## Patient Information

## Oliver

0 yrs 6 mths - M
EMR 8675309

## Joe Kelley

example@embarkvet.com
555-555-5555

## Genetic Results Summary

Breed Results

64.0\% Australian Shepherd
26.0\% Golden Retriever
10.0\% Chow Chow

Genetic Age: 8 human years
Predicted Adult Weight: 59 lbs

## Increased Risks

A 1 increased risk
Notable Risks
1 notable risk
Clear Results
216 variants not detected

## Increased Risk

## MDR1 Drug Sensitivity

Oliver has two copies of this codominant variant in the ABCB1 gene. Dogs that inherit two abnormal copies (homozygous) will produce no normal p-glycoprotein and will be most strongly affected. Dogs that inherit only one abnormal copy of the ABCB1 gene (heterozygous) can show some effects though they will be less severely impacted because some normal p-glycoprotein will still be produced.

You can learn more about penetrance and care for Oliver below or email vetsupport@embarkvet.com should you desire to speak with a genetic counselor.

## Notable Result

## (i) Ichthyosis, ICH1

Oliver has one copy of this variant in the PNPLA1 gene. Because this variant is inherited in an autosomal recessive manner (meaning dogs need two copies of the variant to develop the disease), Oliver is unlikely to develop Ichthyosis, ICH1 due to this variant.

While Oliver is not at risk for developing ICH1, he can pass this variant on to the next generation. If Oliver is intended for breeding, please genotype any potential mates. You can email vetsupport@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program.

## Increased Risk

## A MDR1 Drug Sensitivity

## How to interpret this result

Oliver has two copies of this codominant variant in the ABCB1 gene. Dogs that inherit two abnormal copies (homozygous) will produce no normal p-glycoprotein and will be most strongly affected. Dogs that inherit only one abnormal copy of the ABCB1 gene (heterozygous) can show some effects though they will be less severely impacted because some normal p-glycoprotein will still be produced.

You can learn more about penetrance and care for Oliver below or email vetsupport@embarkvet.com should you desire to speak with a genetic counselor.

## What is MDR1 Drug Sensitivity?

P-glycoprotein (P-gp), encoded by the ABCB1 gene (formerly known as the MDR1 gene, and the condition is still referred to as Multidrug Resistance 1 ), is a membrane transport protein in the ATP-binding cassette superfamily. P-gp is normally expressed in various mammalian tissues including apical (luminal) membranes of epithelial cells lining the lower gastrointestinal tract, brain capillary endothelial cells, biliary canalicular cells, brush border of renal proximal tubules, placenta, and testes. P-gp limits drug absorption in the gastrointestinal tract and promotes drug elimination in the liver, kidneys, and intestine. Furthermore, P-gp restricts drug uptake into cells and tissues, in particular their permeation across the blood-brain barrier. Taken altogether, P-gp has an important protective function for the organism by eliminating potentially toxic compounds from the body and preventing their entry into the brain and organs of reproduction.

Because of the predominant role of P-gp in drug disposition, mutation of the ABCB1 gene alters the pharmacokinetic properties of P-gp transported drugs, leading to enhanced oral bioavailability and reduced drug elimination through the liver, kidneys, and gut. Moreover, the brain penetration of P-gp transported drugs is increased and in many cases provokes neurological toxicity.

Variant Info<br>ABCB1<br>Codominant inheritance<br>2 copies of the variant

Ordered by Dr. John Smith

## Age of Onset of Clinical Signs or Symptoms

MDR1 often presents in young adulthood, only because this is most commonly when a dog is first exposed to a problem drug like high dose ivermectin or acepromazine.

## Clinical Signs

Symptoms arise after a dog has received an MDR1 problem drug or dosage and can range from vomiting and diarrhea to lethargy, seizures, or coma.

## Penetrance and Additional Impact on Phenotype

Interestingly, research indicates that all dogs with this variant in ABCB1 are descendants of a dog that lived in Great Britain before the genetic isolation of breeds by registry (ca. 1873). Dogs that inherit two abnormal copies (homozygous) will produce no normal p-glycoprotein and will be most strongly affected. Dogs that inherit only one abnormal copy of the MDR1 gene (heterozygous) can show some effects though they will be less severely impacted because some normal p-glycoprotein will still be produced.

Of note, several commonly used drugs can inhibit P-glycoprotein function, even in animals with normal ABCB1 gene structure. Consequently, veterinarians may encounter dogs and cats with intrinsic (genetically mediated) P-glycoprotein dysfunction, as well as with extrinsic, or acquired, P -glycoprotein dysfunction (animals receiving a drug that inhibits P-glycoprotein function). In ABCB1 wild-type (normal) dogs, ketoconazole and spinosad are most often associated with severe adverse effects because of their ability to inhibit P-glycoprotein function.

