Rectangular Culvert

Bending moments (per unit length of culvert)

Ma: Mb Mc: Md

Pressures and uniform loads are per unit area of walls or slab Loads F and G are total loads per unit length of culvert h and I measured between centres of walls or slabs

Horizontal span of culvert 1 := 3 m

h := 1.5 mVertical height of culvert

 $h_{s} := 400 \text{ mm}$ Horz slab thickness

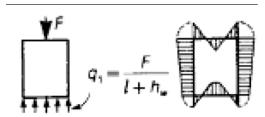
 $h_{\rm w} := 400 \, \rm mm$ Vert wall thickness

$$k := \frac{h}{1} \cdot \left(\frac{h_s}{h_w}\right)^3 = 0.5$$

$$K_1 := k + 1 = 1.5$$
 $K_3 := k + 3 = 3.5$ $K_5 := 2 \cdot k + 3 = 4$ $K_7 := 2 \cdot k + 7 = 8$

$$K_3 := k + 3 = 3.5$$

$$K_7 := 2 \cdot k + 7 = 8$$


$$K_2 := k + 2 = 2.5$$

$$K_a := 4 \cdot k + 9 = 11$$

$$K_{\epsilon} := k + 6 = 6.5$$

$$K_2 := k + 2 = 2.5$$
 $K_4 := 4 \cdot k + 9 = 11$ $K_6 := k + 6 = 6.5$ $K_8 := 3 \cdot k + 8 = 9.5$

Concentrated load on Roof

$$F := 1 \text{ kN}$$

$$M_{A} := -\frac{F \cdot 1 \cdot K_{4}}{24 \cdot K_{1} \cdot K_{2}} = -0.2619 \text{ kN m}$$

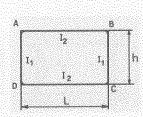
$$M_{A} := -\frac{r \cdot r \cdot K_{4}}{24 \cdot K_{1} \cdot K_{3}} = -0.2619 \text{ kN m}$$

Mikhelson matches above

$$-\frac{F \cdot 1}{24} \cdot \frac{4 \cdot k + 9}{k^2 + 4 \cdot k + 3} = -0.2619 \text{ kN m}$$

$$M_C := \frac{K_6}{K_4} \cdot M_A = -0.1548 \text{ kN m}$$

Mikhelson does not match above


$$-\frac{F \cdot 1}{24} \cdot \frac{4 \cdot k + 6}{k^2 + 4 \cdot k + 3} = -0.1905 \text{ kN m}$$

Correction to Mikhelson matches above

$$-\frac{F \cdot 1}{24} \cdot \frac{k+6}{k^2+4 \cdot k+3} = -0.1548 \text{ kN m}$$

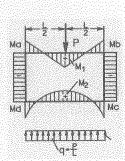
PIPES AND TUNNELS RECTANGULAR CROSS-SECTION

12.1

$$k = \frac{I_2 h}{I_1 L}$$

+M = tension on inside of section

1



$$M_a = M_b = -\frac{L^3}{12} \cdot \frac{w(2k+3) - qk}{k^2 + 4k + 3}$$

$$M_c = M_d = -\frac{L^2}{12} \cdot \frac{q(2k+3) - wk}{k^2 + 4k + 3}$$

$$M_a = M_b = M_c = M_d = -\frac{wL^2}{12} \cdot \frac{k+3}{K^2 + 4k + 3}$$

2

$$M_a = M_b = -\frac{PL}{24} \cdot \frac{4k+9}{k^2+4k+3}$$

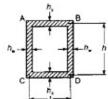
$$M_u = M_d = -\frac{PL}{24} \cdot \frac{4k+6}{k^2+4k+3}$$

For k=1

$$M_a = M_b = -\frac{13}{192} PL$$

$$M_{\rm e} = M_{\rm d} = -\frac{7}{192} PL$$

Rectangular culverts


2.87

Bending moments (per unit length of culvert)

 $M_A = M_B$ $M_C = M_D$

Pressures and uniform loads are per unit area of walls or slab. Loads F and G are total loads per unit length of culvert. h and l are measured between centres of walls or slabs.

q₁ = pressure transferred to soil.

k =	h	(h,	3
	ī	(h.)	

 $K_4 = 4k + 9$

 $K_1 = k + 1$ $K_2 = k + 2$

 $K_5 = 2k + 3$ $K_6 = k + 6$

 $K_3 = k + 3$

 $K_7 = 2k + 7$ $K_8 = 3k + 8$

$q_1 = pressure$	transferred to soil.		i		K3 = K + 5 K8 = 5K + 6	
Condition of supporting ground (limiting cases)						
Loading	Highly compressible		Non-compressible			
Concentrated load on roof	$q_1 = \frac{F}{I + h_2}$	$M_A = -\frac{FlK_4}{24K_1K_3}$ $M_C = \frac{K_6}{K_4}M_A$	♥ ^F		$M_A = -\frac{Fl}{4K_2}$ $M_C = -\frac{M_A}{2}$	
Uniform load on roof		$\left.\frac{M_A}{M_C}\right\} = -\frac{ql^2}{12K_1}$			$M_A = -\frac{ql^2}{6K_2}$ $M_C = -\frac{M_A}{2}$	
Weight of walls	$G = \frac{2G}{1 + n_w}$	$M_A = +\frac{q_1 l^2 k}{12K_1 K_3}$ $M_C = -\frac{K_3}{k} M_A$	G √ IIIII.		$M_A = M_C = 0$	
Earth pressure on walls		$M_A = -\frac{q_{ep}h^2kK_{\gamma}}{60K_1K_3}$ $M_C = \frac{K_8}{K_{\gamma}}M_A$			$M_A = -\frac{q_{ep}h^2k}{30K_2}$ $M_C = \frac{K_8}{2k}M_A$	
Earth (surcharge) pressure on walls		$ \frac{M_A}{M_C} = -\frac{q_{ep}h^2k}{12K_1} $			$M_A = -\frac{q_{ep}h^2k}{12K_2}$ $M_C = \frac{K_3}{k}M_A$	
Hydrostatic (internal) pressure	q_{ip} $q_{i} = q_{ip}$	$M_A = +\frac{q_{i\rho}h^2kK_7}{60K_1K_3}$ $M_c = \frac{K_8}{K_7}M_A$	q.		$M_A = +\frac{q_{ip}h^2k}{30K_2}$ $M_C = \frac{K_8}{2k}M_A$	
Excess hydrostatic (internal) pressure	$q_{ip} = q_{ip}$	$M_A = + \frac{q_{ip}(h^2kK_3 + l^2K_5)}{12K_1K_3}$ $M_C = + \frac{q_{ip}k(h^2K_3 - l^2)}{12K_1K_3}$	q _{ip}		$M_A = + \frac{q_{ip}(h^2k + 2l^2)}{12K_2}$ $M_C = + \frac{q_{ip}(h^2K_3 - l^2)}{12K_2}$	