fischer FIS GREEN 300 T. Injection mortar with approval.

 Application in solid brick

 Image: Second s

Applications.

Test mark

Recommendation

Approved for:

- Uncracked concrete
- Solid and vertically perforated bricks
- Sand-lime, solid and perforated bricks
- Aerated concrete

Suitable for:

- Hollow blocks made of normal weight concrete
- Natural stone

Typical anchoring solutions

Staircases

Reconstruction of buildings

Building installation systems

Garden grounds

- The injection mortar FIS GREEN is a twocomponent injection mortar with which high loads can be mounted in concrete, perforated and solid brick both indoors and outdoors.
- Typical applications are mounting kitchen and plumbing components, wood structures, outdoor facilities, canopies, awnings and much more.

Selection aid Injection mortar FIS GREEN accessories.

FIS GREEN in concrete

Injection system FIS GREEN with threaded rod FIS A (property class 5.8) Highest permissible loads for a single anchor $^{11.61}$ in concrete C20/25⁴) For the design the complete approval ETA-14/0408 has to be considered.

						Non-crack	ed concrete	
Туре	Min. effective anchorage depth	Max. effective anchorage depth	Min. member thickness	Max. torque moment	Permissible tensile load	Permissible shear load	Min. spacing	Min. edge distance
	h _{ef,min}	h _{ef,max}	h _{min}	T _{inst,max}	N _{zul} 3)	V _{zul} 3)	s _{min} 2)	c _{min} 2)
	[mm]	[mm]	[mm]	[Nm]	[kN]	[kN]	[mm]	[mm]
EIC A MO (E O)	60		100	10,0	6,3	5,1	40	40
FIS A W0 (5.0)		160	190	10,0	9,0	5,1	40 40 45 45	40
EIS A M10 (5 9)	60		100	20,0	7,5	8,6	45	45
FIS A WITO (5.0)		200	230	20,0	13,8	8,6	Min. spacing s _{min} 2) [mm] 40 40 45 45 45 55 55 55 65 65 65 65 85 85	45
EIC A M12 (E 0)	70		100	40,0	9,9	12,0	55	55
FIS A WIZ (5.8)		240	270	40,0	20,5	12,0	Min. spacing smin ²) [mm] 40 40 45 45 55 55 55 55 65 65 65 65 85 85	55
	80		116	60,0	13,6	22,3	65	65
FIS A WITO (5.0)		320	356	60,0	37,6	22,3	65	65
EIS A M20 (5 9)	90		138	120,0	16,8	34,9	85	85
FI3 A WIZU (3.0)		400	448	120,0	58,6	34,9	40 45 55 55 65 65 65 85 85 85	85

¹⁾ The partial safety factors for material resistance as regulated in the approval as well as a partial safety factor for load actions of γ_L = 1,4 are considered. As an single anchor counts e.g. an anchor with a spacing s \geq 3 x h_{ef} and an edge distance c \geq 1,5 x h_{ef}.

4) For higher concrete strength classes up to C50/60 higher permissible loads may be possible.
6) The given loads are valid for temperatures in the substrate up to +50 °C (resp. short term up to 80 °C). Erection of the drill hole by hammer drilling with best possible drill hole cleaning according approval. The anchor may be installed in dry or wet concrete.

2) Minimum possible axial spacings resp. edge distance while reducing the permissible load.
 3) For combinations of tensile loads, shear loads, bending moments as well as reduced edge distances or spacings (anchor groups) see approval.

FIS GREEN in concrete

Injection system FIS GREEN with threaded rod FIS A A4 (property class A4-70) Highest permissible loads for a single anchor^{1) 6)} in concrete C20/254) For the design the complete approval ETA-14/0408 has to be considered.

