves identifying the cases (input

conditions) and effects (output conditions),

producing a Cause-Effect Graph, and generating test

cases accordingly.



Blackbox Testing 1. Equivalence partitioning:

 Equivalence Partitioning also called as equivalence

class partitioning. It can be applied at any level of

testing and is often a good technique to use first.

 The idea behind this technique is to divide (i.e. to

partition) a set of test conditions into groups or sets

that can be considered the same (i.e. the system

should handle them equivalently), hence

‘equivalence partitioning’.

 Equivalence partitioning is a testing technique where

input values set into classes for testing.

 Valid Input Class = Keeps all valid inputs.

 Invalid Input Class = Keeps all Invalid inputs.



 Equivalence classes may be defined according to the

following guidelines:

 1. If an input condition specifies a range, one valid

and two invalid equivalence classes are defined.

 2. If an input condition requires a specific value, one

valid and two invalid equivalence classes are defined.

 3. If an input condition specifies a member of a set,

one valid and one invalid equivalence class are

defined.

 4. If an input condition is Boolean, one valid and one

invalid class are defined.

 By applying the guidelines for the derivation of

equivalence classes, test cases for each input domain

data item can be developed and executed.



Blackbox Testing 1. Equivalence partitioning:

 Example-1:A text field permits only numeric characters.

 Length must be 6-10 characters long

 Partition according to the requirement should be like this:

 While evaluating Equivalence partitioning, values in all

partitions are equivalent that’s why 0-5 are equivalent, 6 –

10 are equivalent and are equivalent.



Blackbox Testing 1. Equivalence partitioning:

 At the time of testing, test 4 and 12 as invalid values

and 7 as valid one.

 It is easy to test input ranges 6–10 but harder to test

input ranges

 Testing will be easy in the case of lesser test cases

but you should be very careful.

 Assuming, valid input is 7.

 That means, you belief that the developer coded the

correct valid range (6-10).



Blackbox Testing 2. Boundary Value Analysis:

 It’s widely recognized that input values at the

extreme ends of input domain cause more errors in

system. More application errors occur at the

boundaries of input domain.

 ‘Boundary value analysis’ testing technique is used

to identify errors at boundaries rather than finding

those exist in center of input domain.

 Boundary value analysis is a next part of Equivalence

partitioning for designing test cases where test cases

are selected at the edges of the equivalence classes.

 Boundary value analysis is the process of testing

between extreme ends or boundaries between

partitions' of the input values.



Blackbox Testing 2. Boundary Value Analysis:

 Boundary value analysis is the process of testing

between extreme ends or boundaries between

partitions' of the input values.

 So these extreme ends like Start- End, Lower- Upper,

Maximum-Minimum, Just Inside-Just Outside values

are called boundary values and the testing is called

"boundary value analysis testing".

 Example-1:Suppose you have very important tool at

office, accepts valid User Name and Password field

to work on that tool, and accepts minimum 8

characters and maximum 12 characters.

 Valid range 8-12, Invalid range 7 or less than 7 and

Invalid range 13 or more than 13.



Blackbox Testing 2. Boundary Value Analysis:

 Write Test Cases for Valid partition value, Invalid partition

value and exact boundary value.

 Test Cases 1: Consider password length less than 8.

 Test Cases 2: Consider password of length exactly 8.

 Test Cases 3: Consider password of length between 9 & 11.

 Test Cases 4: Consider password of length exactly 12.

 Test Cases 5: Consider password of length more than 12.



Blackbox Testing 3. Cause effect graphing:

 A “Cause” stands for a separate input condition that

fetches about an internal change in the system.

 An “Effect” represents an output condition, a system

transformation or a state resulting from a

combination of causes.

 It is a testing technique that aids in choosing test

cases that logically relate Causes (inputs) to Effects

(outputs) to produce test cases.



Blackbox Testing 3. Cause effect graphing:

 According to Myer Cause & Effect Graphing is done

through the following steps:

 Step – 1: For a module, identify the input conditions

(causes) and actions (effect).

 Step – 2: Develop a cause-effect graph.

 Step – 3: Transform cause-effect graph into a

decision table.

 Step – 4: Convert decision table rules to test cases. 

Each column of the decision table represents a test 

case.



