Embark Veterinary Veterinary Practice

Swab code: penelope1010_swab Swab activated on 7/1/2022 Results completed on 7/1/2022 Report accessed on 7/1/2022 Ordered by Lorenz Connelly

vetsupport@embarkvet.com 1-855-203-8271

Patient Information

Penelope

0 yrs 3 mths - F

Genetic Age: 7 human years Predicted Adult Weight: 22 lbs

Client Information

Barry O'Neal

boneal@example.com 555-555-4569

Breed Information

61.7% Poodle (Small) 20.4% Cocker Spaniel 17.7% Pekingese

1 Increased Risk Result

Progressive Retinal Atrophy, Progressive Rod-Cone Degeneration, prcd

Page 2

1 Notable Result

Alanine Aminotransferase Activity Page 6

Penelope is not at increased risk for 218 of the genetic health variants that Embark tests. Page 8

Page 24 Glossary

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

1 Increased Risk Result

Progressive Retinal Atrophy, Progressive Rod-Cone Degeneration, prcd

How to interpret this result

Penelope has two copies of this recessive variant in the PRCD gene and is considered at risk for developing Progressive Retinal Atrophy, Progressive Rod-Cone Degeneration, prod. Progressive retinal atrophy (PRA) describes a group of non-painful inherited degenerative or dysplastic disorders of the photoreceptor cells of the retina that results in vision loss in dogs. While there are management recommendations, currently, there is no widespread treatment for progressive retinal atrophy. However, gene therapy is an evolving field.

You can learn more about penetrance, clinical signs, diagnostics, and care for Penelope below or email vetsupport@embarkvet.com should you desire to speak with a genetic counselor.

What is Progressive Retinal Atrophy, Progressive Rod-Cone Degeneration, prcd?

Progressive retinal atrophy (PRA) describes a group of non-painful inherited degenerative or dysplastic disorders of the photoreceptor cells of the retina that results in vision loss in dogs. Early-onset PRAs are typically expressed between two and six weeks of age (the period of postnatal retinal differentiation in dogs) and are characterized by the abnormal development of the rod and cone photoreceptors. The late-onset forms of PRA are degenerations of photoreceptors that have completed normal development. Progressive rod-cone degeneration (prcd) is a late-onset form of PRA that affects multiple breeds and is a homolog for some forms of human retinitis pigmentosa.

Age of Onset of Clinical Signs or Symptoms

Studied breeds and age of diagnosis based on ophthalmoscopy versus electroretinogram:

Poodle Toy and Miniature: 3-5 years; 9 months

Variant Info

PRCD Fxon 1 Recessive inheritance 2 copies of the variant

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese

Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

American Cocker Spaniel: 3-5 years; 9 months

Portuguese Water Dog: 3-5 years; 1.5 years

Labrador Retriever: 4-6 years; 1.5 years

English Cocker Spaniel: 8-12 years; 2.5 years and more

Golden Retriever: 5-6 yrs (no ERG data)

Clinical Signs

Clinical signs that a dog may have decreased vision may include:

- Reluctance to go down stairs
- Reluctance to go into a dark room or outside at night
- · Bumping into door frames or corners
- · Difficulty fetching toys
- A characteristic eyeshine due to increased reflectivity of the tapetum

The discernible visual impairment will typically lag behind changes observed by a veterinarian and electroretinogram (ERG) abnormalities.

Penetrance and Additional Impact on Phenotype

The phenotypic expression of the disease varies greatly within breeds and between individuals. American Eskimo Dog, Nova Scotia Duck Tolling Retriever, Australian Cattle Dog, and English Cocker Spaniel are noted breeds where the age of onset varies extensively.

While the age of onset of clinical signs is typically breed-dependent, the PRCD variant is thought to be almost 100% penetrant (estimated 98%). That means that all dogs with two copies of the variant are expected to have vision loss. However, some dogs, in breeds where the age of onset is late, may die from other causes prior to notable vision loss. Research into genetic modifier(s) that may play a crucial role in expression of the disease is ongoing.

Follow-up Diagnostics to Consider

A diagnosis of PRA is made by examination of the fundus, or back of the eye. In the early stages, it may be difficult to observe any obvious changes to the retina, but with disease progression, increased reflectivity of the tapetum, thinning of the retinal blood vessels, and atrophy of the optic nerve will be observed. Changes to the fundus are bilateral and symmetrical, helping to distinguish PRA from other retinal diseases.

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

If the retinas are unable to be evaluated due to other abnormalities (cataracts, corneal scarring, etc.), a veterinary ophthalmologist can perform an ERG, which measures the electrical activity, and thus the function, of the retinas. Since cataracts often develop secondary to PRA, an ERG is crucial to evaluate for PRA prior to considering cataract surgery.

Treatment and Management Options

- Currently, there is no widespread treatment for progressive retinal atrophy, however, gene therapy is an evolving field.
- Because the condition is progressive, dogs will adapt to the gradual vision loss over time. Owners should help affected dogs navigate their homes and the outside world by keeping furniture in the same location, making sure they are on a leash when in unfamiliar territory, and training them to understand verbal commands or using scent markers.
- Cataracts secondary to PRA generally occur later in the disease progression and are presumed to occur due to oxidative stress on the lens from the degenerating retinas ("toxic" cataracts). Oral antioxidant therapy has been shown to improve retinal function in normal dogs as well as decrease oxidative stress on lens cells, which can help delay cataract formation. Ocu-GLO is one supplement that may be of benefit.