Approximate frequency for select breeds (from WSU):

- Australian Shepherd 50\%
- Australian Shepherd Mini 50\%
- Chinook 25\%
- Collie 70\%
- English Shepherd 15\%
- German Shepherd Dog 10\%
- Long-haired Whippet 50\%
- McNab 30\%
- Old English Sheepdog 5\%
- Shetland Sheepdog 15\%
- Silken Windhound 30\%


## Follow-up Diagnostics to Consider

This is usually a retroactive diagnosis after a dog has an adverse reaction to a problem drug--however, genetic testing could help avoid a first reaction altogether.

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
Swab code: 41201051408125
Ordered by Dr. John Smith

## Treatment and Management Options

- Drugs that have been documented to cause problems in dogs with the ABCB1 variant include (from WSU):
- Macrocyclic lactones (including such drugs as ivermectin, milbemycin, moxidectin, and selamectin) - Route of application and dosage is crucial for the safety of treatment with macrocyclic lactones. Whereas all available macrocyclic lactones can safely be administered to ABCB1 mutant dogs at doses usually used for heartworm prevention, these dogs will experience neurological toxicity following a high dose regimen which has historically been used for demodectic mange treatment. All FDA-approved heartworm prevention products licensed in the United States have been tested and found to be safe in dogs with the MDR1 variant. (For study results, see label indications for specific trademark products.)
- ABCB1 heterozygote dogs can be regarded as having an intermediate macrocyclic lactone-sensitive phenotype. Currently, there is no specific and safe antidote available for the treatment of macrocyclic lactone-induced toxicosis. Therefore, treatment is solely based on symptomatic and supportive care. Care should also be taken to minimize non-direct exposure to these drugs (e.g. environmental or large-animal treatment).
- Loperamide (ImodiumTM) - At doses used to treat diarrhea, this drug will cause neurological toxicity in dogs with the MDR1 variant. This drug should be avoided in all dogs with the MDR1 variant.
- Acepromazine - Dose reductions are required for dogs with one or two copies of the MDR1 variant.
- Butorphanol - Dose reductions are required for dogs with one or two copies of the MDR1 variant.
- Chemotherapy Agents (vincristine, vinblastine, doxorubicin, paclitaxel)- Dose reductions are required for dogs with one or two copies of the MDR1 variant in order to avoid severe toxicity.
- Apomorphine - Dose reductions are required for dogs with one or two copies of the MDR1 variant, as it can cause central nervous system depression at standard doses.


## More Information

Additional information regarding drugs that are known to be transported by the human or rodent forms of the protein encoded by the MDR1 gene with or without additional research in dogs can be found at https://vcpl.vetmed.wsu.edu/problem-drugs. Recommended dosage adjustments from WSU can be found at https://www.cliniciansbrief.com/article/how-should-i-treat-dogs-cats-mdr1-mutation.

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
Swab code: 41201051408125
Ordered by Dr. John Smith

## References

Neff MW, Robertson KR, Wong AK, et al. Breed distribution and history of canine mdr1-1Delta, a pharmacogenetic mutation that marks the emergence of breeds from the collie lineage. Proc Natl Acad Sci U S A. 2004;101(32):11725-11730. doi:10.1073/pnas. 0402374101

Deshpande D, Hill KE, Mealey KL, Chambers JP, Gieseg MA. The Effect of the Canine ABCB1-1 $\Delta$ Mutation on Sedation after Intravenous Administration of Acepromazine. J Vet Intern Med. 2016;30(2):636-641. doi:10.1111/jvim.13827

Geyer J, Janko C. Treatment of MDR1 mutant dogs with macrocyclic lactones. Curr Pharm Biotechnol. 2012;13(6):969-986. doi:10.2174/138920112800399301

Mealey KL. Canine ABCB1 and macrocyclic lactones: heartworm prevention and pharmacogenetics. Vet Parasitol. 2008;158(3):215-222. doi:10.1016/j.vetpar.2008.09.009

Mealey KL, Bentjen SA, Gay JM, Cantor GH. Ivermectin sensitivity in collies is associated with a deletion mutation of the mdr1 gene. Pharmacogenetics. 2001;11(8):727-733. doi:10.1097/00008571-200111000-00012

## Notable Results

## (i) Ichthyosis, ICH1

## How to interpret this result

Oliver has one copy of this variant in the PNPLA1 gene. Because this variant is inherited in an autosomal recessive manner (meaning dogs need two copies of the variant to develop the disease), Oliver is unlikely to develop Ichthyosis, ICH1 due to this variant.

