Embark Veterinary Veterinary Practice

Swab code: raq100100_swab Swab activated on 7/28/2022 Results completed on 7/28/2022 Report accessed on 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

Patient Information

Ordered by Lorenz Connelly

Client Information

Breed Information

Raquel

5 yrs 0 mths - SF Genetic Age: 41 human years

Predicted Adult Weight: 26 lbs

Oscar Lu

owl@example.com 555-555-4569

87.9% Jack Russell Terrier 12.1% Rat Terrier

1 Increased Risk Result

Primary Lens Luxation

219 Clear Results

Raquel is not at increased risk for 219 of the genetic health variants that Embark tests.

Page 2

Page 5

Glossary

Page 21

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

1 Increased Risk Result

Primary Lens Luxation

How to interpret this result

Raquel has one copy of this additive variant in the ADAMTS17 gene and is considered at risk for developing Primary Lens Luxation. Dogs with one copy of this variant are at very low risk for PLL. Primary lens luxation (PLL) is a painful and potentially blinding inherited canine ocular condition. PLL describes the spontaneous displacement of the lens from its normal position within the patellar fossa of the eye as a result of rupture of the lens zonules. The actual risk associated with having one copy of this variant appears to vary in a breed-specific manner.

You can learn more about penetrance, clinical signs, treatment, and care for Raquel below or email vetsupport@embarkvet.com should you desire to speak with a genetic counselor.

What is Primary Lens Luxation?

Primary lens luxation (PLL) is a painful and potentially blinding inherited canine ocular condition. PLL describes the spontaneous displacement of the lens from its normal position within the patellar fossa of the eye as a result of rupture of the lens zonules. The lens is usually displaced to the anterior chamber where it can cause damage to the anterior chamber structures and acute glaucoma through obstruction of the pupil or the filtration angle. PLL is invariably bilateral, although a period of several weeks or months might separate luxation of the two lenses.

This causative variant has an additive inheritance type and not a recessive mechanism of inheritance. So while dogs with one copy of the variant have a higher risk than dogs with two healthy alleles at ADAMTS17, their risk is much lower than a dog with two copies of the variant. The actual risk associated with having one copy of this variant appears to vary in a breed-specific manner.

Variant Info

ADAMTS17 Additive inheritance 1 copy of the variant

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

Age of Onset of Clinical Signs or Symptoms

In breeds that have been studied in-depth, the condition has a variable age-of-onset of between three and eight years. However, in dogs affected with PLL, ultrastructural abnormalities of the zonular fibers are already evident at 20 months of age long before lens luxation typically occurs.

Clinical Signs

Anterior lens luxations is painful and more easily observed clinically. Subluxation and posterior luxations may not be as apparent. Signs may include:

- Sudden change in the size and shape of the pupil
- Squinting, holding the eye closed, and increased tearing or blinking
- Cloudiness or haziness to the cornea
- · Increased redness in the sclera
- Visual impairment or loss

Penetrance and Additional Impact on Phenotype

Although heterozygous individuals have an increased risk of developing PLL compared to dogs that do not have the variant, the large majority of "carriers" remain clinically unaffected during their lives. In one limited study, animals homozygous for the variant showed the disease earlier in life (mean age of four to five years) compared to heterozygous animals (mean age six years or more). Penetrance of the PLL variant increased with age, with full penetrance in homozygous animals over six years, and incomplete but up to 60% penetrance in heterozygous animals by 10 years of age.

Follow-up Diagnostics to Consider

Regular and in-depth ocular examinations are recommended.

Treatment and Management Options

- Owners should be made aware of clinical signs of PLL (red, blue, painful, enlarged eyes, frequent pawing at the eyes) and instructed to seek veterinary care immediately.
- Treatment options vary by stage of disease and position of the lens and may include:
- Pain management
- · Ophthalmic drops to keep the pupil constricted
- · Pupil dilation and manual repositioning of the lens
- Phacoemulsification
- Removal of the lens via surgery
- Enucleation

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

More Information

Secondary uveitis, glaucoma, and/or pain may require enucleation if the lens luxation is not immediately addressed.

Owners should be counseled that PLL progresses to a bilateral condition in most instances.

References

Fabiana H. G. Farias, Gary S. Johnson, Jeremy F. Taylor, Elizabeth Giuliano, Martin L. Katz, Douglas N. Sanders, Robert D. Schnabel, Stephanie D. McKay, Shahnawaz Khan, Puya Gharahkhani, Caroline A. O'Leary, Louise Pettitt, Oliver P. Forman, Mike Boursnell, Bryan McLaughlin, Saija Ahonen, Hannes Lohi, Elena Hernandez-Merino, David J. Gould, David R. Sargan, Cathryn Mellersh; An ADAMTS17 Splice Donor Site Mutation in Dogs with Primary Lens Luxation. Invest. Ophthalmol. Vis. Sci. 2010;51(9):4716-4721"

Mellersh CS. The genetics of eye disorders in the dog. Canine Genet Epidemiol. 2014;1:3. Published 2014 Apr 16. doi:10.1186/2052-6687-1-3"

Puya Gharahkhani, Caroline O'Leary, David Duffy, Michael Bernays and Myat Kyaw-Tanner. Primary Lens Luxation in Australian Tenterfield and Miniature Bull Terriers is Due to An Old ADAMTS17 Mutation and is an Additive Trait. The Open Genomics Journal, 2012, 5, 7-13."