More Information

The retina perceives images through photoreceptors that collect information about light. There are two types of photoreceptors in the retina: rods and cones. Rods gather information about light intensity and are used more for night vision. Rods are also responsible for detecting and following movement. Cones distinguish between colors and are more helpful for day vision and acute focal vision. Most domestic animals have a dominance of rods. In PRA, the rods degenerate first, so night vision will wane before day vision. Conditions where the cones are affected first (or alone), are rarer and are often referred to as day blindness, cone degeneration, cone-rod dystrophy, or achromatopsia.

Of note, while there are many variants known to cause PRA in different breeds, some forms of PRA have no known genetic variant, which means they can not be tested. It is possible, therefore, that a dog who tested clear for the known PRA genetic variants could develop one of these other unidentified forms.

References

Zangerl B, Goldstein O, Philp AR, et al. Identical mutation in a novel retinal gene causes progressive rod-cone degeneration in dogs and retinitis pigmentosa in humans. Genomics. 2006;88(5):551-563. doi:10.1016/j.ygeno.2006.07.007"

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Switonski M. Impact of gene therapy for canine monogenic diseases on the progress of preclinical studies. J Appl Genet. 2020;61(2):179-186. doi:10.1007/s13353-020-00554-8"

Mellersh CS. The genetics of eye disorders in the dog. Canine Genet Epidemiol. 2014;1:3. Published 2014 Apr 16. doi:10.1186/2052-6687-1-3"

Miyadera K, Acland GM, Aguirre GD. Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies. Mamm Genome. 2012;23(1-2):40-61. doi:10.1007/s00335-011-9361-3"

J. Dostal, A. Hrdlicova, P. Horak. Progressive rod-cone degeneration (PRCD) in selected dog breeds and variability in its phenotypic expression. Veterinarni Medicina, 56, 2011 (5): 243-247."

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

1 Notable Result

Alanine Aminotransferase Activity

How to interpret this result

Penelope has one copy of this codominant variant in the GPT gene. The variant does not cause liver disease, and this test is not providing an ALT blood level result. But dogs with at least one copy of the 'A' allele are likely to have lower ALT activity ('low normal') than dogs with zero copies of the 'A' allele ('normal'). So slight elevations in ALT, which could indicate liver injury, can go undiagnosed with standard blood testing since ALT may remain within reference ranges despite liver damage in some individuals.

You can learn more about penetrance, diagnostics, and monitoring for Penelope below or email vetsupport@embarkvet.com should you desire to speak with a genetic counselor.

What is Alanine Aminotransferase Activity?

Alanine Aminotransferase (ALT) is a cytoplasmic enzyme found mainly in hepatocytes (liver cells). Although it can occasionally be found elsewhere, such as skeletal muscle, kidney, and red blood cells, ALT is the most liver-specific of the liver enzymes, so it's commonly used by veterinarians as a measure of liver health.

When the liver is inflamed or damaged, ALT activity can increase dramatically. This makes ALT a sensitive marker of liver injury. Conditions such as inflammation, infection, or cancer of the liver and certain medications and toxins can cause an elevation of ALT measured in the blood.

Age of Onset of Clinical Signs or Symptoms

This clinical trait can be present at a young age, therefore, a baseline ALT can be established in puppies or young adults.

Clinical Signs

Dogs do not show any outward signs when they have this clinical trait.

Variant Info

GPT

Codominant inheritance 1 copy of the variant

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Penetrance and Additional Impact on Phenotype

This test screens for a variant in the GPT gene which has a codominant mode of inheritance. The variant does not cause liver disease, and this test is not providing an ALT blood level result. But dogs with at least one copy of the 'A' allele are likely to have lower ALT activity ('low normal') than dogs with zero copies of the 'A' allele ('normal'). So slight elevations in ALT, which could indicate liver injury, can go undiagnosed with standard blood testing.

Follow-up Diagnostics to Consider

This test can help vets understand a dog's genetic predisposition and indicate the need to establish an accurate ALT baseline early enough to monitor deviations.

Treatment and Management Options

- This result can alert vets to ALT levels that may not be flagged by the diagnostic laboratory as elevated.
- The results can be used to subsequently establish a dog's baseline, adjust monitoring protocols, and provide personalized medicine.

More Information

While dogs with one or two copies of the variant can have a lower than 'normal' baseline ALT level, their blood ALT value may not be flagged as 'low' by laboratory measurement. However, the curve of ALT values for dogs with this variant is shifted to the left (in both healthy dogs and dogs with liver disease). You can see a visual representation of this shift in Figure 2 in White et al., 2015.

Dogs with one or two copies of the variant can lead completely normal lives, and this is not an indication that a dog is any less healthy. If you work with breeders, this test should not be used to remove a dog from a breeding program. In fact, at this time, there are no specific recommendations to only breed dogs with the variant to clear dogs.

References

White ME, Hayward JJ, Stokol T, Boyko AR (2015) Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes. PLoS ONE 10(12): e0145199."

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Results Summary

To view COI and traits information, log into your account.