Blackbox Testing 3. Cause effect graphing:



Blackbox Testing 3. Cause effect graphing:



Blackbox Testing 3. Cause effect graphing:

 Just assume that each node having the value 0 or 1

where 0 shows the ‘absent state’ and 1 shows the

‘present state’.

 The identity function states when c1 = 1, e1 = 1 or

we can say if c0 = 0 and e0 = 0.

 The NOT function states that, if C1 = 1, e1= 0 and

vice-versa.

 Likewise, OR function states that, if C1 or C2 or C3

= 1, e1 = 1 else e1 = 0.

 The AND function states that, if both C1 and C2 = 1,

e1 = 1, else e1 = 0.

 The AND and OR functions are permitted to have

any number of inputs.



Blackbox Testing 3. Cause effect graphing:

 Test cases can be designed for the triangle problem

in the following ways

 Firstly: Recognize and describe the input conditions

(causes) and actions (effect).

 The causes allocated by letter “C” are as follows,

C1: Side “x” is less than sum of “y” and “z”

C2: Side “y” is less than sum of “x” and “z”

C3: Side “z” is less then sum of “x” and “y”

C4: Side “x” is equal to side “y”

C5: Side “x” is equal to side “z”

C6: Side “y” is equal to side “z”



Blackbox Testing 3. Cause effect graphing:

 The effects designated by letter “e” are as follows,

 e1: Not a triangle

 e2: Scalene triangle

 e3: Isosceles triangle.

 e4: Equilateral triangle

 e5: Impossible



Blackbox Testing 3. Cause effect graphing:

Secondly: Build up a cause-effect graph



Blackbox Testing 3. Cause effect graphing:
Third: Convert cause-effect graph into a decision table



Blackbox Testing 3. Cause effect graphing:
Fourth : 11 test cases according to the 11 rules.



Blackbox Testing Example:

 The “Print message” is software that read two

characters and, depending of their values, messages

must be printed.

 The first character must be an “A” or a “B”.

 The second character must be a digit.

 If the first character is an “A” or “B” and the second

character is a digit, the file must be updated.

 If the first character is incorrect (not an “A” or “B”),

the message X must be printed.

 If the second character is incorrect (not a digit), the 

message Y must be printed.



Blackbox Testing Example:



Whitebox Testing :

 White Box Testing (also known as Clear Box

Testing, Open Box Testing, Glass Box Testing,

Transparent Box Testing, Code-Based Testing or

Structural Testing) is a software testing method in

which the internal structure/ design/ implementation

of the item being tested is known to the tester.

 White Box Testing is like the work of a mechanic 

who examines the engine to see why the car is not 

moving.



Whitebox Testing :

 Using white-box testing methods, you can derive test

cases that

 (1) guarantee that all independent paths within a

module have been exercised at least once.

 (2) exercise all logical decisions on their true and

false sides.

 (3) execute all loops at their boundaries and within

their operational bounds.

 (4) exercise internal data structures to ensure their

validity.



Whitebox Testing :



Whitebox Testing :

Why and When White-Box Testing:

 White box testing is mainly used for detecting logical

errors in the program code.

 It is used for debugging a code, finding random

typographical errors, and uncovering incorrect

programming assumptions.

 White box testing is done at low level design and

implementable code.

 It can be applied at all levels of system development

especially Unit, system and integration testing.

 White box testing can be used for other development 

artifacts like requirements analysis, designing and 

test cases.



Whitebox Testing Techniques:

 Following are Whitebox testing techniques:

 Statement coverage: This technique is aimed at

exercising all programming statements with minimal

tests.

 Branch and decision coverage: This technique is

running a series of tests to ensure that all branches

are tested at least once.

 Tools: An example of a tool that handles branch

coverage testing for C, C++ and Java applications

is TCAT-PATH

 Path coverage: This technique corresponds to testing

all possible paths which means that each statement

and branch is covered.



Whitebox Testing 1. Statement coverage:

 Statement coverage is a white box testing technique,

which involves the execution of all the statements at

least once in the source code.

 Through statement coverage we can identify the

statements executed and where the code is not executed

because of blockage.

 The statement coverage covers only the true conditions.

The main drawback of this technique is that we cannot

test the false condition in it.