Min. effective anchorage depth	Max. effective anchorage depth	Min. member thickness	Max. torque moment	Permissible tensile load	Permissible shear load	Min. spacing	Min. edge distance
h _{ef,min}	h _{ef,max}	h _{min}	T _{inst,max}	N _{zul} 3)	V _{zul} 3)	s _{min} 2)	c _{min} 2)
[mm]	[mm]	[mm]	[Nm]	[kN]	[kN]	[mm]	[mm]
60		100	10,0	6,3	6,0	40	40
	160	190	10,0	9,9	6,0	(mm) 40 40 45 45 45 55	40
60		100	20,0	7,5	9,2	45	45
	200	230	20,0	15,7	9,2	40 45 45 55	45
70		100	40,0	9,9	13,7	55	55
	240	270	40,0	22,5	13,7	Min. spacing smin ²) [mm] 40 40 45 45 45 55 65 65 65 65 85 85 85	55
80		116	60,0	13,6	25,2	65	65
	320	356	60,0	42,0	25,2	65	65
90		138	120,0	16,8	39,4	85	85
	400	448	120,0	65,7	39,4	Min. spacing smin ²) [mm] 40 40 45 45 55 65 65 65 65 85 85	85
	Min. effective anchorage depth hef,min anchorage 60 anchorage 60 anchorage 70 anchorage 80 anchorage 90 anchorage	Max. effective anchorage depth Max. effective anchorage depth hef.man hef.max fmmi fmmi fmmi fmmi f0 fmmi fmmi fmmi </th <th>Min. effective anchorage depth Max. effective anchorage depth Min. member thickness hef,min hef,max hmin hef,min hef,max 100 fmmj fmmj 100 60 1100 190 60 200 230 60 200 230 70 240 270 80 320 356 90 400 448</th> <th>Min. effective anchorage depth Max. effective anchorage depth Min. member thickness Max. torque moment hef,min hef,max hmin Tinst,max f(mm) [mm] [mm] Tinst,max f(mm) [mm] [mm] [mm] 60 100 10,0 60 1100 20,0 60 200 230 20,0 70 240 270 40,0 80 320 356 60,0 90 138 120,0 120,0</th> <th>Max. effective anchorage depthMax. effective nchorage depthMin. member thicknessMax. torque momentPermissible tensile loadhef,minhef,maxMin. member thicknessMax. torque momentPermissible tensile loadhef,minhef,maxhminTinst,maxNzu³³f(mm)(fmm)(fmm)(fm)(fkN)6010010,09,96020023020,015,77020023020,015,77024027040,09,98032035660,042,090400448120,065,7</th> <th>Min. effective anchorage depth Max. effective anchorage depth Min. member thickness Max. torque moment Permissible tensile load Permissible shear load h_{ef,min} h_{ef,max} h_{min} Tinst,max Nzul³ Vzul³ f(mn) f(mn) Tinst,max Nzul³ Vzul³ f(ma) f(mn) f(Nn) f(Nn) f(Nn) 60 100 10,0 6,3 6,0 60 1100 20,0 7,5 9,2 60 200 230 20,0 15,7 9,2 70 200 230 40,0 9,9 13,7 70 240 270 40,0 9,9 13,7 80 116 60,0 13,6 25,2 80 320 356 60,0 42,0 25,2 90 400 448 120,0 66,7 39,4</th> <th>Min. effective anchorage depthMin. member thicknessMax. torque momentPermissible tensile loadPermissible shear loadMin. spacinghef_minhef_maxMin. Member thicknessMax. torque momentPermissible tensile loadPermissible shear loadMin. spacinghef_minhef_maxhminTinst,maxNzul³Vzul³Smin²fmm(Imm)(Imm)ImmNoNzul³Vzul³Smin²fmode(Imm)(Imm)(Imm)(Imm)NuNu600(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)601(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)602(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)603(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)604(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)605(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)6060(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)707(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)7080(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)7080(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)8090(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)8090(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)8090</th>	Min. effective anchorage depth Max. effective anchorage depth Min. member thickness hef,min hef,max hmin hef,min hef,max 100 fmmj fmmj 100 60 1100 190 60 200 230 60 200 230 70 240 270 80 320 356 90 400 448	Min. effective anchorage depth Max. effective anchorage depth Min. member thickness Max. torque moment hef,min hef,max hmin Tinst,max f(mm) [mm] [mm] Tinst,max f(mm) [mm] [mm] [mm] 60 100 10,0 60 1100 20,0 60 200 230 20,0 70 240 270 40,0 80 320 356 60,0 90 138 120,0 120,0	Max. effective anchorage depthMax. effective nchorage depthMin. member thicknessMax. torque momentPermissible tensile loadhef,minhef,maxMin. member thicknessMax. torque momentPermissible tensile loadhef,minhef,maxhminTinst,maxNzu³³f(mm)(fmm)(fmm)(fm)(fkN)6010010,09,96020023020,015,77020023020,015,77024027040,09,98032035660,042,090400448120,065,7	Min. effective anchorage depth Max. effective anchorage depth Min. member thickness Max. torque moment Permissible tensile load Permissible shear load h _{ef,min} h _{ef,max} h _{min} Tinst,max Nzul ³ Vzul ³ f(mn) f(mn) Tinst,max Nzul ³ Vzul ³ f(ma) f(mn) f(Nn) f(Nn) f(Nn) 60 100 10,0 6,3 6,0 60 1100 20,0 7,5 9,2 60 200 230 20,0 15,7 9,2 70 200 230 40,0 9,9 13,7 70 240 270 40,0 9,9 13,7 80 116 60,0 13,6 25,2 80 320 356 60,0 42,0 25,2 90 400 448 120,0 66,7 39,4	Min. effective anchorage depthMin. member thicknessMax. torque momentPermissible tensile loadPermissible shear loadMin. spacinghef_minhef_maxMin. Member thicknessMax. torque momentPermissible tensile loadPermissible shear loadMin. spacinghef_minhef_maxhminTinst,maxNzul ³ Vzul ³ Smin ² fmm(Imm)(Imm)ImmNoNzul ³ Vzul ³ Smin ² fmode(Imm)(Imm)(Imm)(Imm)NuNu600(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)601(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)602(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)603(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)604(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)605(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)6060(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)707(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)7080(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)7080(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)8090(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)8090(Imm)(Imm)(Imm)(Imm)(Imm)(Imm)8090