Auditory (2)

	Gene	Copies	Results	
Deafness and Vestibular Syndrome of Dobermans, DVDob, DING	S MYO7A	0	Clear	
Early Onset Adult Deafness, EOAD - Rhodesian Ridgeback Varial	nt EPS8L2 Deletion Exon 12	0	Clear	

Cardiac (4)

Dilated	d Cardiomyopathy	Gene	Copies	Results
Ø	Dilated Cardiomyopathy, DCM1 - Doberman Pinscher Variant 1	PDK4	0	Clear
	Dilated Cardiomyopathy, DCM2 - Doberman Pinscher Variant 2	TTN	0	Clear
Other		Gene	Copies	Results
Other	Cardiomyopathy and Juvenile Mortality - Belgian Shepherd Variant	Gene YARS2	Copies 0	Results Clear

Endocrine (3)

Hypothyroidism	Gene	Copies	Results
Congenital Dyshormonogenic Hypothyroidism with Goiter - Shih Tzu Variant	SLC5A5	0	Clear
Congenital Hypothyroidism - Rat, Toy Fox, and Hairless Terrier Variant	TPO Exon 3	0	Clear
Congenital Hypothyroidism - Tenterfield Terrier Variant	TPO Exon 9	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Gastrointestinal (4)

Gastroenteropathy	Gene	Copies	Results
Lundehund Syndrome	LEPREL1	0	Clear
Malabsorptive Disorder	Gene	Copies	Results
Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption - Beagle Variant	CUBN Exon 8	0	Clear
Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption - Border Collie Variant	CUBN Exon 53	0	Clear
Inherited Selected Cobalamin Malabsorption with Proteinuria - Komondor Variant	CUBN	0	Clear

Hematologic (32)

Coagulopathy	Gene	Copies	Results
Bernard-Soulier Syndrome, BSS - Cocker Spaniel Variant	GP9	0	Clear
Congenital Macrothrombocytopenia - Cairn and Norfolk Terrier Variant	TUBB1 Exon 1	0	Clear
Factor IX Deficiency, Hemophilia B - Rhodesian Ridgeback Variant	F9 Exon 7	0	Clear
Factor IX Deficiency, Hemophilia B - Terrier Variant	F9 Exon 7	0	Clear
Factor VII Deficiency	F7 Exon 5	0	Clear
Factor VIII Deficiency, Hemophilia A - Boxer Variant	F8 Exon 10	0	Clear
Factor VIII Deficiency, Hemophilia A - German Shepherd Variant 1	F8 Exon 11	0	Clear
Factor VIII Deficiency, Hemophilia A - German Shepherd Variant 2	F8 Exon 1	0	Clear
Glanzmann's Thrombasthenia Type I - Great Pyrenees Variant	ITGA2B Exon 13	0	Clear
Glanzmann's Thrombasthenia Type I - Otterhound Variant	ITGA2B Exon 12	0	Clear
May-Hegglin Anomaly - Pug Variant	MYH9	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

	Gene	Copies	Results
P2Y12 Receptor Platelet Disorder - Greater Swiss Mountain Dog Variant	P2Y12	0	Clear
Platelet Factor X Receptor Deficiency, Scott Syndrome - German Shepherd Dog Variant	t TMEM16F	0	Clear
Prekallikrein Deficiency - Shih Tzu Variant	KLKB1 Exon 8	0	Clear
Thrombopathia - American Eskimo Dog Variant	RASGRP1 Exon 5	0	Clear
Thrombopathia - Basset Hound Variant	RASGRP1 Exon 5	0	Clear
Thrombopathia - Landseer Variant	RASGRP1 Exon 8	0	Clear
✓ Von Willebrand Disease Type I, Type I vWD	VWF	0	Clear
✓ Von Willebrand Disease Type II, Type II vWD - Pointer Variant	VWF	0	Clear
✓ Von Willebrand Disease Type III, Type III vWD - Shetland Sheepdog Variant	VWF Exon 7	0	Clear
✓ Von Willebrand Disease Type III, Type III vWD - Terrier Variant	VWF Exon 4	0	Clear
Red Blood Cell Abnormality	Gene	Copies	Results
Canine Elliptocytosis - Labrador Retriever Variant	SPTB Exon 30	0	Clear
Methemoglobinemia - Pomeranian Variant	CYB5R3	0	Clear
Pyruvate Kinase Deficiency - Basenji Variant	PKLR Exon 5	0	Clear
Pyruvate Kinase Deficiency - Beagle Variant	PKLR Exon 7	0	Clear
Pyruvate Kinase Deficiency - Labrador Retriever Variant	PKLR Exon 7	0	Clear
Pyruvate Kinase Deficiency - Pug Variant	PKLR Exon 7	0	Clear
Pyruvate Kinase Deficiency - Terrier Variant	PKLR Exon 10	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

White	Blood Cell Abnormality	Gene	Copies	Results
	Canine Leukocyte Adhesion Deficiency Type I, CLAD I - Setter Variant	ITGB2 Exon 3	0	Clear
	Canine Leukocyte Adhesion Deficiency Type III, CLAD III - German Shepherd Variant	FERMT3	0	Clear
Ø	Trapped Neutrophil Syndrome, TNS	VPS13B Exon 19	0	Clear
Other		Gene	Copies	Results
	Ligneous Membranitis, LM - Scottish Terrier Variant	PLG	0	Clear

Immunologic (6)

	Gene	Copies	Results
Complement 3 Deficiency, C3 Deficiency - Brittany Variant	C3	0	Clear
Severe Combined Immunodeficiency, SCID - Terrier Variant	PRKDC	0	Clear
Severe Combined Immunodeficiency, SCID - Wetterhoun Variant	RAG1	0	Clear
Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever	MTBP	0	Clear
X-linked Severe Combined Immunodeficiency, X-SCID - Basset Hound Variant	IL2RG Exon 1	0	Clear
X-linked Severe Combined Immunodeficiency, X-SCID - Corgi Variant	IL2RG	0	Clear