 The statement coverage is count as per below formula:

 (Statement coverage = No of statements Executed/ -

Total no of statements in the source code * 100)



Whitebox Testing Example:
 Read A Read B

 if A>B

 Print “A is greater than B”

 else

 Print "B is greater than A"

 endif

Set1 :If A =5, B =2

 No of statements Executed: 5

 Total no of statements in the source code: 7

Statement coverage =5/7*100 = 71.00%

Set1 :If A =2, B =5 [False-Not supported by

Statement coverage]

 No of statements Executed: 6

 Total no of statements in the source code: 7

Statement coverage =6/7*100 = 85.20%



Whitebox Testing 2. Branch coverage:

 Branch coverage is also known as Decision coverage

or all-edges coverage.

 It covers both the true and false conditions unlikely the

statement coverage.

 A branch is the outcome of a decision, so branch

coverage simply measures which decision outcomes

have been tested.

 This sounds great because it takes a more in-depth view

of the source code than simple statement coverage

 The formula to calculate decision coverage is:

 Decision Coverage=(Number of decision outcomes

executed/Total number of decision outcomes)*100%



Whitebox Testing Example:

 READ X READ Y

 IF (X > Y) PRINT “X is greater that Y” ENDIF

 To get 100% statement coverage only one test case is

sufficient for this pseudo-code.

 TEST CASE 1: X=10 Y=5However this test case won’t

give you 100% decision coverage as the FALSE

condition of the IF statement is not exercised.

 In order to achieve 100% decision coverage we need to

exercise the FALSE condition of the IF statement

which will be covered when X is less than Y.



Whitebox Testing Example:

 So the final TEST SET for 100% decision coverage

will be:

 TEST CASE 1: X=10, Y=5

 TEST CASE 2: X=2, Y=10

 Note: 100% decision coverage guarantees 100%

statement coverage but 100% statement coverage does

not guarantee 100% decision coverage.



Whitebox Testing 3. Path coverage:

 The basis path method enables the test-case designer to

derive a logical complexity measure of a procedural

design and use this measure as a guide for defining a

basis set of execution paths.

 Test cases derived to exercise the basis set are guar-

anteed to execute every statement in the program at 

least one time during testing.



Whitebox Testing 3. Path coverage:



Difference between Blackbox &Whitebox Testing 

:



Difference between Blackbox &Whitebox Testing 

:



Thank -You



Cyclomatic Complexity

Cyclomatic Complexity Measures

Complexity is a software metric that given the quantitative measure of logical complexity of the

program.

The Cyclomatic complexity defines the number of independent paths in the basis set

of the program that provides the upper bound for the number of tests that must be conducted to

ensure that all the statements have been executed atleast once.

There are three methods of computing Cyclomatic complexities.

Method 1: Total number of regions in the flow graph is a Cyclomatic complexity.

Method 2: The Cyclomatic complexity, V (G) for a flow graph G can be defined as

V (G) = E - N + 2

Where: E is total number of edges in the flow graph.

N is the total number of nodes in the flow graph.

Method 3: The Cyclomatic complexity V (G) for a flow graph G can be defined as

V (G) = P + 1

Where: P is the total number of predicate nodes contained in the flow G.

Let us understand computation of Cyclomatic complexity with the help of an 

example. Consider following code fragment with line numbered

{

1

.

I

f

(



R3

R1 R2

{

3

.

I

f

(

a

<

c

) 

4

.

F

2

(

)

;

else

5. F3 () ;

}

6

.

}

To compute Cyclomatic complexity we will follow these steps –

Step 1. Design flow graph for given code fragment.

1

4 5

6

Step 2. Compute region, Predicate (i.e decision nodes) edges and total nodes in the flow graph

1

2 3

4
5

6

 There are 3 regions denoted by R1, R2 and 

R3.



 Nodes 1 and 3 are predicate nodes because which branch to be followed is

decided at these points.

 Total edges = 7

Total nodes = 6

Step 3. Apply formulas in order to compute Cyclomatic complexity.

1) Cyclomatic complexity V(G) = Total number of region = 3

2) Cyclomatic complexity V(G) = E - N + 2

Cyclomatic complexity V (G) = 7- 6 +2 = 3

3) Cyclomatic complexity V(G) = P +1

V (G) = 2 + 1 = 3

Where P is predicate nodes (node 1 and node 2) are predicate nodes because from

these nodes only the decision of which path is to be followed is taken.