While Oliver is not at risk for developing ICH1, he can pass this variant on to the next generation. If Oliver is intended for breeding, please genotype any potential mates. You can email vetsupport@embarkvet.com to discuss with a genetic counselor how the genotype results should be applied to a breeding program.

## Variant Info

PNPLA1 Exon 8
Recessive inheritance
1 copy of the variant

## What is Ichthyosis, ICH1?

As the largest organ in the body, skin protects the body from infection, allergens, pollutants, and UV light, and it plays a vital role in preventing dehydration. Any disorder that impairs skin anatomy or function or causes injury to the skin can lead to systemic illness.

Disorders of cornification (DOCs) are divided into primary and secondary causes. In primary cornification disorders, the excessive scaling is due to a direct defect in the formation of the outer skin layer (stratum corneum). The stratum corneum consists of overlapping layers of anucleate keratinocytes (corneocytes) encased in bilayers of lipid. This layer maintains the water content of the body by restricting water movement into and out of the skin. Secondary disorders are those where excessive scaling develops as a result of another condition (parasites, cancer, endocrinopathies).

Ichthyosis can be epidermolytic (EI) or nonepidermolytic (NI), which is determined based on the microscopic appearance of the skin. Dogs affected with epidermolytic ichthyosis have multiple regions of pigmented scale with alopecia (hair loss) and roughening of the skin. Nonepidermolytic ichthyosis, which can cause skin lesions and secondary inflammation, has been documented to affect Golden Retrievers and is caused by a variant in the PNPLA1 gene. PNPLA1 has a role in glycerophospholipid metabolism. This condition may also be referred to as ICH1.

## Age of Onset of Clinical Signs or Symptoms

Typically, clinical signs develop in puppies but the disease tends to worsen with age. Golden Retrievers are typically diagnosed at less than one year of age; however, adult-onset cases are not uncommon. Severe hypermelanosis associated with rough and hyperpigmented skin on the ventrum may be noted by breeders as early as three to six weeks of age and could therefore be considered as an early cutaneous sign, often visible before the occurrence of the scaling.

## Clinical Signs

Ichthyosis may clinically present like many other things, including: allergies or a cutaneous drug reaction, parasites, infection, exposure to excessive UV light, endocrinopathies (Cushing's disease, hypothyroidism), autoimmune disease, epidermolysis bullosa, lethal acrodermatitis, vitamin and mineral deficiencies, sebaceous gland abnormalities, primary seborrhea, cancer, and dermatomyositis.

Ichthyosis is derived from the Greek root "ichthy," meaning fish, and was so named due to the visible scales on the skin. Ichthyotic dogs typically have large, greasy flakes of dandruff, but aren't itchy. The scales of skin can get so thick that they crack and cause uncomfortable fissures.

Affected dogs develop generalized scaling, initially with small to large whitish scales (often referred to as "snowflake-like") and progressively with blackish scales. Scales are typically distributed over most areas of the body: the lateral and ventral regions of the neck, trunk, rump, and dorsum and ventrum folds but do not appear on the head or extremities. Physical manifestations may wax and wane, and some dogs develop secondary bacterial skin infections that may confound a diagnosis.

## Follow-up Diagnostics to Consider

For dogs showing signs of a skin disorder, the first step in diagnosing ichthyosis (and other DOCs) is for a veterinarian to examine the characteristic lesions. The veterinarian may perform blood work (complete blood count and serum chemistry), a skin scrape, skin cytology, dermatophyte (ringworm) culture, skin biopsy, +/- a urinalysis or specific endocrine testing. Genetic testing can also be done to confirm-or rule out-an inherited condition.

Primary disorders are generally diagnosed by ruling out all secondary causes, clinical presentation and/or age of onset, or skin biopsy.

## Treatment and Management Options

- There is no cure for Ichthyosis, ICH1.
- The treatments of choice are topical therapies such as specialized shampoos, moisturizing rinses, agents to remove excessive scale or to restore the skin barrier and thus prevent water loss, and topical medications to address secondary infections.
- Therapy must be tailored to the individual patient, and care should be taken not to damage or irritate the skin.
- Some dogs may benefit from oral essential fatty acid (EFA) supplementation or oral medications to treat infections.
- A novel topical therapy is under investigation to reinstate the corneocyte lipid envelope (CLE) in different forms of ichthyosis.


## More Information

This form of Golden Retriever ichthyosis is generally considered "mild" although the severity can be dog-dependent. Of note, a new condition, named ICH2, has been reported in Golden Retrievers. ICH2 is a more severe form of Ichthyosis than ICH1. At this time, testing for ICH2 can only be done through the University of Pennsylvania.