Integument (18)

Collagen Abnormality	Gene	Copies	Results
Oystrophic Epidermolysis Bullosa - Central Asian Shepherd Dog Variant	COL7A1	0	Clear
Dystrophic Epidermolysis Bullosa - Golden Retriever Variant	COL7A1 Exon 68	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

		Gene	Copies	Results
	Ehlers Danlos - Doberman Pinscher Variant	ADAMTS2	0	Clear
Ø	Musladin-Lueke Syndrome, MLS - Beagle Variant	ADAMTSL2 Exon 7	0	Clear
Kerati	n Abnormality	Gene	Copies	Results
⊘	Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly C Syndrome, CKCSID - Cavalier King Charles Spaniel Variant	Coat FAM83H	0	Clear
Ø	Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita - Dogue de Bordeaux Variant	KRT16 Exon 6	0	Clear
	Hereditary Footpad Hyperkeratosis - Rottweiler Variant	DSG1	0	Clear
	Hereditary Footpad Hyperkeratosis - Terrier and Kromfohrlander Variant	FAM83G	0	Clear
	Hereditary Nasal Parakeratosis, HNPK - Labrador Retriever Variant	SUV39H2	0	Clear
	Ichthyosis, Epidermolytic Hyperkeratosis - Terrier Variant	KRT10 Intron 5	0	Clear
Ø	Ichthyosis, ICH1 - Golden Retriever Variant	PNPLA1 Exon 8	0	Clear
	Ichthyosis - American Bulldog Variant	NIPAL4 Exon 6	0	Clear
	Ichthyosis - Great Dane Variant	SLC27A4	0	Clear
Other		Gene	Copies	Results
②	Bald Thigh Syndrome - Greyhound Variant	IGFBP5	0	Clear
②	Ectodermal Dysplasia, Skin Fragility Syndrome - Chesapeake Bay Retriever Variant	PKP1 Intron 1	0	Clear
	Lethal Acrodermatitis, LAD - Bull Terrier Variant	MKLN1	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

	Gene	Copies	Results
Oculocutaneous Albinism, OCA - Small Breed Variant	C45A2	0	Clear
X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia, XHED - German Shepherd Dog Variant	EDA	0	Clear

Metabolic (33)			
Enzyme Deficiency	Gene	Copies	Results
Hypocatalasia, Acatalasemia - Beagle Variant	CAT	0	Clear
L-2-Hydroxyglutaricaciduria, L2HGA - Staffordshire Bull Terrier Variant	L2HGDH	0	Clear
Pyruvate Dehydrogenase Deficiency - Spaniel Variant	PDP1	0	Clear
Storage Disease	Gene	Copies	Results
Canine Fucosidosis - English Springer Spaniel Variant	FUCA1	0	Clear
GM1 Gangliosidosis - Alaskan Husky Variant	GLB1 Exon 15	0	Clear
GM1 Gangliosidosis - Portuguese Water Dog Variant	GLB1 Exon 2	0	Clear
GM1 Gangliosidosis - Shiba Inu Variant	GLB1 Exon 15	0	Clear
GM2 Gangliosidosis - Japanese Chin Variant	НЕХА	0	Clear
GM2 Gangliosidosis - Poodle Variant	HEXB Exon 3	0	Clear
Globoid Cell Leukodystrophy, Krabbe Disease - Terrier Variant	GALC Exon 5	0	Clear
Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA - Maltese Variant	G6PC	0	Clear
Glycogen Storage Disease Type II, Pompe's Disease, GSD II - Finnish and Swedish Lapphund, Lapponian Herder Variant	GAA Exon 15	0	Clear
Glycogen Storage Disease Type IIIA, GSD IIIA - Curly Coated Retriever Variant	AGL GDE	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

		Gene	Copies	Results
Ø	Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency - Wachtelhund Variant	PFKM Exon 8	0	Clear
⊘	Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency - Whippet and English Springer Spaniel Variant	PFKM Exon 21	0	Clear
⊘	Lagotto Storage Disease	ATG4D Exon 10	0	Clear
⊘	Late-Onset Neuronal Ceroid Lipofuscinosis, NCL12 - Australian Cattle Dog Variant	ATP13A2	0	Clear
⊘	Mucopolysaccharidosis IIIB, Sanfilippo Syndrome Type B, MPS IIIB - Schipperke Variant	NAGLU	0	Clear
⊘	Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA - Dachshund Va	ariant SGSH	0	Clear
Ø	Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA - New Zealand Huntaway Variant	SGSH	0	Clear
⊘	Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII - German Shepherd Variant	GUSB	0	Clear
⊘	Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII - Terrier Brasileiro Variant	GUSB	0	Clear
⊘	Neuronal Ceroid Lipofuscinosis 1, NCL1 - Dachshund Variant	PPT1 Exon 8	0	Clear
Ø	Neuronal Ceroid Lipofuscinosis 10, NCL10 - American Bulldog Variant	CTSD Exon 5	0	Clear
⊘	Neuronal Ceroid Lipofuscinosis 2, NCL2 - Dachshund Variant	TPP1 Exon 4	0	Clear
⊘	Neuronal Ceroid Lipofuscinosis 5, NCL5 - Border Collie and Australian Cattle Dog Variant	CLN5 Exon 4	0	Clear
Ø	Neuronal Ceroid Lipofuscinosis 5, NCL5 - Golden Retriever Variant	CLN5 Exon 4	0	Clear
Ø	Neuronal Ceroid Lipofuscinosis 6, NCL6 - Australian Shepherd Variant	CLN6 Exon 7	0	Clear
	Neuronal Ceroid Lipofuscinosis 7, NCL7 - Chihuahua and Chinese Crested Variant	MFSD8	0	Clear
Ø	Neuronal Ceroid Lipofuscinosis 8, NCL8 - Australian Shepherd and German Shorthaired Pointer Variant	CLN8	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