Thus Cyclomatic complexity is 3 for given code.



Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Debugging”

.

Shri Vaishnav Vidyapeeth 

Vishwavidyalaya, Indore (M.P.)



Debugging

 To launch an application into the market, it is very

necessary to cross-check it multiple times to deliver

an error-free product.

 In the context of software engineering, debugging is

the process of fixing a bug in the software. In other

words, it refers to identifying, analyzing, and

removing errors.

 Software programs undergo heavy testing, updating,

troubleshooting, and maintenance during the

development process.



Debugging

 Debugging is a developer activity and effective

debugging is very important before testing begins to

increase the quality of the system.

 Debugging is a developer activity and effective

debugging is very important before testing begins to

increase the quality of the system.

 Debugging will not give confidence that the system

meets its requirements completely, but testing gives

confidence.



Why do we need Debugging

 The process of debugging begins as soon as the code

of the software is written. Then, it continues in

successive stages as code is combined with other

units of programming to form a software product.

Debugging has many benefits such as:

 It reports an error condition immediately. This

allows earlier detection of an error and makes the

process of software development stress-free and

unproblematic.

 It also provides maximum useful information of

data structures and allows easy interpretation.



Why do we need Debugging

 Debugging assists the developer in reducing useless

and distracting information.

 Through debugging the developer can avoid complex

one-use testing code to save time and energy in

software development.



Steps involved in Debugging



Steps involved in Debugging

1) Identify the Error: A bad identification of an error

can lead, to wasted developing time. It is usual that

production errors reported by users are hard to

interpret and sometimes the information we receive

is misleading. It is import to identify the actual error.

2) Find the Error Location: After identifying the error

correctly, you need to go through the code to find the

exact spot where the error is located. In this stage,

you need to focus on finding the error instead of

understanding it.



Steps involved in Debugging

3) Analyze the Error: In the third step, you need to use a

bottom-up approach from the error location and

analyze the code. This helps you in understanding the

error.

4) Prove the Analysis: Once you are done analyzing the

original bug, you need to find a few more errors that

may appear on the application. This step is about

writing automated tests for these areas with the help

of a test framework.



Steps involved in Debugging

5) Cover Lateral Damage: In this stage, you need to

create or gather all the unit tests for the code where

you are going to make changes. Now, if you run

these unit tests, they all should pass.

6) Fix & Validate: The final stage is the fix all the

errors and run all the test scripts to check if they all

pass.



Debugging Tools

 Debugging tool is a computer program that is used to

test and debug other programs. A lot of public

domain software like gdb and dbx are available for

debugging. They offer console-based command-line

interfaces. Examples of automated debugging tools

include code-based tracers, profilers, interpreters,

etc. Some of the widely used debuggers are:

 Radare2

 WinDbg

 Valgrind



Thank -You



Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Introduction to Software Testing”

.

Shri Vaishnav Vidyapeeth 

Vishwavidyalaya, Indore (M.P.)



Software Testing

 Software Testing is a process of evaluating the

functionality of a software application to find any

software bugs.

 It checks whether the developed software met the

specified requirements and identifies any defect in

the software in order to produce a quality product.

 It is basically executing a system in order to identify

any gaps, errors, or missing requirements in contrary

to the actual requirements.



Software Testing

 It is also stated as the process of verifying and

validating a software product. It checks whether the

software product:

 Meets the business and technical requirements that

guided its design and development

 Works as per the requirement

 Can be implemented with the same characteristics



Software Testing

 Testing includes an examination of code and the

execution of code in various environments,

conditions as well as all the examining aspects of the

code.

 In the current scenario of software development, a

testing team may be separate from the development

team so that Information derived from testing can be

used to correct the process of software development.



Software Testing

 The success of software depends upon acceptance of

its targeted audience, easy graphical user interface,

strong functionality load test, etc.

 For example, the audience of banking is totally

different from the audience of a video game.

 Therefore, when an organization develops a software

product, it can assess whether the software product

will be beneficial to its purchasers and other

audience.