¹⁾ The partial safety factors for material resistance as regulated in the approval as well as a partial safety factor for load actions of γ_L = 1,4 are considered. As an single anchor counts e.g. an anchor with a spacing s \geq 3 x h_{ef} and an edge distance c \geq 1,5 x h_{ef}.

4) For higher concrete strength classes up to C50/60 higher permissible loads may be possible.
6) The given loads are valid for temperatures in the substrate up to +50 °C (resp. short term up to 80 °C). Erection of the drill hole by hammer drilling with best possible drill hole cleaning according approval. The anchor may be installed in dry or wet concrete.

Minimum possible axial spacings resp. edge distance while reducing the permissible load.
 For combinations of tensile loads, shear loads, bending moments as well as reduced edge distances or spacings (anchor groups) see approval.

FIS GREEN in concrete

Injection system FIS GREEN with threaded rod FIS A C (property class C-70) Highest permissible loads for a single anchor $^{(1)}$ $^{(6)}$ in concrete C20/25 $^{(4)}$ For the design the complete approval ETA-14/0408 has to be considered.

					Non-cracked concrete					
Туре	Min. effective anchorage depth	Max. effective anchorage depth	Min. member thickness	Max. torque moment	Permissible tensile load	Permissible shear load	Min. spacing	Min. edge distance		
	h _{ef,min}	h _{ef,max}	h _{min}	T _{inst,max}	N _{zul} ³⁾	V _{zul} ³⁾	s _{min} 2)	c _{min} 2)		
	[mm]	[mm]	[mm]	[Nm]	[kN]	[kN]	[mm]	[mm]		
FIC A MO (C 70)	60		100	10,0	6,3	7,4	40	40		
FIS A MO (C-70)		160	190	10,0	12,4	7,4	40 45	40		
EIC A M10 (C 70)	60		100	20,0	7,5	11,4	45	45		
FIS A MITU (C-70)		200	230	20,0	19,5	11,4	40 45 45 55	45		
FIG & M42 (0 70)	70		100	40,0	9,9	17,1	55	55		
FIS A WIZ (C-70)		240	270	40,0	28,1	17,1	Min. spacing s _{min} 2) [mm] 40 40 40 45 45 55 55 55 65 65 65 65 85 85	55		
FIG & MAR (0.70)	80		116	60,0	13,6	31,4	65	65		
FIS A WITO (C-70)		320	356	60,0	60,0 52,4 31,4 65	65	65			
FIG A M20 (0 70)	90		138	120,0	16,8	40,4	85	85		
FIS A IVIZU (C-70)		400	448	120,0	74,8	49,1	[mm] 40 40 45 45 55 55 55 65 65 65 65 85 85	85		

 The partial safety factors for material resistance as regulated in the approval as well as a partial safety factor for load actions of γL = 1.4 are considered. As an single anchor counts e.g. an anchor with a spacing s ≥ 3 x hef and an edge distance c ≥ 1,5 x hef.