	Gene	Copies	Results
Neuronal Ceroid Lipofuscinosis 8, NCL8 - English Setter Variant	CLN8 Exon 2	0	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL8 - Saluki Variant	CLN8	0	Clear
Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A - American Staffordshire Terrier Variant	ARSG Exon 2	0	Clear

Muscular (13)

Movement Disorder	Gene	Copies	Results
Movement disorder	Gene	Copies	Results
Myotonia Congenita - Australian Cattle Dog Variant	CLCN1 Exon 23	0	Clear
Myotonia Congenita - Miniature Schnauzer Variant	CLCN1 Exon 7	0	Clear
Muscular Dystrophy	Gene	Copies	Results
Limb Girdle Muscular Dystrophy - Boston Terrier Variant	SGCD	0	Clear
Muscular Dystrophy - Cavalier King Charles Spaniel Variant 1	DMD	0	Clear
Muscular Dystrophy - Golden Retriever Variant	DMD	0	Clear
Ullrich-like Congenital Muscular Dystrophy - Labrador Retriever Variant 1	COL6A3 Exon 10	0	Clear
Myopathy	Gene	Copies	Results
Centronuclear Myopathy, CNM - Labrador Retriever Variant	PTPLA	0	Clear
Exercise-Induced Collapse, EIC	DNM1	0	Clear
Inflammatory Myopathy - Dutch Shepherd Variant	SLC25A12	0	Clear
Inherited Myopathy of Great Danes	BIN1	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

		Gene	Copies	Results
⊘	Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM - Labrador Retriever Variant	MTM1 Exon 7	0	Clear
②	Nemaline Myopathy - American Bulldog Variant	NEB	0	Clear
Other		Gene	Copies	Results
	Myostatin Deficiency, Bully Whippet Syndrome	MSTN	0	Clear

Neurologic (32)

Brain or Seizure Disorder	Gene	Copies	Results
Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy	SLC19A3 Exon 2	0	Clear
Alexander Disease - Labrador Retriever Variant	GFAP Exon 4	0	Clear
Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy - Lagotto Romagnolo Variant	LGI2 Exon 8	0	Clear
Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD - Beagle Varia	nt SPTBN2	0	Clear
Cerebellar Hypoplasia - Eurasier Variant	VLDLR	0	Clear
Hereditary Ataxia, Cerebellar Degeneration - Old English Sheepdog and Gordon Setter Variant	RAB24 Exon 1	0	Clear
Neonatal Encephalopathy with Seizures, NEWS - Poodle Variant	ATF2	0	Clear
Progressive Early-Onset Cerebellar Ataxia - Finnish Hound Variant	SEL1L	0	Clear
Spinocerebellar Ataxia with Myokymia and/or Seizures - Terrier Variant 2	KCNJ10	0	Clear
Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA - Terrier Variant 1	CAPN1	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

		Gene	Copies	Results
⊘	Spongy Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome - Shepherd Variant 1	KCNJ10	0	Clear
Ø	Spongy Degeneration with Cerebellar Ataxia 2, SDCA2 - Shepherd Variant 2	ATP1B2	0	Clear
loven	nent Disorder	Gene	Copies	Results
⊘	Degenerative Myelopathy, DM	SOD1A	0	Clear
	Hypomyelination and Tremors - Weimaraner Variant	FNIP2	0	Clear
Ø	Juvenile Myoclonic Epilepsy - Rhodesian Ridgeback Variant	DIRAS1	0	Clear
	Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD - Chinese Crested Variant	SERAC1	0	Clear
⊘	Progressive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD - Kerry Blue Terrier Variant	SERAC1	0	Clea
	Shaking Puppy Syndrome, X-linked Generalized Tremor Syndrome - English Springer Spaniel Variant	PLP1	0	Clea
arcol	epsy	Gene	Copies	Result
Ø	Narcolepsy - Dachshund Variant	HCRTR2	0	Clea
⊘	Narcolepsy - Doberman Pinscher Variant	HCRTR2	0	Clea
Ø	Narcolepsy - Labrador Retriever Variant	HCRTR2	0	Clear
euro	degenerative Disorder	Gene	Copies	Result
⊘	Fetal-Onset Neonatal Neuroaxonal Dystrophy - Giant Schnauzer Variant	MFN2	0	Clear
	Neuroaxonal Dystrophy, NAD - Rottweiler Variant	VPS11	0	Clear
	Neuroaxonal Dystrophy, NAD - Spanish Water Dog Variant	TECPR2	0	Clea