Software Testing

 Testing objective:

 To find any defects or bugs that may have been

created when the software was being developed

 To increase confidence in the quality of the software

 To prevent defects in the final product

 To ensure the product meets customer requirements

as well as the company specifications

 To provide customers with a quality product and

increase their confidence in the company



Software Testing Principles

1) Software testing can help in detecting bugs: Testing

any software or project can help in revealing a few or

some defects that may or may not be detected by

developers. However, testing of software alone

cannot confirm that your developed project or

software is error free. Hence, it’s essential to devise

test cases and find out as many defects as possible.



Software TestingPrinciples

2) Error free or Bug-free software is a myth: Just

because when a tester tested an application and didn’t

detect any defects in that project, doesn’t indicate or

imply that your software is ready for shipping

3) Testing must be performed in different ways and

cannot be tested in a similar way for all modules. All

testers have their own individuality, likewise the

system under test.



Software Testing Principles

4) Normally a defect is clustered around a set of

modules or functionalities. Once they are identified,

testing can be focused on the defective areas, and yet

continue to find defects in other modules

simultaneously.

5) Testing will not be as effective and efficient if the

same kinds of tests are performed over a long

duration.



Benefits of Software Testing

 Cost-Effective: It is one of the important advantages

of software testing. Testing any IT project on time

helps you to save your money for the long term. In

case if the bugs caught in the earlier stage of software

testing, it costs less to fix.

 Security: It is the most vulnerable and sensitive

benefit of software testing. People are looking for

trusted products. It helps in removing risks and

problems earlier.



Benefits of Software Testing

 Product Quality: It is an essential requirement of any

software product. Testing ensures a quality product is

delivered to customers.

 Customer Satisfaction: The main aim of any product

is to give satisfaction to their customers. UI/UX

Testing ensures the best user experience.



Software Testing Issues

 Testing the Complete Application

 It is not possible to test each combination in both

Manual as well as Automation Testing. If you try all

these combinations, you will never ship the product

 Misunderstanding of Company Processes

 There are some myths in testers that they should only

go with the company processes even if these

processes are not applicable for their current testing

scenario. This results in incomplete and inappropriate

Application Testing



Software Testing Issues

 Inadequate schedule of testing:

 Testing is a time-consuming affair. It must be so

since it is done to bring out the defects or

inadequacies of the system under different conditions

and not to show that it works. Testing needs to go

hand in hand with development.



Software Testing Issues

 Insufficient testing environment and tools:

 Tools and environments are backbones of proper

software testing. However, testing is often carried out

in inadequate testing environment. Moreover, some

of the environmental components themselves suffer

from defects.

 Team managers must ensure that actual or close

enough hardware and software requirements are met

in a testing environment.



Software Testing Issues

 Wrong testing mindset

 Often the mindset of the software testing team

revolves around finding out functionality of the

system rather than finding defects in it. This itself

prohibits the team from finding out flaws in the

software.

 It is the duty of team lead to instruct the idea that

testing is done to find fault with the system or

software under different conditions and not to prove

that it works



Types of Software Testing

 Testing is an integral part of any successful software

project. The type of testing depends on various

factors, including project requirements, budget,

timeline, expertise, and suitability. Software testing

is a huge domain, but it can be broadly categorized

into two areas such as



Types of Software Testing

 Manual Testing

 Manual Testing is a type of Software Testing where

Testers manually execute test cases without using any

automation tools.

 It means the application is tested manually by QA

testers.

 Tests need to be performed manually in every

environment, using a different data set and the success

or failure rate of every transaction should be recorded.

 This type of testing requires the tester’s knowledge,

experience, analytical/logical skills, creativity, and

intuition.



Types of Software Testing

 Some of the tools used for Manual Testing are:Stryka

1. Bugzilla

2. Jira

3. Mantis

4. Trac

5. Redmine

6. Fogbuz

7. Lighthouse



Types of Software Testing

 Automated Testing

 Automation testing is an Automatic technique where

the tester writes scripts by own and uses suitable

software to test the software.

 It is basically an automation process of a manual

process.

 Like regression testing, Automation testing also used

to test the application from load, performance and

stress point of view



Types of Software Testing

 Some of the tools used for Automated Testing are :

1. Selenium

2. TestingWhiz

3. Ranorex

4. Sahi

5. Waitir

6. WaitiN

7. Tosca TestSuite



Thank -You



Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“System Testing”

.