Gould D, Pettitt L, McLaughlin B, et al. ADAMTS17 mutation associated with primary lens luxation is widespread among breeds. Vet Ophthalmol. 2011;14(6):378-384. doi:10.1111/j.1463-5224.2011.00892.x"

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

All Conditions Tested

To view COI and traits information, log into your account.

Auditory (2)

	Gene	Copies	Results	
Deafness and Vestibular Syndrome of Dobermans, DVDob, DINGS	MYO7A	0	Clear	
Early Onset Adult Deafness, EOAD - Rhodesian Ridgeback Variant	EPS8L2 Deletion Exon 12	0	Clear	

Cardiac (4)

Dilated	d Cardiomyopathy	Gene	Copies	Results
	Dilated Cardiomyopathy, DCM1 - Doberman Pinscher Variant 1	PDK4	0	Clear
Ø	Dilated Cardiomyopathy, DCM2 - Doberman Pinscher Variant 2	TTN	0	Clear
Other		Gene	Copies	Results
Other	Cardiomyopathy and Juvenile Mortality - Belgian Shepherd Variant	Gene YARS2	Copies 0	Results Clear

Endocrine (3)

Hypothyroidism	Gene	Copies	Results
Congenital Dyshormonogenic Hypothyroidism with Goiter - Shih Tzu Variant	SLC5A5	0	Clear
Congenital Hypothyroidism - Rat, Toy Fox, and Hairless Terrier Variant	TPO Exon 3	0	Clear
	TPO Exon 9	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

Gastrointestinal (4)

Gastroenteropathy	Gene	Copies	Results
Lundehund Syndrome	LEPREL1	0	Clear
Malabsorptive Disorder	Gene	Copies	Results
Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption - Beagle Variant	CUBN Exon 8	0	Clear
Imerslund-Grasbeck Syndrome, Selective Cobalamin Malabsorption - Border Collie Variant	CUBN Exon 53	0	Clear
Inherited Selected Cobalamin Malabsorption with Proteinuria - Komondor Variant	CUBN	0	Clear

Hematologic (32)

Coagulopathy	Gene	Copies	Results
Bernard-Soulier Syndrome, BSS - Cocker Spaniel Variant	GP9	0	Clear
Congenital Macrothrombocytopenia - Cairn and Norfolk Terrier Variant	TUBB1 Exon 1	0	Clear
Factor IX Deficiency, Hemophilia B - Rhodesian Ridgeback Variant	F9 Exon 7	0	Clear
Factor IX Deficiency, Hemophilia B - Terrier Variant	F9 Exon 7	0	Clear
Factor VII Deficiency	F7 Exon 5	0	Clear
Factor VIII Deficiency, Hemophilia A - Boxer Variant	F8 Exon 10	0	Clear
Factor VIII Deficiency, Hemophilia A - German Shepherd Variant 1	F8 Exon 11	0	Clear
Factor VIII Deficiency, Hemophilia A - German Shepherd Variant 2	F8 Exon 1	0	Clear
Glanzmann's Thrombasthenia Type I - Great Pyrenees Variant	ITGA2B Exon 13	0	Clear
Glanzmann's Thrombasthenia Type I - Otterhound Variant	ITGA2B Exon 12	0	Clear
May-Hegglin Anomaly - Pug Variant	MYH9	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

		Gene	Copies	Results
P2Y1	2 Receptor Platelet Disorder - Greater Swiss Mountain Dog Variant	P2Y12	0	Clear
Plate	elet Factor X Receptor Deficiency, Scott Syndrome - German Shepherd Dog Variant	TMEM16F	0	Clear
Prek	allikrein Deficiency - Shih Tzu Variant	KLKB1 Exon 8	0	Clear
Thro	mbopathia - American Eskimo Dog Variant	RASGRP1 Exon 5	0	Clear
Thro	mbopathia - Basset Hound Variant	RASGRP1 Exon 5	0	Clear
Thro	mbopathia - Landseer Variant	RASGRP1 Exon 8	0	Clear
⊘ Von !	Willebrand Disease Type I, Type I vWD	VWF	0	Clear
⊘ Von '	Willebrand Disease Type II, Type II vWD - Pointer Variant	VWF	0	Clear
⊘ Von '	Willebrand Disease Type III, Type III vWD - Shetland Sheepdog Variant	VWF Exon 7	0	Clear
⊘ Von '	Willebrand Disease Type III, Type III vWD - Terrier Variant	VWF Exon 4	0	Clear
Red Blood C	rell Abnormality	Gene	Copies	Results
Cani	ne Elliptocytosis - Labrador Retriever Variant	SPTB Exon 30	0	Clear
Meth	nemoglobinemia - Pomeranian Variant	CYB5R3	0	Clear
Pyru	vate Kinase Deficiency - Basenji Variant	PKLR Exon 5	0	Clear
Pyru	vate Kinase Deficiency - Beagle Variant	PKLR Exon 7	0	Clear
Pyru	vate Kinase Deficiency - Labrador Retriever Variant	PKLR Exon 7	0	Clear
Pyru	vate Kinase Deficiency - Pug Variant	PKLR Exon 7	0	Clear
Pyru	vate Kinase Deficiency - Terrier Variant	PKLR Exon 10	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