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

Neuropathy	Gene	Copies	Results
Alaskan Malamute Polyneuropathy, AMPN	NDRG1	0	Clear
Demyelinating Polyneuropathy - Miniature Schnauzer Variant	SBF2/MTRM13	0	Clear
Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV - Rottweiler Variant	RAB3GAP1	0	Clear
Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1 A	ARHGEF10 Exon 17	0	Clear
Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 2, LPN2	GJA9	0	Clear
Laryngeal Paralysis - Miniature Bull Terrier Variant	RAPGEF6	0	Clear
Sensory Neuropathy	Gene	Copies	Results
Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS - Spaniel Pointer Variant	and GDNF-AS	0	Clear
Sensory Neuropathy - Border Collie Variant	FAM134B	0	Clear
Neuromuscular (7)			
Junctionopathy	Gene	Copies	Results
Congenital Myasthenic Syndrome, CMS - Golden Retriever Variant	COLQ Exon 13	0	Clear

Junctionopathy	Gene	Copies	Results
Congenital Myasthenic Syndrome, CMS - Golden Retriever Variant	COLQ Exon 13	0	Clear
Congenital Myasthenic Syndrome, CMS - Heideterrier Variant	CHRNE	0	Clear
Congenital Myasthenic Syndrome, CMS - Jack Russell Terrier Variant	CHRNE Exon 7	0	Clear
Congenital Myasthenic Syndrome, CMS - Labrador Retriever Variant	COLQ Exon 14	0	Clear
Congenital Myasthenic Syndrome, CMS - Old Danish Pointing Dog Variant	CHAT Exon 6	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

Movement Disorder	Gene	Copies	Results
Episodic Falling Syndrome - Cavalier King Charles Spaniel Variant B	CAN Exons 1-4	0	Clear
Paroxysmal Dyskinesia, PxD - Soft Coated Wheaten Terrier Variant	PIGN	0	Clear
Ophthalmologic (31)			
Glaucoma	Gene	Copies	Results
Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD - Border Collie Varia	nt OLFML3	0	Clear
Primary Open Angle Glaucoma and Primary Lens Luxation - Chinese Shar-Pei Variant	ADAMTS17	0	Clear
Primary Open Angle Glaucoma - Basset Fauve de Bretagne Variant	ADAMTS17	0	Clear
Primary Open Angle Glaucoma - Beagle Variant	ADAMTS10	0	Clear
Primary Open Angle Glaucoma - Norwegian Elkhound Variant	ADAMTS10	0	Clear
Iris or Lens	Gene	Copies	Results
Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts - Australian Shepherd Va	riant HSF4	0	Clear
Primary Lens Luxation	ADAMTS17	0	Clear
Retinopathy	Gene	Copies	Results
Achromatopsia - German Shepherd Variant	CNGA3 Exon 7	0	Clear
Achromatopsia - Labrador Retriever Variant	CNGA3 Exon 7	0	Clear
Autosomal Dominant Progressive Retinal Atrophy - English Mastiff and Bullmastiff Variant	RHO Exon 1	0	Clear
Canine Multifocal Retinopathy, cmr1 BEST1	/VMD2 Exon 2	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

	Gene	Copies	Results
Canine Multifocal Retinopathy, cmr2 - Coton de Tulear Variant	BEST1/VMD2 Exon 5	0	Clear
Canine Multifocal Retinopathy, cmr3 - Finnish and Swedish Lapphund, Lapponian Herder Variant	BEST1/VMD2 Exon 10	0	Clear
Collie Eye Anomaly, Choroidal Hypoplasia, CEA	NHEJ1 Intron 4	0	Clear
Congenital Stationary Night Blindness - Beagle Variant	LRIT3	0	Clear
Congenital Stationary Night Blindness - Briard Variant	RPE65	0	Clear
Day Blindness, Cone Degeneration, Achromatopsia - Alaskan Malamute Variant	CNGB3 Deletion	0	Clear
Day Blindness, Cone Degeneration, Achromatopsia - German Shorthaired Pointe Variant	er CNGB3 Exon 6	0	Clear
Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1	SLC4A3 Exon 16	0	Clear
Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2	TTC8 Exon 8	0	Clear
Macular Corneal Dystrophy, MCD - Labrador Retriever Variant	CHST6	0	Clear
Progressive Retinal Atrophy, CNGA - Shetland Sheepdog Variant	CNGA1 Exon 9	0	Clear
Progressive Retinal Atrophy, Cone-Rod Dystrophy 1, crd1 - American Staffordshir Variant	re Terrier PDE6B	0	Clear
Progressive Retinal Atrophy, Cone-Rod Dystrophy 4, crd4/cord1	RPGRIP1 Exon 2	0	Clear
Progressive Retinal Atrophy, PRA1 - Papillon Variant	CNGB1	0	Clear
Progressive Retinal Atrophy, PRA3 - Tibetan Spaniel and Terrier Variant	FAM161A	0	Clear
▲ Progressive Retinal Atrophy, Progressive Rod-Cone Degeneration, prcd	PRCD Exon 1	2	At risk
Progressive Retinal Atrophy, Rod-Cone Dysplasia 1, rcd1 - Irish Setter Variant	PDE6B Exon 21	0	Clear
Progressive Retinal Atrophy, Rod-Cone Dysplasia 3, rcd3 - Corgi Variant	PDE6A	0	Clear