2) Minimum possible axial spacings resp. edge distance while reducing the permissible load.

3) For combinations of tensile loads, shear loads, bending moments as well as reduced edge distances or spacings (anchor groups) see approval.

4) For higher concrete strength classes up to C50/60 higher permissible loads may be possible.

6) The given loads are valid for temperatures in the substrate up to +50 °C (resp. short term up to 80 °C). Erection of the drill hole by hammer drilling with best possible drill hole cleaning according approval. The anchor may be installed in dry or wet concrete.

FIS GREEN in perforated brick masonry for push-through installation

Injection system FIS GREEN with threaded rod FIS A⁵**) and push-through anchor sleeve FIS HK** Highest permissible loads^{1) 6} for a single anchor in perforated brick masonry for push-through installation. For the design the complete approval ETA-10/0383 has to be considered.

								Perforated brick masonry ssible Permissible Min.		
Туре	Compressive brick strength	Brick raw density	Minimum brick dimensions ⁷⁾	Min. effective anchorage depth ⁴⁾	Min. member thick- ness	Maximum torque	Permissible tensile load ³⁾	Permissible shear load ³⁾	Min. spacing ²⁾	Min. edge distance ²⁾
	fb	ρ	(L x W x H)	h _{ef}	h _{min}	T _{inst,max}	Nzul	Vzul	s _{min}	C _{min}
	[N/mm ²]	[kg/dm³]	[mm]	[mm]	[mm]	[Nm]	[kN]	[kN]	[mm]	[mm]
Perforated sand-lime l	orick KSL acc. EN	771-2								
M10	≥ 8		240x175x113	130	175	4,0	1,00	2,57	115	120
M12	≥ 8	≥ 1,4					0,57	2,14	115	120
M16	≥ 8						0,57	2,14	115	120
Vertically perforated b	orick Hlz acc. EN	771-1								
M8/M10	≥ 12						0,71	1,57	115	120
M8/M10	≥ 12	≥ 0,9	240x175x113	130	175	4,0	0,57	1,71	115	120
M8/M10	≥ 12						1,71	1,71	115	120

1) The required partial safety factors for material resistance as well as a partial safety factor for load actions of yL = 1,4 are considered.

4) The maximum anchorage depth is corresponding with the relevant anchor sleeves FIS HK (see technical data).

5) gvz, A4 and C.

2) Minimum possible edge distance resp. axial spacing for anchor groups. For further measures e.g. the corresponding axial spacing for anchor groups or the minimum distance between anchor groups please see approval.

3) For combinations of tensile loads, shear loads, bending moments as well as reduced axial spacings (anchor groups) see approval. 6) The given loads are valid for installation and use of fixations in dry masonry for temperatures in the substrate up to +50 °C (resp. short term up to 80 °C) and drillhole cleaning according approval. The given brick types in combination with the permissible loads are only an extract of the approval.

7) Hole patterns see approval.

FIS GREEN in perforated brick masonry for pre-positioned installation

Injection system FIS GREEN with threaded rod FIS A⁵⁾ and anchor sleeve FIS HK

Highest permissible loads^{1) 6)} for a single anchor in perforated brick masonry for pre-positioned installation.

For the design the complete approval has to be considered.

							Perforated brick masonry			
Туре	Compressive brick strength	Brick raw density	Minimum brick dimensions ⁷⁾	Min. effective anchorage depth ⁴⁾	Min. member thick- ness	Maximum torque	Permissible tensile load ³⁾	Permissible shear load ³⁾	Min. spacing ²⁾	Min. edge distance ²⁾
	f _b	ρ	(L x W x H) ⁷⁾	h _{ef}	h _{min}	T _{inst,max}	N _{zul}	V _{zul}	s _{min}	c _{min}
	[N/mm ²]	[kg/dm³]	[mm]	[mm]	[mm]	[Nm]	[kN]	[kN]	[mm]	[mm]
Vertically perforated l	orick Hlz acc. EN	771-1								
M8 / M10 / M12	≥ 8	≥ 1,4	230x106x55	85	106	4,0	0,57	0,71	55	100
M8				50	175		0,57	1,14	115	120
M8 / M10	≥ 12	≥ 0,9	240x175x113	85		4,0	0,57	1,57	115	120
M12 / M16							0,71	1,71	115	120

1) The required partial safety factors for material resistance as well as a partial safety factor for load actions of γ_L = 1,4 are considered.