White	Blood Cell Abnormality	Gene	Copies	Results
	Canine Leukocyte Adhesion Deficiency Type I, CLAD I - Setter Variant	ITGB2 Exon 3	0	Clear
	Canine Leukocyte Adhesion Deficiency Type III, CLAD III - German Shepherd Variant	FERMT3	0	Clear
	Trapped Neutrophil Syndrome, TNS	VPS13B Exon 19	0	Clear
Other		Gene	Copies	Results
	Ligneous Membranitis, LM - Scottish Terrier Variant	PLG	0	Clear

Immunologic (6)

	Gene	Copies	Results
Complement 3 Deficiency, C3 Deficiency - Brittany Variant	C3	0	Clear
Severe Combined Immunodeficiency, SCID - Terrier Variant	PRKDC	0	Clear
Severe Combined Immunodeficiency, SCID - Wetterhoun Variant	RAG1	0	Clear
Shar-Pei Autoinflammatory Disease, SPAID, Shar-Pei Fever	MTBP	0	Clear
X-linked Severe Combined Immunodeficiency, X-SCID - Basset Hound Variant	IL2RG Exon 1	0	Clear
X-linked Severe Combined Immunodeficiency, X-SCID - Corgi Variant	IL2RG	0	Clear

Integument (18)

Collagen Abnormality	Gene	Copies	Results
Oystrophic Epidermolysis Bullosa - Central Asian Shepherd Dog Variant	COL7A1	0	Clear
Dystrophic Epidermolysis Bullosa - Golden Retriever Variant	COL7A1 Exon 68	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

⊘ E	Thlere Depley Deharman Dinashar Variant			
	Ehlers Danlos - Doberman Pinscher Variant	ADAMTS2	0	Clear
⊘ N	Musladin-Lueke Syndrome, MLS - Beagle Variant	ADAMTSL2 Exon 7	0	Clear
Keratin /	Abnormality	Gene	Copies	Results
	Congenital Keratoconjunctivitis Sicca and Ichthyosiform Dermatosis, Dry Eye Curly (Syndrome, CKCSID - Cavalier King Charles Spaniel Variant	Coat FAM83H	0	Clear
_	Focal Non-Epidermolytic Palmoplantar Keratoderma, Pachyonychia Congenita - Dogue de Bordeaux Variant	KRT16 Exon 6	0	Clear
⊘ ⊦	Hereditary Footpad Hyperkeratosis - Rottweiler Variant	DSG1	0	Clear
⊘ ⊦	Hereditary Footpad Hyperkeratosis - Terrier and Kromfohrlander Variant	FAM83G	0	Clear
⊘ ⊦	Hereditary Nasal Parakeratosis, HNPK - Labrador Retriever Variant	SUV39H2	0	Clear
⊘ Id	chthyosis, Epidermolytic Hyperkeratosis - Terrier Variant	KRT10 Intron 5	0	Clear
⊘ 10	chthyosis, ICH1 - Golden Retriever Variant	PNPLA1 Exon 8	0	Clear
⊘ 10	chthyosis - American Bulldog Variant	NIPAL4 Exon 6	0	Clear
⊘ Id	chthyosis - Great Dane Variant	SLC27A4	0	Clear
Other		Gene	Copies	Results
⊘ E	Bald Thigh Syndrome - Greyhound Variant	IGFBP5	0	Clear
⊘ E	Ectodermal Dysplasia, Skin Fragility Syndrome - Chesapeake Bay Retriever Variant	PKP1 Intron 1	0	Clear
⊘ L	ethal Acrodermatitis, LAD - Bull Terrier Variant	MKLN1	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

	Gene	Copies	Results
Oculocutaneous Albinism, OCA - Small Breed Variant	C45A2	0	Clear
X-linked Ectodermal Dysplasia, Anhidrotic Ectodermal Dysplasia, XHED - German Shepherd Dog Variant	EDA	0	Clear