## References

Grall A, Guaguere E, Planchais S, et al. PNPLA1 mutations cause autosomal recessive congenital ichthyosis in golden retriever dogs and humans. Nat Genet. 2012;44(2):140-147. Published 2012 Jan 15. doi:10.1038/ng. 1056

Mauldin EA. Canine ichthyosis and related disorders of cornification. Vet Clin North Am Small Anim Pract. 2013 Jan;43(1):8997. doi: 10.1016/j.cvsm.2012.09.005. PMID: 23182326; PMCID: PMC3529142.

Guaguere E, Bensignor E, Kury S, et al. Clinical, histopathological and genetic data of ichthyosis in the golden retriever: a prospective study.J Small Anim Pract. 2009;50(5):227-235. doi:10.1111/j.1748-5827.2009.00730.x

Mauldin EA, Credille KM, Dunstan RW, Casal ML. The clinical and morphologic features of nonepidermolytic ichthyosis in the golden retriever. Vet Pathol. 2008 Mar;45(2):174-80. doi: 10.1354/vp.45-2-174. PMID: 18424829; PMCID: PMC3334879.

## Results Summary

## Auditory (1)

( Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS $\quad$ Gene Copies Results

## Cardiac (4)

Other

Cardiomyopathy and Juvenile Mortality - Shepherd Variant

Long QT Syndrome - English Springer Spaniel Variant

Endocrine (3)
Hypothyroidism
(V) Congenital Dyshormonogenic Hypothyroidism with Goiter - Shih Tzu Variant

V Congenital Hypothyroidism - Tenterfield Terrier Variant

- Congenital Hypothyroidism - Rat, Toy, and Hairless Terrier Variant

To view COI and traits information, log into your account.

Dilated Cardiomyopathy

Dilated Cardiomyopathy, DCM1 - Doberman Pinscher Variant 1

Dilated Cardiomyopathy, DCM2 - Doberman Pinscher Variant 2
Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS

Dilated Cardiomyopathy, DCM2-Doberman Pinscher Variant

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
1-855-203-8271
Swab code: 41201051408125
Ordered by Dr. John Smith

## Gastrointestinal (4)

## Gastroenteropathy

Gene

Lundehund Syndrome

Malabsorptive Disorder

Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption - Border Collie Variant
v Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption - Beagle VariantInherited Selected Cobalamin Malabsorption with Proteinuria - Komondor Variant

| Gene | Copies | Results |
| ---: | ---: | ---: |
| LEPREL1 | 0 | Clear |
| Gene | Copies | Results |
| CUBN Exon 53 | 0 | Clear |
| CUBN Exon 8 | 0 | Clear |
| CUBN | 0 | Clear |

Bernard-Soulier Syndrome, BSS - Cocker Spaniel Variant

Congenital Macrothrombocytopenia - Cairn and Norfolk Terrier Variant

Factor IX Deficiency, Hemophilia B - Terrier Variant
( Factor IX Deficiency, Hemophilia B - Rhodesian Ridgeback Variant
v Factor VII Deficiency
(V) Factor VIII Deficiency, Hemophilia A - Boxer Variant

V Factor VIII Deficiency, Hemophilia A - German Shepherd Variant 1

Factor VIII Deficiency, Hemophilia A - German Shepherd Variant 2Glanzmann's Thrombasthenia Type I - Great Pyrenees Variant

## Gene

GP9

TUBB1 Exon 1

F9 Exon 7 F9 Exon 7 F7 Exon 5 F8 Exon 10 F8 Exon 11

F8 Exon 1

ITGA2B Exon 13

## Copies

0 Clear

0 Clear
$0 \quad$ Clear

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow

Swab code: 41201051408125
Ordered by Dr. John Smith
Ordered by Dr. John Smith
vetsupport@embarkvet.com
1-855-203-8271