Shri Vaishnav Vidyapeeth 

Vishwavidyalaya, Indore (M.P.)



System Testing

 System Testing is a level of testing that validates the

complete and fully integrated software product.

 The purpose of a system test is to evaluate the end-

to-end system specifications.

 The goal of integration testing is to detect any

irregularity between the units that are integrated

together.

 System testing detects defects within both the

integrated units and the whole system.



System Testing

 The result of system testing is the observed behavior

of a component or a system when it is tested.

 System testing tests the design and behavior of the

system and the expectations of the customer.

 It is performed to test the system beyond the bounds

mentioned in the software requirements specification

(SRS).

 System Testing is basically performed by a testing

team that is independent of the development team

that helps to test the quality of the system impartial.



System Testing



System Testing Process

 Test Environment Setup: Create testing environment

for the better-quality testing.

 Create Test Case: Generate test case for the testing

process.

 Create Test Data: Generate the data that is to be

tested.

 Execute Test Case: After the generation of the test

case and the test data, test cases are executed.



System Testing

 Defect Reporting: Defects in the system are detected.

 Regression Testing: It is carried out to test the side

effects of the testing process.

 Log Defects: Defects are fixed in this step.

 Retest: If the test is not successful then again test is

performed.



System Testing



Types of System Testing

 Performance Testing: Performance Testing is a type

of software testing that is carried out to test the

speed, scalability, stability and reliability of the

software product or application.

 Load Testing: Load Testing is a type of software

Testing which is carried out to determine the

behavior of a system or software product under

extreme load.



System Testing

 Stress Testing: Stress Testing is a type of software

testing performed to check the robustness of the

system under the varying loads.

 Scalability Testing: Scalability Testing is a type of

software testing which is carried out to check the

performance of a software application or system in

terms of its capability to scale up or scale down the

number of user request load.



Thank -You



Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Testing Conventional Applications”

. Prepared By

Virendra Dani 

Shri Vaishnav Vidyapeeth 

Vishwavidyalaya, Indore (M.P.)



Testing Conventional Applications

 What is it?

 Once source code has been generated, software must

be tested to uncover (and correct) as many errors as

possible before delivery to your customer.

 Your goal is to design a series of test cases that have

a high likelihood of finding errors—but how?

 That’s where software testing techniques enter the

picture.



Testing Conventional Applications

 These techniques provide systematic guidance for

designing tests that

 (1) exercise the internal logic and interfaces of every

software component and

 (2) exercise the input and output domains of the

program to uncover errors in program function,

behavior, and performance



Testing Conventional Applications

 Who does it?

 During early stages of testing, a software engineer

performs all tests.

 However, as the testing process progresses, testing

specialists may become involved



Testing Conventional Applications

 What are the steps?

 For conventional applications, software is tested

from two different perspectives:

 (1) internal program logic is exercised using “white box”

test-case design techniques and

 (2) software requirements are exercised using “black

box” test-case design techniques.

 Use cases assist in the design of tests to uncover errors at

the software validation level.

 In every case, the intent is to find the maximum number

of errors with the minimum amount of effort and time.



Testing Conventional Applications

 What is the work product?

 A set of test cases designed to exercise both internal

logic, interfaces, component collaborations, and

external requirements is designed and documented,

expected results are defined, and actual results are

recorded.



Testing Conventional Applications

 How do you ensure that you’ve done it right?

 When you begin testing, change your point of view.

 Try hard to “break” the software! Design test cases in

a disciplined fashion and review the test cases you do

create for thoroughness.

 In addition, you can evaluate test coverage and track

error detection activities.



Thank -You



Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Testing Object Oriented Applications”

. Prepared By

Virendra Dani 

Shri Vaishnav Vidyapeeth 

Vishwavidyalaya, Indore (M.P.)



Testing Object Oriented Applications

 What is it?

 The architecture of object-oriented (OO) software

results in a series of layered subsystems that

collaborating classes.

 Each of these system elements (subsystems and

classes) performs functions that help to achieve

system requirements.

 It is necessary to test an OO system at a variety of

different levels in an effort to uncover errors that may

occur as classes collaborate with one another and

subsystems communicate across architectural layers



Testing Object Oriented Applications

 Who does it?

 Object-oriented testing is performed by software

engineers and testing specialists.