Metabolic (33)			
Enzyme Deficiency	Gene	Copies	Results
✓ Hypocatalasia, Acatalasemia - Beagle Variant	CAT	0	Clear
L-2-Hydroxyglutaricaciduria, L2HGA - Staffordshire Bull Terrier Variant	L2HGDH	0	Clear
Pyruvate Dehydrogenase Deficiency - Spaniel Variant	PDP1	0	Clear
Storage Disease	Gene	Copies	Results
Canine Fucosidosis - English Springer Spaniel Variant	FUCA1	0	Clear
GM1 Gangliosidosis - Alaskan Husky Variant	GLB1 Exon 15	0	Clear
GM1 Gangliosidosis - Portuguese Water Dog Variant	GLB1 Exon 2	0	Clear
GM1 Gangliosidosis - Shiba Inu Variant	GLB1 Exon 15	0	Clear
GM2 Gangliosidosis - Japanese Chin Variant	HEXA	0	Clear
GM2 Gangliosidosis - Poodle Variant	HEXB Exon 3	0	Clear
Globoid Cell Leukodystrophy, Krabbe Disease - Terrier Variant	GALC Exon 5	0	Clear
Glycogen Storage Disease Type IA, Von Gierke Disease, GSD IA - Maltese Variant	G6PC	0	Clear
Glycogen Storage Disease Type II, Pompe's Disease, GSD II - Finnish and Swedish Lapphund, Lapponian Herder Variant	GAA Exon 15	0	Clear
Glycogen Storage Disease Type IIIA, GSD IIIA - Curly Coated Retriever Variant	AGL GDE	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

	Gene	Copies	Results
Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency Wachtelhund Variant	cy - PFKM Exon 8	0	Clear
Glycogen storage disease Type VII, Phosphofructokinase Deficiency, PFK Deficiency Whippet and English Springer Spaniel Variant	cy - PFKM Exon 21	0	Clear
✓ Lagotto Storage Disease	ATG4D Exon 10	0	Clear
✓ Late-Onset Neuronal Ceroid Lipofuscinosis, NCL12 - Australian Cattle Dog Variant	ATP13A2	0	Clear
Mucopolysaccharidosis IIIB, Sanfilippo Syndrome Type B, MPS IIIB - Schipperke Va	ariant NAGLU	0	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA - Dachshu	and Variant SGSH	0	Clear
Mucopolysaccharidosis Type IIIA, Sanfilippo Syndrome Type A, MPS IIIA - New Zea Huntaway Variant	land SGSH	0	Clear
Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII - German Shepherd Variar	nt GUSB	0	Clear
Mucopolysaccharidosis Type VII, Sly Syndrome, MPS VII - Terrier Brasileiro Variant	GUSB	0	Clear
Neuronal Ceroid Lipofuscinosis 1, NCL1 - Dachshund Variant	PPT1 Exon 8	0	Clear
Neuronal Ceroid Lipofuscinosis 10, NCL10 - American Bulldog Variant	CTSD Exon 5	0	Clear
Neuronal Ceroid Lipofuscinosis 2, NCL2 - Dachshund Variant	TPP1 Exon 4	0	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL5 - Border Collie and Australian Cattle Dog Variant	CLN5 Exon 4	0	Clear
Neuronal Ceroid Lipofuscinosis 5, NCL5 - Golden Retriever Variant	CLN5 Exon 4	0	Clear
Neuronal Ceroid Lipofuscinosis 6, NCL6 - Australian Shepherd Variant	CLN6 Exon 7	0	Clear
Neuronal Ceroid Lipofuscinosis 7, NCL7 - Chihuahua and Chinese Crested Variant	MFSD8	0	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL8 - Australian Shepherd and German Shorth Pointer Variant	aired CLN8	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

	Gene	Copies	Results
Neuronal Ceroid Lipofuscinosis 8, NCL8 - English Setter Variant	CLN8 Exon 2	0	Clear
Neuronal Ceroid Lipofuscinosis 8, NCL8 - Saluki Variant	CLN8	0	Clear
Neuronal Ceroid Lipofuscinosis, Cerebellar Ataxia, NCL4A - American Staffordshire Terrier Variant	ARSG Exon 2	0	Clear

Muscular (13)

Musculai (13)			
Movement Disorder	Gene	Copies	Results
Myotonia Congenita - Australian Cattle Dog Variant	CLCN1 Exon 23	0	Clear
Myotonia Congenita - Miniature Schnauzer Variant	CLCN1 Exon 7	0	Clear
Muscular Dystrophy	Gene	Copies	Results
Limb Girdle Muscular Dystrophy - Boston Terrier Variant	SGCD	0	Clear
Muscular Dystrophy - Cavalier King Charles Spaniel Variant 1	DMD	0	Clear
Muscular Dystrophy - Golden Retriever Variant	DMD	0	Clear
Ullrich-like Congenital Muscular Dystrophy - Labrador Retriever Variant 1	COL6A3 Exon 10	0	Clear
Myopathy	Gene	Copies	Results
Centronuclear Myopathy, CNM - Labrador Retriever Variant	PTPLA	0	Clear
Exercise-Induced Collapse, EIC	DNM1	0	Clear
Inflammatory Myopathy - Dutch Shepherd Variant	SLC25A12	0	Clear
Inherited Myopathy of Great Danes	BIN1	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

		Gene	Copies	Results
Ø	Myotubular Myopathy 1, X-linked Myotubular Myopathy, XL-MTM - Labrador Retriever Variant	MTM1 Exon 7	0	Clear
②	Nemaline Myopathy - American Bulldog Variant	NEB	0	Clear
Other		Gene	Copies	Results
	Myostatin Deficiency, Bully Whippet Syndrome	MSTN	0	Clear

Neurologic (32)

