

AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAB 400-V/SP1

Introduction

The HAB 400-V/SP1 is for the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications with galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit).

The HAB 400-V/SP1 gives you the choice of having different current measuring ranges in the same housing.

The HAB 400-V/SP1 is attached on the battery cable (or busbar) of a vehicle. It provides to a controller (ECU) the actual value of current flowing in the cable. The current value is provided by a voltage signal. The electrical connection is made with a waterproof connector. The output voltage V_{out} is fully ratiometric with the supply voltage U_{c} .

Features

- · Open Loop transducer using the Hall effect
- Unipolar + 5 V DC power supply
- Primary current measuring range -400/+150 A
- Maximum RMS primary admissible current: defined by busbar to have T° < + 150 °C
- Operating temperature range: 40 °C < T° < + 105 °C
- Output voltage: full ratio-metric (in sensitivity and offset)

Special feature

Client dedicated.

Advantages

- Excellent accuracy
- Very good linearity
- Very low thermal offset drift
- Very low thermal sensitivity drift
- Current measurement
- No insertion losses.

Automotive applications

Stop/Start Battery Management.

Principle of HAB Family

The open loop transducers uses a Hall effect integrated circuit. The magnetic flux density B, contributing to the rise of the Hall voltage, is generated by the primary current I_{p} to be measured. The current to be measured $I_{\rm p}$ is supplied by a current source i.e. battery or generator (Figure 1).

Within the linear region of the hysteresis cycle, B is proportional to:

$$B(I_{\rm P})$$
 = constant (a) x $I_{\rm P}$

The Hall voltage is thus expressed by:

 $V_{\mu} = (R_{\mu}/d) \times I \times \text{constant}$ (a) $\times I_{\mu}$

Except for $I_{\rm P}$ all terms of this equation are constant. Therefore:

$$V_{\rm H}$$
 = constant (b) x $I_{\rm P}$

The measurement signal V_{μ} amplified to supply the user output voltage or current.

Fig. 1: Principle of the open loop transducer

N° 97.39.48.101.0

23May2013/version 1

Dimensions HAB 400-V/SP1 (in mm)

Mechanical characteristics

- PBT GF 30 Plastic case
- Magnetic core Iron silicon alloy wound core •

TYCO 1488991-5

Mass •

.

- 43.3 g
- Electrical terminal coating Tin plated

Mounting recommendation

• Connector type

Electronic schematic

Lomponents list					
IC1	Hall sensor ASIC				
C1	1µF Capacitor				
C2	68nF Capacitor				
Z1	Bi-directional zener				
Pin out					
1	DC supply voltage (5V)				
2	Ground				
3	Output signal				

.

$$P_{P} = \left(\frac{5}{U_{c}} \cdot V_{out} - V_{o}\right) \cdot \frac{1}{G} \text{ with } G \text{ in (V/A)}$$

• $V_{out} > V_{o}$ when I_{P} flows in the positive direction (see arrow on drawing).

On board diagnostic

GND open	$V_{\text{out}} = 0.1 V_{\text{max}}$			
U _c open	$V_{\text{out}} = 0.1 V_{\text{max}}$			

C3= 47nF C4= 100nF C_L= 47nF R_L= 39kΩ R[¯]= 10kΩ

Absolute ratings (not operating)

Poromotor	Symbol	Unit		Specificatio	n	Conditiono
Falalletei			Min	Typical	Max	Conditions
Nominal supply voltage		U _c V	4.5	5	5.5	
Supply continuous over voltage	- U _c				8.5	
Reverse voltage			-14			1 min @ T _A = 25 °C
Over voltage					14	2 min
Ambient storage temperature	Ts	°C	-40		105	
Electrostatic discharge voltage	U _{ESD}	kV			2	JESD 22-A114-B
Maximum admissible vibration (random)	Y	m·s· -2	19.6			10 to 1000 Hz @ -40 °C to 105 °C
Creepage distance	d _{Cp}	mm	4			
Clearance	d _{ci}	mm	3.5			
Comparative traking index	CTI	V	375			
Maximum continuous output current	I _{out}	mA	-10		10	
Maximum continuous output voltage (Analog)	V _{out}	V			14	1 min @ T _A = 25 °C
Isolation resistance	R _{IS}	MΩ	10			DC 500 V
Output Short circuit maximum duration	t _c	min			2	