 Why is it important?

 You must execute the program before it gets to the

customer with the specific intent of removing all

errors, so that the customer will not experience the

frustration associated with a poor-quality product.

 In order to find the highest possible number of errors,

tests must be conducted systematically, and test cases

must be designed using disciplined techniques.



Testing Object Oriented Applications

 What are the steps?

 OO testing is strategically analogous to the testing of

conventional systems, but it is intentionally different.

 Because the OO analysis and design models are similar in

structure and content to the resultant OO program,

“testing” is initiated with the review of these models.

 Once code has been generated, OO testing begins “in the

small” with class testing.

 A series of tests are designed that exercise class

operations and examine whether errors exist as one class

collaborates with other classes



Testing Object Oriented Applications

 What is the work product?

 A set of test cases, designed to exercise classes, them

 collaborations, and behaviors is designed and

documented; expected results are defined, and actual

results are recorded.

 How do you ensure that you’ve done it right?

 When you begin testing, change your point of view.

 Try hard to “break” the software! Design test cases in

a disciplined fashion, and review the tests cases you

do create for thoroughness



Thank -You



Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Types of Testing”

.

Shri Vaishnav Vidyapeeth 

Vishwavidyalaya, Indore (M.P.)



Classification of Manual Testing

 In software testing, manual testing can be further

classified into three different types of testing, which

are as follows



White Box Testing

 White Box Testing is a testing technique in which

software’s internal structure, design, and coding are

tested to verify input-output flow and improve

design, usability, and security.

 In white box testing, code is visible to testers, so it is

also called Clear box testing, Open box testing,

Transparent box testing, Code-based testing, and

Glass box testing



White Box Testing

 Working process of white box testing:

 Input: Requirements, Functional specifications,

design documents, source code.

 Processing: Performing risk analysis for guiding

through the entire process.

 Proper test planning: Designing test cases so as to

cover entire code. Execute rinse-repeat until error-

free software is reached. Also, the results are

communicated.

 Output: Preparing final report of the entire testing

process



White Box Testing



Black Box Testing

 Black box testing is a type of software testing in

which the functionality of the software is not known.

The testing is done without the internal knowledge of

the products.

 Black Box Testing mainly focuses on input and

output of software applications, and it is entirely

based on software requirements and specifications. It

is also known as Behavioral Testing.



Testing of Testing



Testing of Testing

 The above Black-Box can be any software system

you want to test.

 For Example, an operating system like Windows, a

website like Google, a database like Oracle or even

your own custom application.

 Under Black Box Testing, you can test these

applications by just focusing on the inputs and

outputs without knowing their internal code

implementation.



How to do Black Box Testing

 Initially, the requirements and specifications of the

system are examined.

 Tester chooses valid inputs (positive test scenario) to

check whether SUT processes them correctly. Also,

some invalid inputs (negative test scenario) are

chosen to verify that the SUT can detect them.

 Tester determines expected outputs for all those

inputs.



How to do Black Box Testing

 Software tester constructs test cases with the selected

inputs.

 The test cases are executed.

 Software tester compares the actual outputs with the

expected outputs.

 Defects if any are fixed and re-tested.



Types of Black Box Testing

 Functional testing – This black box testing type is

related to the functional requirements of a system; it

is done by software testers.

 Non-functional testing – This type of black box

testing is not related to testing of specific

functionality, but non-functional requirements such

as performance, scalability, usability.

 Regression testing – Regression Testing is done after

code fixes, upgrades or any other system

maintenance to check the new code has not affected

the existing code.



Tools for Black Box Testing

 Tools used for Black box testing largely depends on

the type of black box testing you are doing.

 For Functional/ Regression Tests you can use – QTP,

Selenium

 For Non-Functional Tests, you can use –

LoadRunner, Jmeter



Functional Testing

 Functional testing is a type of testing which verifies

that each function of the software application

operates in conformance with the requirement

specification.

 This testing mainly involves black box testing, and it

is not concerned about the source code of the

application.



Functional Testing

 Every functionality of the system is tested by

providing appropriate input, verifying the output and

comparing the actual results with the expected

results.

 This testing involves checking of User Interface,

APIs, Database, security, client/ server applications

and functionality of the Application Under Test.