Brain or Seizure Disorder	Gene	Copies	Results
Alaskan Husky Encephalopathy, Subacute Necrotizing Encephalomyelopathy	SLC19A3 Exon 2	0	Clear
Alexander Disease - Labrador Retriever Variant	GFAP Exon 4	0	Clear
Benign Familial Juvenile Epilepsy, Remitting Focal Epilepsy - Lagotto Romagnolo Variant	LGI2 Exon 8	0	Clear
Cerebellar Abiotrophy, Neonatal Cerebellar Cortical Degeneration, NCCD - Beagle Varia	nt SPTBN2	0	Clear
Cerebellar Hypoplasia - Eurasier Variant	VLDLR	0	Clear
Hereditary Ataxia, Cerebellar Degeneration - Old English Sheepdog and Gordon Setter Variant	RAB24 Exon 1	0	Clear
Neonatal Encephalopathy with Seizures, NEWS - Poodle Variant	ATF2	0	Clear
Progressive Early-Onset Cerebellar Ataxia - Finnish Hound Variant	SEL1L	0	Clear
Spinocerebellar Ataxia with Myokymia and/or Seizures - Terrier Variant 2	KCNJ10	0	Clear
Spinocerebellar Ataxia, Late-Onset Ataxia, LoSCA - Terrier Variant 1	CAPN1	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

		Gene	Copies	Results
Spong Variant	y Degeneration with Cerebellar Ataxia 1, SDCA1, SeSAME/EAST Syndrome - Shepherd	KCNJ10	0	Clear
Spong	y Degeneration with Cerebellar Ataxia 2, SDCA2 - Shepherd Variant 2	ATP1B2	0	Clear
lovement Dis	sorder	Gene	Copies	Result
Degen	erative Myelopathy, DM	SOD1A	0	Clea
Hypom	yelination and Tremors - Weimaraner Variant	FNIP2	0	Clea
Juveni	le Myoclonic Epilepsy - Rhodesian Ridgeback Variant	DIRAS1	0	Clea
_	ssive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD - Chinese d Variant	SERAC1	0	Clea
_	ssive Neuronal Abiotrophy, Canine Multiple System Degeneration, CMSD - Kerry Blue Variant	SERAC1	0	Clea
Shakin Variant	g Puppy Syndrome, X-linked Generalized Tremor Syndrome - English Springer Spaniel	PLP1	0	Clea
arcolepsy		Gene	Copies	Result
Narcole	epsy - Dachshund Variant	HCRTR2	0	Clea
Narcole	epsy - Doberman Pinscher Variant	HCRTR2	0	Clea
Narcol	epsy - Labrador Retriever Variant	HCRTR2	0	Clea
leurodegene	rative Disorder	Gene	Copies	Result
✓ Fetal-0	Onset Neonatal Neuroaxonal Dystrophy - Giant Schnauzer Variant	MFN2	0	Clea
Neuroa	exonal Dystrophy, NAD - Rottweiler Variant	VPS11	0	Clea
Neuroa	oxonal Dystrophy, NAD - Spanish Water Dog Variant	TECPR2	0	Clea

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

Neuropathy	Gene	Copies	Results
Alaskan Malamute Polyneuropathy, AMPN	NDRG1	0	Clear
Demyelinating Polyneuropathy - Miniature Schnauzer Variant	SBF2/MTRM13	0	Clear
Juvenile Laryngeal Paralysis and Polyneuropathy, Polyneuropathy with Ocular Abnormalities and Neuronal Vacuolation, POANV - Rottweiler Variant	RAB3GAP1	0	Clear
Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 1, LPN1	ARHGEF10 Exon 17	0	Clear
Juvenile-Onset Polyneuropathy, Leonberger Polyneuropathy 2, LPN2	GJA9	0	Clear
Laryngeal Paralysis - Miniature Bull Terrier Variant	RAPGEF6	0	Clear
Sensory Neuropathy	Gene	Copies	Results
Hereditary Sensory Autonomic Neuropathy, Acral Mutilation Syndrome, AMS - Spaniel Pointer Variant	and GDNF-AS	0	Clear
Sensory Neuropathy - Border Collie Variant	FAM134B	0	Clear
Neuromuscular (7)			

Neuromuscular (7)

Junctionopathy	Gene	Copies	Results
Congenital Myasthenic Syndrome, CMS - Golden Retriever Variant	COLQ Exon 13	0	Clear
Congenital Myasthenic Syndrome, CMS - Heideterrier Variant	CHRNE	0	Clear
Congenital Myasthenic Syndrome, CMS - Jack Russell Terrier Variant	CHRNE Exon 7	0	Clear
Congenital Myasthenic Syndrome, CMS - Labrador Retriever Variant	COLQ Exon 14	0	Clear
Congenital Myasthenic Syndrome, CMS - Old Danish Pointing Dog Variant	CHAT Exon 6	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