|  |  | Gene | Copies | Results |
| :---: | :---: | :---: | :---: | :---: |
| $\checkmark$ | Glanzmann's Thrombasthenia Type I - Otterhound Variant | ITGA2B Exon 12 | 0 | Clear |
| ( | May-Hegglin Anomaly - Pug Variant | MYH9 | 0 | Clear |
| $\checkmark$ | P2Y12 Receptor Platelet Disorder - Greater Swiss Mountain Dog Variant | P2Y12 | 0 | Clear |
| V | Platelet Factor X Receptor Deficiency, Scott Syndrome - German Shepherd Dog Variant | TMEM16F | 0 | Clear |
| $\checkmark$ | Prekallikrein Deficiency - Shih Tzu Variant | KLKB1 Exon 8 | 0 | Clear |
| ( | Thrombopathia - Basset Hound Variant | RASGRP1 Exon 5 | 0 | Clear |
| $\checkmark$ | Thrombopathia - Landseer Variant | RASGRP1 Exon 8 | 0 | Clear |
| $\checkmark$ | Thrombopathia - American Eskimo Dog Variant | RASGRP1 Exon 5 | 0 | Clear |
| $\checkmark$ | Von Willebrand Disease Type I, Type I vWD | VWF | 0 | Clear |
| $\checkmark$ | Von Willebrand Disease Type II, Type II vWD - Pointer Variant | VWF | 0 | Clear |
| $\checkmark$ | Von Willebrand Disease Type III, Type III vWD - Terrier Variant | VWF Exon 4 | 0 | Clear |
| $\checkmark$ | Von Willebrand Disease Type III, Type III vWD - Shetland Sheepdog Variant | VWF Exon 7 | 0 | Clear |
| Red Bl | ood Cell Abnormality | Gene | Copies | Results |
| $\checkmark$ | Canine Elliptocytosis - Labrador Retriever Variant | SPTB Exon 30 | 0 | Clear |
| $\checkmark$ | Methemoglobinemia - Pomeranian Variant | CYB5R3 | 0 | Clear |
| ( | Pyruvate Kinase Deficiency - Basenji Variant | PKLR Exon 5 | 0 | Clear |
| $\checkmark$ | Pyruvate Kinase Deficiency - Labrador Retriever Variant | PKLR Exon 7 | 0 | Clear |

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com

Swab code: 41201051408125
Ordered by Dr. John Smith

1-855-203-8271
$\square$
( Pyruvate Kinase Deficiency - Pug Variant

Pyruvate Kinase Deficiency - Beagle Variant

Pyruvate Kinase Deficiency - Terrier Variant

White Blood Cell Abnormality
Gene

Canine Leukocyte Adhesion Deficiency Type I, CLAD I - Setter Variant

Canine Leukocyte Adhesion Deficiency Type III, CLAD III - German Shepherd Variant

Trapped Neutrophil Syndrome, TNS

Other

Ligneous Membranitis, LM - Scottish Terrier Variant
Gene
(
Gene

PKLR Exon 7

PKLR Exon 7

PKLR Exon 10

ITGB2 Exon 3

FERMT3

VPS13B Exon 19

PLG

Immunologic (6)

Complement 3 Deficiency, C3 Deficiency - Brittany Variant

Severe Combined Immunodeficiency, SCID - Terrier Variant
( Severe Combined Immunodeficiency, SCID - Wetterhoun Variant
(. Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever
$\checkmark$
X-linked Severe Combined Immunodeficiency, X-SCID - Basset Hound VariantX-linked Severe Combined Immunodeficiency, X-SCID - Corgi Variant

0 Clear

0 Clear

0 Clear

## Copies Results

0 Clear

0 Clear

0 Clear

Copies Results

0 Clear

Copies Results

0 Clear

0 Clear

0 Clear

0 Clear

0 Clear

0 Clear

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
1-855-203-8271
Swab code: 41201051408125
Ordered by Dr. John Smith

## Integument (18)

## Collagen Abnormality <br> Gene

Dystrophic Epidermolysis Bullosa - Golden Retriever Variant

Dystrophic Epidermolysis Bullosa - Central Asian Shepherd Dog Variant

Ehlers Danlos - Doberman Pinscher VariantMusladin-Lueke Syndrome, MLS - Beagle Variant
COL7A1 Exon 68

ADAMTSL2 Exon 7

## Keratin Abnormality

(V) Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly Coat Syndrome, CKCSID - Cavalier King Charles Spaniel Variant
v
Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita Dogue de Bordeaux Variant

V Hereditary Footpad Hyperkeratosis - Terrier and Kromfohrlander Variant

V Hereditary Footpad Hyperkeratosis - Rottweiler Variant
( Hereditary Nasal Parakeratosis, HNPK - Labrador Retriever Variant
(V) Ichthyosis - Great Dane Variant

V Ichthyosis - American Bulldog Variant
( Ichthyosis, Epidermolytic Hyperkeratosis - Terrier Variant
(i) Ichthyosis, ICH1 - Golden Retriever Variant

| Gene | Copies | Results |
| ---: | :---: | :---: |
| COL7A1 Exon 68 | 0 | Clear |
| COL7A1 | 0 | Clear |
| ADAMTS2 | 0 | Clear |
| ADAMTSL2 Exon 7 | 0 | Clear |

## Gene

FAM83H

KRT16 Exon 6
Copies Results

0 Clear

0 Clear

0 Clear
$0 \quad$ Clear

0 Clear
$0 \quad$ Clear

0 Clear

0 Clear

1 Notable

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
1-855-203-8271
Swab code: 41201051408125
Ordered by Dr. John Smith