2) Minimum possible edge distance resp. axial spacing for anchor groups. For further measures e.g. the corresponding axial spacing for anchor groups or the minimum distance between anchor groups please see approval.

3) For combinations of tensile loads, shear loads, bending moments as well as reduced axial spacings (anchor groups) see approval. 4) The maximum anchorage depth is corresponding with the relevant anchor sleeves FIS HK (see technical data).

5) gvz, A4 and C.

6) The given loads are valid for installation and use of fixations in dry masonry for temperatures in the substrate up to +50 °C (resp. short term up to 80 °C) and drillhole cleaning according approval. The given brick types in combination with the permissible loads are only an extract of the approval.

7) Hole patterns see approval.

FIS GREEN in solid brick masonry for pre-positioned or push-through installation

Injection system FIS GREEN with threaded rod FIS A⁵⁾

Highest permissible loads^{1) 6)} for a single anchor in solid brick masonry for pre-positioned or push-through installation.

For the design the complete approval has to be considered.

								Solid brick	a masonry	
Туре	Compressive brick strength	Brick raw density	Minimum brick dimensions	Min. effective anchorage depth	Min. member thick- ness	Maximum torque	Permissible tensile load ³⁾	Permissible shear load ³⁾	Min. spacing ²⁾	Min. edge distance ²⁾
	fb	ρ	(L x W x H)	h _{ef}	h _{min}	T _{inst,max}	N _{zul}	V _{zul}	s _{min}	c _{min}
	[N/mm ²]	[kg/dm³]	[mm]	[mm]	[mm]	[Nm]	[kN]	[kN]	[mm]	[mm]
Solid brick Mz acc. I	EN 771-1									
M8	≥ 10			50			0,86	0,71	150	100
M10	≥ 10		240x115x71	50	115		0,71	1,00	150	100
M12	≥ 10			80		10	1,14	1,00	150	100
M8	≥ 20	≥ 1,8		50		10	1,14	1,14	150	100
M10	≥ 20			50			1,14	1,43	150	100
M12	≥ 20			80			1,71	1,29	150	100
M8	≥ 16		230x108x55	50	108		0,57	1,14	150	100
M10	≥ 16			50		10	0,71	1,57	150	100
M12	≥ 16			50			0,86	1,57	150	100
Solid sand-lime bricl	k KS acc. EN 771-2									
M8	≥ 10			50			0,86	1,14	150	100
M10	≥ 10			50			0,71	1,14	150	100
M10	≥ 10			80			0,86	1,14	240	100
M12	≥ 10	> 1.0	240-115-71	80	115	10	0,86	1,43	240	100
M8	≥ 20	< 1,0	2408110871	50	110	TU	1,14	1,57	150	100
M10	≥ 20			50			1,00	1,57	150	100
M10	≥ 20			80			1,29	1,57	240	100
M12	≥ 20			80			1,29	2,00	240	100

 The required partial safety factors for material resistance as well as a partial safety factor for load actions of yL - 1,4 are considered.

2) Minimum possible edge distance resp. axial spacing for anchor groups. For further measures e.g. the corresponding axial spacing for anchor groups or the minimum distance between anchor groups please see approval.

3) For combinations of tensile loads, shear loads, bending moments as well as reduced axial spacings (anchor groups) see approval.

26

5) gvz, A4 and C.

6) The given loads are valid for installation and use of fixations in dry masonry for temperatures in the substrate up to +50 °C (resp. short term up to 80 °C) and drillhole cleaning according approval. The given brick types in combination with the permissible loads are only an extract of the approval.

FIS GREEN in aerated concrete masonry for pre-positioned or push-through installation

Injection system FIS GREEN with threaded rod FIS A⁵⁾

Highest permissible loads¹⁾ ⁶⁾ for a single anchor in aerated concrete masonry for pre-positioned or push-through installation.

For the design the complete approval has to be considered.