Movement Disorder Gene	Copies	Results
Episodic Falling Syndrome - Cavalier King Charles Spaniel Variant BCAN Exons 1-4	0	Clear
Paroxysmal Dyskinesia, PxD - Soft Coated Wheaten Terrier Variant PIGN	0	Clear
Ophthalmologic (31)		
Glaucoma	Copies	Results
Goniodysgenesis and Glaucoma, Pectinate Ligament Dysplasia, PLD - Border Collie Variant OLFML3	0	Clear
Primary Open Angle Glaucoma and Primary Lens Luxation - Chinese Shar-Pei Variant ADAMTS17	0	Clear
✓ Primary Open Angle Glaucoma - Basset Fauve de Bretagne Variant ADAMTS17	0	Clear
✓ Primary Open Angle Glaucoma - Beagle Variant ADAMTS10	0	Clear
Primary Open Angle Glaucoma - Norwegian Elkhound Variant ADAMTS10	0	Clear
Iris or Lens Gene	Copies	Results
Hereditary Cataracts, Early-Onset Cataracts, Juvenile Cataracts - Australian Shepherd Variant HSF4	0	Clear
▲ Primary Lens Luxation ADAMTS17	1	At risk
Retinopathy	Copies	Results
Achromatopsia - German Shepherd Variant CNGA3 Exon 7	0	Clear
Achromatopsia - Labrador Retriever Variant CNGA3 Exon 7	0	Clear
Autosomal Dominant Progressive Retinal Atrophy - English Mastiff and Bullmastiff RHO Exon 1 Variant	0	Clear
Canine Multifocal Retinopathy, cmr1 BEST1/VMD2 Exon 2	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

	Gene	Copies	Results
Canine Multifocal Retinopathy, cmr2 - Coton de Tulear Variant	BEST1/VMD2 Exon 5	0	Clear
Canine Multifocal Retinopathy, cmr3 - Finnish and Swedish Lapphund, Lapponian Herder Variant	BEST1/VMD2 Exon 10	0	Clear
Collie Eye Anomaly, Choroidal Hypoplasia, CEA	NHEJ1 Intron 4	0	Clear
Congenital Stationary Night Blindness - Beagle Variant	LRIT3	0	Clear
Congenital Stationary Night Blindness - Briard Variant	RPE65	0	Clear
Oay Blindness, Cone Degeneration, Achromatopsia - Alaskan Malamute Variant	CNGB3 Deletion	0	Clear
Day Blindness, Cone Degeneration, Achromatopsia - German Shorthaired Pointe Variant	r CNGB3 Exon 6	0	Clear
Golden Retriever Progressive Retinal Atrophy 1, GR-PRA1	SLC4A3 Exon 16	0	Clear
Golden Retriever Progressive Retinal Atrophy 2, GR-PRA2	TTC8 Exon 8	0	Clear
Macular Corneal Dystrophy, MCD - Labrador Retriever Variant	CHST6	0	Clear
Progressive Retinal Atrophy, CNGA - Shetland Sheepdog Variant	CNGA1 Exon 9	0	Clear
Progressive Retinal Atrophy, Cone-Rod Dystrophy 1, crd1 - American Staffordshir Variant	e Terrier PDE6B	0	Clear
Progressive Retinal Atrophy, Cone-Rod Dystrophy 4, crd4/cord1	RPGRIP1 Exon 2	0	Clear
Progressive Retinal Atrophy, PRA1 - Papillon Variant	CNGB1	0	Clear
Progressive Retinal Atrophy, PRA3 - Tibetan Spaniel and Terrier Variant	FAM161A	0	Clear
Progressive Retinal Atrophy, Progressive Rod-Cone Degeneration, prod	PRCD Exon 1	0	Clear
Progressive Retinal Atrophy, Rod-Cone Dysplasia 1, rcd1 - Irish Setter Variant	PDE6B Exon 21	0	Clear
Progressive Retinal Atrophy, Rod-Cone Dysplasia 3, rcd3 - Corgi Variant	PDE6A	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

	Gene	Copies	Results
Progressive Retinal Atrophy - Basenji Variant	SAG	0	Clear
X-Linked Progressive Retinal Atrophy 1, XL-PRA1 - Samoyed and Husky Variant	RPGR Exon 15	0	Clear
Oral Cavity (4)			
Developmental Disorder	Gene	Copies	Results
Cleft Lip and/or Cleft Palate - Nova Scotia Duck Tolling Retriever Variant	ADAMTS20	0	Clear
Tooth Structure Defect	Gene	Copies	Results
Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia - Italian Greyhound Variant	ENAM	0	Clear
Autosomal Recessive Amelogenesis Imperfecta, Familial Enamel Hypoplasia - Parson Rus Terrier Variant	sell ENAM	0	Clear
Raine Syndrome, Canine Dental Hypomineralization Syndrome - Border Collie Variant	FAM20C	0	Clear
Personalized Medicine (3)			
	Gene	Copies	Results
✓ Alanine Aminotransferase Activity	GPT	0	Clear
MDR1 Drug Sensitivity	ABCB1	0	Clear
✓ Malignant Hyperthermia	RYR1	0	Clear
Pulmonary (4)			