Results

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Copies

Gene

	Gene	Copies	Results
Progressive Retinal Atrophy - Basenji Variant	SAG	0	Clear
X-Linked Progressive Retinal Atrophy 1, XL-PRA1 - Samoyed and Husky Variant	RPGR Exon 15	0	Clear
Oral Cavity (4)			
Developmental Disorder	Gene	Copies	Results
Cleft Lip and/or Cleft Palate - Nova Scotia Duck Tolling Retriever Variant	ADAMTS20	0	Clear
Tooth Structure Defect	Gene	Copies	Results
Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia - Italian Greyhound Variant	ENAM	0	Clear
Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia - Parson Terrier Variant	Russell ENAM	0	Clear
Raine Syndrome, Canine Dental Hypomineralization Syndrome - Border Collie Variant	FAM20C	0	Clear
Personalized Medicine (3)	Gene	Copies	Results
i Alanine Aminotransferase Activity	GPT	1	Notable
✓ MDR1 Drug Sensitivity	ABCB1	0	Clear
Malignant Hyperthermia	RYR1	0	Clear
Pulmonary (4)			
	Gene	Copies	Results

Clear

Neonatal Interstitial Lung Disease - Airedale Terrier Variant

0

LAMP3

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

	Gene	Copies	Results
Primary Ciliary Dyskinesia, PCD - Alaskan Malamute Variant	NME5	0	Clear
Primary Ciliary Dyskinesia, PCD - Old English Sheepdog Variant	CCDC39	0	Clear
Recurrent Inflammatory Pulmonary Disease, RIPD - Rough Collie Variant	AKNA	0	Clear

Skeletal (10)			
Chondrodystrophy	Gene	Copies	Results
Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD - Retrogene	FGF4 - chr12	0	Clear
Chondrodystrophy - Norwegian Elkhound and Karelian Bear Dog Variant	ITGA10	0	Clear
Oculoskeletal Dysplasia 2, Dwarfism-Retinal Dysplasia 2, drd2, OSD2 - Samoyed Variant	COL9A2 5' UTR	0	Clear
Osteochondrodysplasia, Skeletal Dwarfism - Miniature Poodle Variant	SLC13A1	0	Clear
Skeletal Dysplasia 2, SD2 - Labrador Retriever Variant	COL11A2	0	Clear
Decreased Bone Strength	Gene	Copies	Results
Hereditary Vitamin D-Resistant Rickets - Pomeranian Variant	VDR Exon 4	0	Clear
Osteogenesis Imperfecta, Brittle Bone Disease - Beagle Variant	COL1A2	0	Clear
Osteogenesis Imperfecta, Brittle Bone Disease - Dachshund Variant	SERPINH1 Exon 5	0	Clear
Osteogenesis Imperfecta, Brittle Bone Disease - Golden Retriever Variant	COL1A1 Exon 18	0	Clear
Other	Gene	Copies	Results

Craniomandibular Osteopathy, CMO - Terrier and Australian Shepherd Variant

0

Clear

SLC37A2 Exon 15

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Urogenital (14)

Nephropathy	Copies	Results
Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN - Cocker COL4A4 Exon 3 Spaniel Variant	0	Clear
Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN - COL4A4 Exon 30 English Springer Spaniel Variant	0	Clear
Fanconi Syndrome - Basenji Variant FAN1	0	Clear
Polycystic Kidney Disease, PKD - Bull Terrier Variant PKD1 Exon 29	0	Clear
Protein Losing Nephropathy, PLN - Soft Coated Wheaten and Airedale Terrier Variant NPHS1	0	Clear
X-Linked Hereditary Nephropathy, XLHN - Samoyed Variant 2 COL4A5 Exon 35	0	Clear
Urolithiasis	Copies	Results
2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis - American Indian Dog Variant APRT Exon 3	0	Clear
Cystinuria Type I-A - Newfoundland Variant SLC3A1 Exon 2	0	Clear
Cystinuria Type II-A - Australian Cattle Dog Variant SLC3A1 Exon 6	0	Clear
Cystinuria Type II-B - Miniature Pinscher Variant SLC7A9 Exon 9	0	Clear
Whyperuricosuria and Hyperuricemia or Urolithiasis, HUU SLC2A9 Exon 5	0	Clear
Primary Hyperoxaluria - Coton de Tulear Variant AGXT Exon 2	0	Clear
Other Gene	Copies	Results
Persistent Mullerian Duct Syndrome, PMDS - Miniature and Standard Schnauzer Variant AMHR2	0	Clear
Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND - German Shepherd Dog Variant	0	Clear

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese

Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Glossary

Key Terms

Increased Risk Result

The dog is at risk for showing clinical signs (phenotype) of a given condition. For recessive conditions, this means a dog has inherited two copies of an associated variant. For dominant, codominant, and additive conditions, this means a dog has inherited at least one copy of the variant. X-linked conditions will vary based on sex of the dog.

A dog's breed(s) and genetic background are also considered in this assessment. Genetic testing is an assessment of risk and not a clinical diagnosis, and not all dogs in this category will develop clinical signs.

Notable Result

A result may be notable for several reasons. The variant may not induce a disease state but rather inform patient care (this may include the tests listed under Personalized Medicine). The dog may have only one copy of a variant with a recessive mode of inheritance (meaning the dog is a carrier and is not expected to show the phenotype associated with the variant). The impact of the variant may also be influenced by a dog's breed(s). Based on the available research within the breed or related breeds, you will see more specific text within the results.

Clear Result

A dog with two healthy copies of a gene sequence is not at risk for developing the associated disease due to that variant. Many diseases can manifest as a result of other unknown genetic variants and/or environmental factors.

Variant

An alteration in the DNA with the potential to cause a change in phenotype (i.e. disease). A report may state that the dog has zero, one, or two copies of the variant for which we test. The term "variant" may be used interchangeably with "mutation."