							Aerated concrete				
Туре	Compressive brick strength	Brick raw density	Minimum brick dimensions	Min. effective anchorage depth	Min. member thick- ness	Maximum torque	Permissible tensile load ³⁾	Permissible shear load ³⁾	Min. spacing ²⁾	Min. edge distance ²⁾	
	f _b	ρ	(L x W x H)	h _{ef}	h _{min}	T _{inst,max}	N _{zul}	V _{zul}	s _{min}	c _{min}	
	[N/mm²]	[kg/dm³]	[mm]	[mm]	[mm]	[Nm]	[kN]	[kN]	[mm]	[mm]	
Aerated concrete bloc	:ks										
M8	≥ 1,8	≥ 0,18		100		2,0	0,71	0,32	115	80	
M10	≥ 1,8	≥ 0,18		100		4,0	0,71	0,32	115	80	
M12	≥ 1,8	≥ 0,18		100		4,0	0,89	0,32	115	80	
M16	≥ 1,8	≥ 0,18		100		4,0	0,89	0,43	115	80	
M8	≥ 4,0	≥ 0,35		100		2,0	0,89	0,54	115	80	
M10	≥ 4,0	≥ 0,35	E00~200~2E0	100	200	4,0	1,07	0,54	115	80	
M12	≥ 4,0	≥ 0,35	000x000x200	100	200	4,0	1,07	0,54	115	80	
M16	≥ 4,0	≥ 0,35		100		4,0	0,89	0,54	115	80	
M8	≥ 5,4	≥ 0,54		100		2,0	1,25	0,89	115	80	
M10	≥ 5,4	≥ 0,54		100		4,0	1,43	0,89	115	80	
M12	≥ 5,4	≥ 0,54		100		4,0	1,43	0,89	115	80	
M16	≥ 5,4	≥ 0,54		100		4,0	1,07	0,71	115	80	

1) The required partial safety factors for material resistance as well as a partial safety factor for load actions of yL = 1,4 are considered.

5) gvz, A4 and C. 6) The given loads are valid for installation and use of fixations in dry masonry for temperatures in the substrate up to +50

2) Minimum possible edge distance resp. axial spacing for anchor groups. For further measures e.g. the corresponding axial

spacing for anchor groups or the minimum distance between anchor groups please see approval. 3) For combinations of tensile loads, shear loads, bending moments as well as reduced axial spacings (anchor groups) see

approval.

°C (resp. short term up to 80 °C) and drillhole cleaning according approval. The given brick types in combination with the permissible loads are only an extract of the approval.

FIS GREEN in solid brick masonry for pre-positioned installation

Injection system FIS GREEN with threaded rod FIS A⁵⁾ and anchor sleeve FIS HK

Highest permissible loads^{1) 6)} for a single anchor in solid brick masonry for pre-positioned installation. For the design the complete approval has to be considered.

							Solid brick masonry			
Туре	Compressive brick strength	Brick raw density	Minimum brick dimensions	Min. effective anchorage depth ⁴⁾	Min. member thick- ness	Maximum torque	Permissible tensile load ³⁾	Permissible shear load ³⁾	Min. spacing ²⁾	Min. edge distance ²⁾
	fb	ρ	(L x W x H)	h _{ef}	h _{min}	T _{inst,max}	N _{zul}	V _{zul}	s _{min}	c _{min}
	[N/mm ²]	[kg/dm³]	[mm]	[mm]	[mm]	[Nm]	[kN]	[kN]	[mm]	[mm]
Solid sand-lime brick H	(S acc. EN 771-2									
M8/M10	> 20	> 1.0	240-115-112	05	115	10	0,86	1,86	230	100
M12/M16	2 20	≤ 1,0	24081108115	00	110	IU	2,29	1,86	230	100

1) The required partial safety factors for material resistance as well as a partial safety factor for load actions of γ L = 1,4 are considered.

2) Minimum possible edge distance resp. axial spacing for anchor groups. For further measures e.g. the corresponding axial spacing for anchor groups or the minimum distance between anchor groups please see approval.

3) For combinations of tensile loads, shear loads, bending moments as well as reduced axial spacings (anchor groups) see approval.

4) The maximum anchorage depth is corresponding with the relevant anchor sleeves FIS HK (see technical data). 5) gvz, A4 and C.

6) The given loads are valid for installation and use of fixations in dry masonry for temperatures in the substrate up to +50 °C (resp. short term up to 80 °C) and drillhole cleaning according approval. The given brick types in combination with the permissible loads are only an extract of the approval.

7) Hole patterns see approval.