Neonatal Interstitial Lung Disease - Airedale Terrier Variant

Results

Clear

Copies

0

Gene

LAMP3

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

	Gene	Copies	Results
Primary Ciliary Dyskinesia, PCD - Alaskan Malamute Variant	NME5	0	Clear
Primary Ciliary Dyskinesia, PCD - Old English Sheepdog Variant	CCDC39	0	Clear
Recurrent Inflammatory Pulmonary Disease, RIPD - Rough Collie Variant	AKNA	0	Clear

Skeletal (10)			
Chondrodystrophy	Gene	Copies	Results
Chondrodystrophy and Intervertebral Disc Disease, CDDY/IVDD, Type I IVDD - Retrogene	FGF4 - chr12	0	Clear
Chondrodystrophy - Norwegian Elkhound and Karelian Bear Dog Variant	ITGA10	0	Clear
Oculoskeletal Dysplasia 2, Dwarfism-Retinal Dysplasia 2, drd2, OSD2 - Samoyed Variant	COL9A2 5' UTR	0	Clear
Osteochondrodysplasia, Skeletal Dwarfism - Miniature Poodle Variant	SLC13A1	0	Clear
Skeletal Dysplasia 2, SD2 - Labrador Retriever Variant	COL11A2	0	Clear
Decreased Bone Strength	Gene	Copies	Results
Hereditary Vitamin D-Resistant Rickets - Pomeranian Variant	VDR Exon 4	0	Clear
Osteogenesis Imperfecta, Brittle Bone Disease - Beagle Variant	COL1A2	0	Clear
Osteogenesis Imperfecta, Brittle Bone Disease - Dachshund Variant	SERPINH1 Exon 5	0	Clear
Osteogenesis Imperfecta, Brittle Bone Disease - Golden Retriever Variant	COL1A1 Exon 18	0	Clear
Other	Gene	Copies	Results

Craniomandibular Osteopathy, CMO - Terrier and Australian Shepherd Variant

0

SLC37A2 Exon 15

Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

Urogenital (14)

Nephropathy	Copies	Results
Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN - Cocker COL4A4 Exon 3 Spaniel Variant	0	Clear
Autosomal Recessive Hereditary Nephropathy, Familial Nephropathy, ARHN - COL4A4 Exon 30 English Springer Spaniel Variant	0	Clear
Fanconi Syndrome - Basenji Variant FAN1	0	Clear
Polycystic Kidney Disease, PKD - Bull Terrier Variant PKD1 Exon 29	0	Clear
Protein Losing Nephropathy, PLN - Soft Coated Wheaten and Airedale Terrier Variant NPHS1	0	Clear
X-Linked Hereditary Nephropathy, XLHN - Samoyed Variant 2 COL4A5 Exon 35	0	Clear
Urolithiasis	Copies	Results
2,8-Dihydroxyadenine Urolithiasis, 2,8-DHA Urolithiasis - American Indian Dog Variant APRT Exon 3	0	Clear
Cystinuria Type I-A - Newfoundland Variant SLC3A1 Exon 2	0	Clear
Cystinuria Type II-A - Australian Cattle Dog Variant SLC3A1 Exon 6	0	Clear
Cystinuria Type II-B - Miniature Pinscher Variant SLC7A9 Exon 9	0	Clear
Whyperuricosuria and Hyperuricemia or Urolithiasis, HUU SLC2A9 Exon 5	0	Clear
Primary Hyperoxaluria - Coton de Tulear Variant AGXT Exon 2	0	Clear
Other Gene	Copies	Results
Persistent Mullerian Duct Syndrome, PMDS - Miniature and Standard Schnauzer Variant AMHR2	0	Clear
Renal Cystadenocarcinoma and Nodular Dermatofibrosis, RCND - German Shepherd Dog Variant	0	Clear

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

Glossary

Key Terms

Increased Risk Result

The dog is at risk for showing clinical signs (phenotype) of a given condition. For recessive conditions, this means a dog has inherited two copies of an associated variant. For dominant, codominant, and additive conditions, this means a dog has inherited at least one copy of the variant. X-linked conditions will vary based on sex of the dog.

A dog's breed(s) and genetic background are also considered in this assessment. Genetic testing is an assessment of risk and not a clinical diagnosis, and not all dogs in this category will develop clinical signs.

Notable Result

A result may be notable for several reasons. The variant may not induce a disease state but rather inform patient care (this may include the tests listed under Personalized Medicine). The dog may have only one copy of a variant with a recessive mode of inheritance (meaning the dog is a carrier and is not expected to show the phenotype associated with the variant). The impact of the variant may also be influenced by a dog's breed(s). Based on the available research within the breed or related breeds, you will see more specific text within the results.

Clear Result

A dog with two healthy copies of a gene sequence is not at risk for developing the associated disease due to that variant. Many diseases can manifest as a result of other unknown genetic variants and/or environmental factors.

Variant

An alteration in the DNA with the potential to cause a change in phenotype (i.e. disease). A report may state that the dog has zero, one, or two copies of the variant for which we test. The term "variant" may be used interchangeably with "mutation."

Genotype

The genetic code related to the variant being present or absent in the dog's DNA.

Phenotype

The physical impact or appearance directed by the genotype. The phenotype is often described as an expression of the genotype.