 The testing can be done either manually or using

automation



Non-Functional Testing

 Non-functional testing is a type of testing to check

non-functional aspects (performance, usability,

reliability, etc.) of a software application.

 It is explicitly designed to test the readiness of a

system as per nonfunctional parameters which are

never addressed by functional testing.

 It verifies whether the behavior of the system is as

per the requirement or not.



Difference between Functional and Non-

fuctional Testing

Parameters Functional Non-Functional

Execution
It is performed before

non-functional testing.

It is performed after the

functional testing.

Focus area
It is based on customer’s

requirements.

It focusses on customer’s

expectation.

Requirement
It is easy to define

functional requirements.

It is difficult to define the

requirements for non-functional

testing.

Usage

Helps to validate the

behavior of the

application.

Helps to validate the

performance of the application.

Objective
Carried out to validate

software actions.

It is done to validate the

performance of the software.



Difference between Functional and Non-

fuctional Testing

Parameters Functional Non-Functional

Manual testing

Functional testing is easy 

to execute by manual 

testing.

It’s very hard to perform non-

functional testing manually.

Functionality
It describes what the 

product does.
It describes how the product works.

Example Test 

Case

Check login 

functionality.

The dashboard should load in 2 

seconds.

Testing Types

Examples of 

Functional Testing 

Types

Unit testing

Smoke testing

User Acceptance

Integration Testing

System Testing

Examples of Non-functional 

Testing Types

Performance Testing

Volume Testing

Scalability

Usability Testing

Load Testing

Portability Testing



Thank -You



Shri Vaishnav Institute of Information Technology

Department of Computer Science and Engineering

Lecture

on

“Validation Testing and Verification Testing

.

Shri Vaishnav Vidyapeeth 

Vishwavidyalaya, Indore (M.P.)



Validation Testing

 The process of evaluating software during the

development process or at the end of the

development process to determine whether it satisfies

specified business requirements.

 Validation Testing ensures that the product meets the

client's needs.

 It can also be defined as to demonstrate that the

product fulfills its intended use when deployed on

appropriate environment.



Validation Testing

 Validation testing is also known as dynamic testing,

where we are ensuring that "we have developed the

product right."

 And it also checks that the software meets the

business needs of the client.

 It is the process of checking the validation of product

i.e., it checks what we are developing is the right

product.

 Validation testing can be best demonstrated using V-

Model. The Software/product under test is evaluated

during this type of testing.



Validation Testing



Validation Testing

 Activities involved in validation:

 Black box testing

 White box testing

 Unit testing

 Integration testing



Verification Testing

 Verification is the process of evaluating work-

products of a development phase to determine

whether they meet the specified requirements.

 Verification ensures that the product is built

according to the requirements and design

specifications.

 It also answers to the question, Are we building the

product, right?



Validation Testing

 Verification testing includes different activities such

as business requirements, system requirements,

design review, and code walkthrough while

developing a product.

 It is also known as static testing, where we are

ensuring that "we are developing the right product

or not".



Verification Testing



Difference between Verification and 

Validation Testing

 Verification and Validation is the process of

investigating that a software system satisfies

specifications and standards, and it fulfills the

required purpose. Barry Boehm described

verification and validation as the following:

 Verification: Are we building the product, right?

 Validation: Are we building the right product?



Validation Testing

S. No. Verification Validation

1 It consists of checking of 

documents/files and is 

performed by human.

It consists of execution of 

program and is performed by 

computer.

2 It comes before validation. It comes after verification

3 Quality assurance team does 

verification

Validation is executed on 

software code with the help of 

testing team.

4 The goal of verification is 

application and software 

architecture and specification

The goal of validation is an actual 

product.

5 It can find the bugs in the early 

stage of the development

It can only find the bugs that 

could not be found by the 

verification process



Validation Testing

S. 

No.

Verification Validation

6 Verification is the static testing. Validation is the dynamic testing.

7 It does not include the execution 

of the code

Validation is the dynamic testing.

8 QA team does verification and 

make sure that the software is as 

per the requirement in the SRS 

document.

With the involvement of testing 

team validation is executed on 

software code.

9 Methods used in verification are 

reviews, walkthroughs, 

inspections and desk-checking.

Methods used in validation are 

Black Box Testing, White Box 

Testing and non-functional 

testing.



Thank -You