Operating characteristics in nominal range ($I_{\rm PN}$)

Devemeter	Symbol	Unit		Specificatio	n	Conditions						
Parameter			Min	Typical	Max	Conditions						
Electrical Data												
Primary current, measuring range	$I_{\rm PM}$	A	-400		150							
Primary nominal DC or rms current	$I_{\rm PN}$	A	-400		150							
Supply voltage	U _c	V	4.5	5	5.5							
Ambient operating temperature	T _A	°C	-40		105							
Continuous output current	I	mA	-1		1							
Output voltage (Analog)	V _{out}	V	$V_{\rm out} = (U_{\rm c}/5) \cdot (V_{\rm o} + G \cdot I_{\rm P})$									
Resolution		mV		2.5								
Sensitivity	G	mV/A		7.27								
Offset voltage	Vo	V	3.409									
Current concurrention	I _c	mA	5	7		@ T _A = 25 °C						
Current consumption					10	Over temperature						
Load resistance (pull down)	R	ΚΩ	9	39	100	Pull down resistance only						
Capacitive loading	CL	nF		47	100							
	R _{out}	0		1		@ T _A = 25 °C						
Output internal resistance		κ_{out}	∽ _{out}	κ_{out}	κ_{out}	Ω	Ω	κ _{out} Ω	Ω			10
Output voltage (diagnostic detection open ground)	V _{out}	V			0.1							
Output voltage (diagnostic detection open U_{d})	V _{out}	V			0.1							
Output clamping voltage low	V	N	0.2	0.25	0.3	@U-5V						
Output clamping voltage high	v _{sz}	V	4.7	4.75	4.80							

Operating characteristics in nominal range $(I_{\rm PN})$

Downwator	Symbol	Unit	Specification			Conditions					
Parameter			Min	Typical	Max	Conditions					
	Perform	nance Data	a ¹⁾								
Electrical offset current	I _{OE}	mA	± 500			@ T _A = 25 °C					
Magnetic offset current	I _{om}	mA	± 400			@ $T_{\rm A}$ = 25 °C ³⁾					
	_	% I _P	-0.5		0.5	-300 A up to 150 A @ 25 °C 2)					
Linearity error	ε _L		-1		1	-400 A to -300 A @ 25 °C 2)					
Overall accuracy @ I = 0 A @ - 40 °C to 105 °C			-1.2		1.2	$V_{out} = \pm 8.72 \text{ mV} @> U_{c} = 5 \text{ V} \pm 0.05 \text{ V}^{-3}$					
Overall accuracy @ <i>I</i> = - 400 A @ - 10 °C to 85 °C			-14		14	$V_{\rm out} = \pm 101.78 \text{ mV} @ U_{\rm C} = 5 \text{ V} \pm 0.05 \text{ V}$					
Overall accuracy @ <i>I</i> =-400 A @ T°< -10 °C and T°> 85 °C		X _G	X _G	X _g	X _G	X _G	A	-16		16	$V_{\rm out}$ = ± 116.32 mV @ $U_{\rm c}$ = 5 V ± 0.05 V
Overall accuracy @ <i>I</i> = 150 A @ - 10 to 85 °C			-6		6	$V_{\rm out}$ = ± 43.62 mV @ $U_{\rm C}$ = 5 V ± 0.05 V					
Overall accuracy @ <i>I</i> = +150 A @ T°< -10 °C and T°> 85 °C			-6		6	$V_{\rm out}$ = ± 43.62 mV @ $U_{\rm c}$ = 5 V ± 0.05 V					
Frequency bandwidth 4)	BW	kHz	2								
Step response time to 90 % $I_{\rm PN}^{(1)}$					1.1						
Power up time	t _r	ms		25	200						
Setting time after overload					25						

¹⁾ With internal filter adjusted at 2 kHz and without customer load.