Complex Phenotype

The condition, appearance, or other physical expression of the genotype controlled by both genetic and environmental factors.

Penetrance

Proportion of dogs with a particular genotype that expresses the associated phenotype. There are two types of penetrance.

- 1. Incomplete penetrance means that not all dogs with the genotype will develop the clinical signs of the phenotype.
- 2. Complete penetrance means that all dogs with the genotype will develop the clinical signs of the phenotype.

Carrier

This term has traditionally been used to describe a dog that has one copy of the variant but is not expected to show the phenotype associated with the variant (this is applicable to variants with a recessive mode of inheritance (MOI) as described below). If used in a breeding pair, a carrier may pass the variant to its litter.

At-risk

This indicates that the dog may manifest the disease and generally is used when a dog has two copies of the variant (but this depends on the MOI).

Embark uses the term "at-risk" and not "affected" because genetic testing is an assessment of risk and not a clinical diagnosis.

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

Linkage Disequilibrium Test

When a causal variant cannot be identified or when the variant is incompatible with the genotyping platform constraints, allelic association or linkage disequilibrium (LD) tests can be utilized. This is typically done to assist dog breeders in selectively breeding out a deleterious condition. LD tests are based on a statistical association between two loci that are physically very close in the DNA. The coupling of the chosen proxy marker to the causal variant is known mathematically for the most relevant populations.

LD-based tests have a slightly increased incidence of false positives and false negatives, which are test-specific and known. Embark offers limited numbers of these tests. Embark continuously works to refine LD-based tests by assaying the direct variant in a subset of dogs using alternative methods. These inputs help to refine the tests over time.

Provisional Result

Embark combines random sampling and sequencing with the use of blinded controls to confirm that each test is performing to standard at >99% genotyping accuracy and reproducibility. Our standard health tests have been validated using known heterozygous and homozygous samples to ensure design accuracy and use multiple probes per condition to ensure reproducibility. Provisional tests are for rare disorders for which DNA samples from carrier and/or at-risk individuals are not available for calculating test reliability, or for structural variants where more testing is needed to ensure the same level of accuracy.

If you have access to DNA from carrier or at-risk individuals and are interested in helping us validate a test, please contact us at vetsupport@embarkvet.com

Modes of Inheritance

Recessive

A dog is thought to need two copies of a variant to be considered at-risk for the clinical disease or to have the visible phenotype for traits. This may apply to autosomal or X-linked variants, however. Read below for additional details regarding X-linked variants.

Dominant

A dog is thought to need only one copy of the variant to be considered at-risk for the clinical disease or to have the visible phenotype for traits.

Codominant/Additive

In general, these terms are used to describe variants in which dogs with one copy of the variant have a different phenotype compared to dogs with zero or two copies of the variant (although there is a slight difference between the two terms).

X-linked

The variant resides on the X chromosome, and male dogs need just one copy of the variant to be considered at-risk. For recessively inherited X-linked conditions, female dogs typically require two copies of the variant to be considered at-risk. Female dogs who have one copy of a recessively inherited X-linked variant are often referred to as carriers, but they can exhibit signs of disease that range from clinically asymptomatic to fully affected. This is due to a normal phenomenon known as X-chromosome inactivation, where one X chromosome is silenced in each cell.

Weight

The Embark DNA test provides a genetic size based not just on breed ancestry but on over a dozen genes known to influence a dog's weight, as well as sex and breed-specific modifiers.

Our algorithm explains over 85% of the variance in healthy adult weight. However, due to a few as-yet-undiscovered genes and genetic interactions that affect size, this algorithm sometimes under or over-predicts weight.

87.9% Jack Russell Terrier, 12.1% Rat Terrier Results completed on: 7/28/2022

vetsupport@embarkvet.com 1-855-203-8271

Genetic Age

Dogs age at very different rates due to a number of genetic and environmental factors. Embark's genetic age calculates how old a dog would be if he or she were aging at an average human rate (using humans in the USA as the baseline). This measure is more personalized than "one dog year = seven human years".

View the patient's profile see the personalized genetic age table for this dog.

We start by asking the dog's approximate calendar age. We then calculate genetic age by factoring a dog's breed composition along with information from genes that affect size, sex, and the dog's inbreeding coefficient (COI).

Impact of Breed

When determining whether or not a variant is expected to have a clinical impact for a breed, we have taken into account research either published, internal, or otherwise presented by a subject matter authority as our primary criteria. So, while a dog may have the variant associated with a disease (one or two copies for dominant variants and two copies for autosomal recessive variants), he or she may not be known to be at significant clinical risk from that variant.

Based on the available research within the breed or highly related breeds, you may see text similar to the following options:

- 1. This genetic variant is not likely to significantly increase the risk that this dog will develop the clinical disease.
- 2. This genetic variant is associated with an increased risk that this dog will develop the clinical disease.
- 3. We do not know whether this variant increases the risk that this dog will develop the clinical disease.

Embark is continuing to explore the relationship of genotype to phenotype, and risk assessment may be updated as more data is reviewed. You can contact vetsupport@embarkvet.com or call 1-855-203-8271 to report any clinical diagnoses.