Genotype

The genetic code related to the variant being present or absent in the dog's DNA.

Phenotype

The physical impact or appearance directed by the genotype. The phenotype is often described as an expression of the genotype.

Complex Phenotype

The condition, appearance, or other physical expression of the genotype controlled by both genetic and environmental factors.

Penetrance

Proportion of dogs with a particular genotype that expresses the associated phenotype. There are two types of penetrance.

- 1. Incomplete penetrance means that not all dogs with the genotype will develop the clinical signs of the phenotype.
- 2. Complete penetrance means that all dogs with the genotype will develop the clinical signs of the phenotype.

Carrier

This term has traditionally been used to describe a dog that has one copy of the variant but is not expected to show the phenotype associated with the variant (this is applicable to variants with a recessive mode of inheritance (MOI) as described below). If used in a breeding pair, a carrier may pass the variant to its litter.

At-risk

This indicates that the dog may manifest the disease and generally is used when a dog has two copies of the variant (but this depends on the MOI).

Embark uses the term "at-risk" and not "affected" because genetic testing is an assessment of risk and not a clinical diagnosis.

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese

Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Linkage Disequilibrium Test

When a causal variant cannot be identified or when the variant is incompatible with the genotyping platform constraints, allelic association or linkage disequilibrium (LD) tests can be utilized. This is typically done to assist dog breeders in selectively breeding out a deleterious condition. LD tests are based on a statistical association between two loci that are physically very close in the DNA. The coupling of the chosen proxy marker to the causal variant is known mathematically for the most relevant populations.

LD-based tests have a slightly increased incidence of false positives and false negatives, which are test-specific and known. Embark offers limited numbers of these tests. Embark continuously works to refine LD-based tests by assaying the direct variant in a subset of dogs using alternative methods. These inputs help to refine the tests over time.

Provisional Result

Embark combines random sampling and sequencing with the use of blinded controls to confirm that each test is performing to standard at >99% genotyping accuracy and reproducibility. Our standard health tests have been validated using known heterozygous and homozygous samples to ensure design accuracy and use multiple probes per condition to ensure reproducibility. Provisional tests are for rare disorders for which DNA samples from carrier and/or at-risk individuals are not available for calculating test reliability, or for structural variants where more testing is needed to ensure the same level of accuracy.

If you have access to DNA from carrier or at-risk individuals and are interested in helping us validate a test, please contact us at vetsupport@embarkvet.com

Modes of Inheritance

Recessive

A dog is thought to need two copies of a variant to be considered at-risk for the clinical disease or to have the visible phenotype for traits. This may apply to autosomal or X-linked variants, however. Read below for additional details regarding X-linked variants.

Dominant

A dog is thought to need only one copy of the variant to be considered at-risk for the clinical disease or to have the visible phenotype for traits.

Codominant/Additive

In general, these terms are used to describe variants in which dogs with one copy of the variant have a different phenotype compared to dogs with zero or two copies of the variant (although there is a slight difference between the two terms).

X-linked

The variant resides on the X chromosome, and male dogs need just one copy of the variant to be considered at-risk. For recessively inherited X-linked conditions, female dogs typically require two copies of the variant to be considered at-risk. Female dogs who have one copy of a recessively inherited X-linked variant are often referred to as carriers, but they can exhibit signs of disease that range from clinically asymptomatic to fully affected. This is due to a normal phenomenon known as X-chromosome inactivation, where one X chromosome is silenced in each cell.

Weight

The Embark DNA test provides a genetic size based not just on breed ancestry but on over a dozen genes known to influence a dog's weight, as well as sex and breed-specific modifiers.

Our algorithm explains over 85% of the variance in healthy adult weight. However, due to a few as-yet-undiscovered genes and genetic interactions that affect size, this algorithm sometimes under or over-predicts weight.

61.7% Poodle (Small), 20.4% Cocker Spaniel, 17.7% Pekingese Results completed on: 7/1/2022

vetsupport@embarkvet.com 1-855-203-8271

Genetic Age

Dogs age at very different rates due to a number of genetic and environmental factors. Embark's genetic age calculates how old a dog would be if he or she were aging at an average human rate (using humans in the USA as the baseline). This measure is more personalized than "one dog year = seven human years".

View the patient's profile see the personalized genetic age table for this dog.

We start by asking the dog's approximate calendar age. We then calculate genetic age by factoring a dog's breed composition along with information from genes that affect size, sex, and the dog's inbreeding coefficient (COI).

Impact of Breed

When determining whether or not a variant is expected to have a clinical impact for a breed, we have taken into account research either published, internal, or otherwise presented by a subject matter authority as our primary criteria. So, while a dog may have the variant associated with a disease (one or two copies for dominant variants and two copies for autosomal recessive variants), he or she may not be known to be at significant clinical risk from that variant.

Based on the available research within the breed or highly related breeds, you may see text similar to the following options:

- 1. This genetic variant is not likely to significantly increase the risk that this dog will develop the clinical disease.
- 2. This genetic variant is associated with an increased risk that this dog will develop the clinical disease.
- 3. We do not know whether this variant increases the risk that this dog will develop the clinical disease.

Embark is continuing to explore the relationship of genotype to phenotype, and risk assessment may be updated as more data is reviewed. You can contact vetsupport@embarkvet.com or call 1-855-203-8271 to report any clinical diagnoses.