Other
Bald Thigh Syndrome - Greyhound Variant
Ectodermal Dysplasia, Skin Fragility Syndrome - Chesapeake Bay Retriever Variant
Lethal Acrodermatitis, LAD - Bull Terrier Variant
Oculocutaneous Albinism, OCA - Pekingese Variant
X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia, XHED - German Shepherd Dog EDA Variant

## Metabolic (33)

Enzyme Deficiency
(V) Hypocatalasia, Acatalasemia - Beagle Variant

L-2-Hydroxyglutaricaciduria, L2HGA - Staffordshire Bull Terrier Variant

Pyruvate Dehydrogenase Deficiency - Spaniel Variant

Storage DiseaseCanine Fucosidosis - English Springer Spaniel Variant

GM1 Gangliosidosis - Shiba Inu Variant
(
GM1 Gangliosidosis - Alaskan Husky Variant

GM1 Gangliosidosis - Portuguese Water Dog Variant

GM2 Gangliosidosis - Poodle Variant

PDP1
Gene

CAT

L2HGDH

Gene
Gene
FUCA1
GLB1 Exon 15
GLB1 Exon 15
GLB1 Exon 2
HEXB Exon 3

Copies Results

0 Clear
$0 \quad$ Clear

0 Clear

0
Clear
$0 \quad$ Clear

Copies Results

0 Clear

0 Clear

0 Clear

Copies Results

0 Clear

0 Clear

0 Clear

0 Clear

0 Clear

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow

Swab code: 41201051408125
Ordered by Dr. John Smith
vetsupport@embarkvet.com
1-855-203-8271


0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
1-855-203-8271
Swab code: 41201051408125
Ordered by Dr. John Smith


0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
1-855-203-8271
Swab code: 41201051408125
Ordered by Dr. John Smith


## Neurologic (32)

## Brain or Seizure Disorder

 Variant0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com

Swab code: 41201051408125
Ordered by Dr. John Smith

$$
1-855-203-8271
$$

|  |  | Gene | Copies | Results |
| :---: | :---: | :---: | :---: | :---: |
| , | Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD - Beagle Variant | SPTBN2 | 0 | Clear |
| ( | Cerebellar Hypoplasia - Eurasier Variant | VLDLR | 0 | Clear |
| $\vee$ | Hereditary Ataxia, Cerebellar Degeneration - Old English Sheepdog and Gordon Setter Variant | RAB24 Exon 1 | 0 | Clear |
| ( | Neonatal Encephalopathy with Seizures, NEWS - Poodle Variant | ATF2 | 0 | Clear |
| ( | Progressive Early-Onset Cerebellar Ataxia - Finnish Hound Variant | SEL1L | 0 | Clear |
| ( | Spinocerebellar Ataxia with Myokymia and/or Seizures - Terrier Variant 2 | KCNJ10 | 0 | Clear |
| ( | Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA - Terrier Variant 1 | CAPN1 | 0 | Clear |
| $\vee$ | Spongy Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome - Shepherd Variant 1 | rd KCNJ10 | 0 | Clear |
| (V) | Spongy Degeneration with Cerebellar Ataxia 2, SDCA2 - Shepherd Variant 2 | ATP1B2 | 0 | Clear |
| Moveme | ent Disorder | Gene | Copies | Results |
| ( | Degenerative Myelopathy, DM | SOD1A | 0 | Clear |
| ( | Hypomyelination and Tremors - Weimaraner Variant | FNIP2 | 0 | Clear |
| ( | Juvenile Myoclonic Epilepsy - Rhodesian Ridgeback Variant | DIRAS1 | 0 | Clear |
|  | Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD - Kerry Blue Terrier Variant | e SERAC1 | 0 | Clear |

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow

Swab code: 41201051408125
Ordered by Dr. John Smith

|  |  | Gene | Copies | Results |
| :---: | :---: | :---: | :---: | :---: |
| $\checkmark$ | Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD - Chinese Crested Variant | SERAC1 | 0 | Clear |
| $\vee$ | Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome - English Springer Spaniel Variant | PLP1 | 0 | Clear |
| Narco | epsy | Gene | Copies | Results |
| $\checkmark$ | Narcolepsy - Doberman Pinscher Variant | HCRTR2 | 0 | Clear |
| V | Narcolepsy - Labrador Retriever Variant | HCRTR2 | 0 | Clear |
| $\checkmark$ | Narcolepsy - Dachshund Variant | HCRTR2 | 0 | Clear |
| Neuro | degenerative Disorder | Gene | Copies | Results |
| $\checkmark$ | Fetal-Onset Neonatal Neuroaxonal Dystrophy - Giant Schnauzer Variant | MFN2 | 0 | Clear |
| $\checkmark$ | Neuroaxonal Dystrophy, NAD - Spanish Water Dog Variant | TECPR2 | 0 | Clear |
| V | Neuroaxonal Dystrophy, NAD - Rottweiler Variant | VPS11 | 0 | Clear |
| Neuro | pathy | Gene | Copies | Results |
| $\checkmark$ | Alaskan Malamute Polyneuropathy, AMPN | NDRG1 | 0 | Clear |
| $\checkmark$ | Demyelinating Polyneuropathy - Miniature Schnauzer Variant SBF2/M | MTRM13 | 0 | Clear |
|  | Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV - Rottweiler Variant | AB3GAP1 | 0 | Clear |
| $\checkmark$ | Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1 ARHGEF1 | Exon 17 | 0 | Clear |

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
1-855-203-8271
Swab code: 41201051408125
Ordered by Dr. John Smith

|  | Gene | Copies | Results |
| :---: | :---: | :---: | :---: |
| ( Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 2, LPN2 | GJA9 | 0 | Clear |
| ( Laryngeal Paralysis - Miniature Bull Terrier Variant | RAPGEF6 | 0 | Clear |
| Sensory Neuropathy | Gene | Copies | Results |
| Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS - Spaniel and Pointer Variant | GDNF-AS | 0 | Clear |
| V Sensory Neuropathy - Border Collie Variant | FAM134B | 0 | Clear |

## Neuromuscular (7)

JunctionopathyCongenital Myasthenic Syndrome, CMS - Old Danish Pointing Dog VariantCongenital Myasthenic Syndrome, CMS - Labrador Retriever Variant

Congenital Myasthenic Syndrome, CMS - Jack Russell Terrier Variant

Congenital Myasthenic Syndrome, CMS - Golden Retriever Variant

Myasthenia Gravis-Like Syndrome - Heideterrier Variant

## Movement Disorder

(V) Episodic Falling Syndrome - Cavalier King Charles Spaniel VariantParoxysmal Dyskinesia, PxD - Soft Coated Wheaten Terrier Variant

Gene

## CHAT Exon 6

COLQ Exon 14

CHRNE

COLQ

CHRNE

Gene

BCAN Exons 1-4

PIGN

## Copies Results

0 Clear

0 Clear

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
1-855-203-8271
Swab code: 41201051408125
Ordered by Dr. John Smith

## Ophthalmologic (31)



0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow

Swab code: 41201051408125
Ordered by Dr. John Smith
vetsupport@embarkvet.com
1-855-203-8271

Collie Eye Anomaly, Choroidal Hypoplasia, CEA


Congenital Stationary Night Blindness - Briard Variant

Congenital Stationary Night Blindness - Beagle Variant

Day Blindness, Cone Degeneration, Achromatopsia - Alaskan Malamute Variant

Day Blindness, Cone Degeneration, Achromatopsia - German Shorthaired Pointer VariantGolden Retriever Progressive Retinal Atrophy 1, GR-PRA1

Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2

Macular Corneal Dystrophy, MCD - Labrador Retriever Variant

Progressive Retinal Atrophy - Basenji VariantProgressive Retinal Atrophy, CNGA - Shetland Sheepdog Variant

Progressive Retinal Atrophy, Cone-Rod Dystrophy 1, crd1 - American Staffordshire Terrier Variant


Progressive Retinal Atrophy, Cone-Rod Dystrophy 4, crd4/cord1

Progressive Retinal Atrophy, PRA1 - Papillon Variant

Progressive Retinal Atrophy, PRA3 - Tibetan Spaniel and Terrier Variant

Progressive Retinal Atrophy, Progressive Rod-Cone Degeneration, prcd

Progressive Retinal Atrophy, Rod-Cone Dysplasia 1, rcd1 - Irish Setter Variant

Gene

RPGRIP1 Exon 2

CNGB1

FAM161A

PRCD Exon 1

PDE6B Exon 21

Copies Results

| NHEJ1 Intron 4 | 0 | Clear |
| :---: | :---: | :---: |
| RPE65 | 0 | Clear |
| LRIT3 | 0 | Clear |
| CNGB3 | 0 | Clear |

CNGB3 Exon 6 Clear
SLC4A3 Exon 16 Clear

TTC8 Exon $8 \quad 0 \quad$ Clear

CHST6

SAG
CNGA1 Exon $9 \quad 0 \quad$ Clear

PDE6B

0
Clear

0 Clear

0
Clear

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
1-855-203-8271
Swab code: 41201051408125
Ordered by Dr. John Smith

Gene

Progressive Retinal Atrophy, Rod-Cone Dysplasia 3, rcd3 - Corgi Variant

X-Linked Progressive Retinal Atrophy 1, XL-PRA1 - Samoyed and Husky Variant
Gene

PDE6A

RPGR Exon 15

Gene

ADAMTS20

Gene

Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia - Italian Greyhound VariantAutosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia - Parson Russell Terrier Variant

Raine Syndrome, Canine Dental Hypomineralization Syndrome - Border Collie Variant
FAM20C

Clear

0 Clear

## Copies Results

$0 \quad$ Clear

0 Clear

0 Clear

Copies Results

0 Clear

2 At risk

0 Clear

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
1-855-203-8271
Swab code: 41201051408125
Ordered by Dr. John Smith

## Pulmonary (4)

| (Vene | Gene |
| :--- | ---: |
| Verimary Ciliary Dyskinesia, PCD - Old English Sheepdog Variant | LAMP3 |
| (Vrimary Ciliary Dyskinesia, PCD - Alaskan Malamute Variant | CCDC39 |
| Recurrent Inflammatory Pulmonary Disease, RIPD - Rough Collie Variant | AKNA |

## Skeletal (9)

Chondrodystrophy
Chondrodystrophy - Norwegian Elkhound and Karelian Bear Dog Variant
Oculoskeletal Dysplasia 2, Dwarfism-Retinal Dysplasia 2, drd2, OSD2 - Samoyed
Variant
Osteochondrodysplasia, Skeletal Dwarfism - Poodle Variant
Skeletal Dysplasia 2, SD2 - Labrador Retriever Variant

Decreased Bone StrengthHereditary Vitamin D-Resistant Rickets - Pomeranian Variant

ح Osteogenesis Imperfecta, Brittle Bone Disease - Beagle Variant

Osteogenesis Imperfecta, Brittle Bone Disease - Dachshund Variant

Osteogenesis Imperfecta, Brittle Bone Disease - Golden Retriever Variant

Copies
$0 \quad$ Clear

0 Clear

0 Clear

0 Clear

Copies Results

0 Clear

COL9A2 5' UTR

SLC13A1

COL11A2

Gene

VDR Exon 4

COL1A2

SERPINH1 Exon 5

COL1A1 Exon 18

## Results

Clear

| Gene | Copies | Results |
| ---: | ---: | ---: |
| ITGA10 | 0 | Clear |
| COL9A2 5' UTR | 0 | Clear |
| SLC13A1 | 0 | Clear |
| COL11A2 | 0 | Clear |
| Gene | Copies | Results |
| VDR Exon 4 | 0 | Clear |
| COL1A2 | 0 | Clear |
| SERPINH1 Exon 5 | 0 | Clear |
| COL1A1 Exon 18 | 0 | Clear |

0 yrs 6 mths - M
64.0\% Australian Shepherd, 26.0\% Golden Retriever, 10.0\% Chow Chow
vetsupport@embarkvet.com
1-855-203-8271
Swab code: 41201051408125
Ordered by Dr. John Smith

Other

Craniomandibular Osteopathy, CMO - Terrier and Australian Shepherd Variant

## Urogenital (14)

## Nephropathy

Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN English Springer Spaniel Variant
$\checkmark$
Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN - Cocker Spaniel Variant

V Fanconi Syndrome - Basenji Variant


Polycystic Kidney Disease, PKD - Bull Terrier Variant

Protein Losing Nephropathy, PLN - Soft Coated Wheaten and Airedale Terrier Variant

X-Linked Hereditary Nephropathy, XLHN - Samoyed Variant 2

Urolithiasis


2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis - American Indian Dog Variant
( Cystinuria Type I-A - Newfoundland Variant
( Cystinuria Type II-A - Australian Cattle Dog Variant
( Cystinuria Type II-B - Miniature Pinscher Variant
. Hyperuricosuria and Hyperuricemia or Urolithiasis, HUU

Primary Hyperoxaluria - Coton de Tulear Variant

Gene

SLC37A2 Exon 15

Gene

COL4A4 Exon 30

COL4A4 Exon 3

FAN1

PKD1 Exon 29

NPHS1

COL4A5 Exon 35

Gene

APRT Exon 3

SLC3A1 Exon 2

SLC3A1 Exon 6

SLC7A9 Exon 9

SLC2A9 Exon 5

AGXT Exon 2
Other Gene Copies Results

| (versistent Mullerian Duct Syndrome, PMDS - Miniature and Standard Schnauzer Variant | AMHR2 | 0 | Clear |
| :--- | :--- | :--- | :--- |
| Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND - German Shepherd Dog | FLCN | 0 | Clear |
| Variant |  |  |  |