²⁾ LEM standard 98.20.00.370.0 method 2
³⁾ After cycle @ 400 A

Notes:

⁴⁾ Primary current frequencies must be limited in order to avoid excessive heating of the busbar, magnetic core and the ASIC (see feature paragraph in page 1).

Output and clamping @ 0.25 & 4.75 V

-Mean -

-Max — Min — Mean +3σ — Mean -3σ

$$V_{\text{out}} = \frac{U_{\text{c}}}{5} \cdot (V_{\text{o}} + G \times I_{\text{p}})$$

PERFORMANCES PARAMETERS DEFINITIONS

Definition of typical, minimum and maximum values:

Minimum and maximum values for specified limiting and safety conditions have to be understood as such as well as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, maximal and minimal values are determined during the initial characterization of a product.

Output noise voltage:

The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier.

Magnetic offset:

The magnetic offset is the consequence of an over-current on the primary side. It's defined after an excursion of $I_{_{\rm PM}}$.

Linearity:

The maximum positive or negative discrepancy with a reference straight line $V_{\rm out}$ = f ($I_{\rm P}$).

Unit: linearity (%) expressed with full scale of $I_{\rm PN}$.

Response time (delay time) *t_r*:

The time between the primary current signal ($I_{\rm PN}$) and the output signal reach at 90 % of its final value.

Sensitivity:

The Transducer's sensitivity *G* is the slope of the straight line $V_{out} = f(I_p)$, it must establish the relation: $V_{out}(I_p) = U_c/5 (G \cdot I_p + V_o)$

Offset with temperature:

The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 $^{\circ}$ C.

The offset variation $I_{\rm ot}$ is a maximum variation the offset in the temperature range:

 $I_{\rm OT} = I_{\rm OE} \max - I_{\rm OE} \min$

The Offset drift $\textit{TCI}_{\rm OEAV}$ is the $I_{\rm OT}$ value divided by the temperature range.

Sensitivity with temperature:

The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 $^{\circ}$ C.

The sensitivity variation G_{τ} is the maximum variation (in ppm or %) of the sensitivity in the temperature range:

 G_{τ} = (Sensitivity max - Sensitivity min) / Sensitivity at 25 °C.

The sensitivity drift TCG_{AV} is the G_T value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Offset voltage @ $I_p = 0$ A:

The offset voltage is the output voltage when the primary current is null. The ideal value of $V_{\rm o}$ is $U_{\rm c}/2$ at $U_{\rm c}$ = 5 V. So, the difference of $V_{\rm o}$ - $U_{\rm c}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem.com).

Environmental test specifications:

Name	Standard					
MECHANICAL FATIGUE						
High temperature degradation	GMW3172 § 9.4.1 version July 2010					
Dimensional	GMW3172 § 8.5.3 version July 2010					
Mechanical shock - Pothole	GMW3172 § 9.3.3 version July 2010					
Vibration with thermal cycling	GMW3172 § 9.3.1.2 version July 2010					
Mechanical shock - Collision	GMW3172 § 9.3.4 version July 2010					
THERMAL FATIGUE						
Thermal shocks	GMW3172 § 9.4.2 version July 2010					
Powered temperature cycle	GMW3172 § 9.4.3 version July 2010					
Humidity heat cyclic	GMW3172 § 9.4.5 version July 2010					
Humidity heat constant	GMW3172 § 9.4.6 version July 2010					
Thermal shocks	GMW3172 § 9.4.2 version July 2010					
Post thermal fatigue vibration	GMW3172 § 9.3.2 version July 2010					
Frost	GMW3172 § 8.5.1 version July 2010					
ENCLOS	SURE TESTS					
Dust IP6K	GMW3172 § 9.5.1 version July 2010					
Water IPx9K	GMW3172 § 9.5.1 version July 2010					
CORRO	SION TESTS					
Salt spray	GMW3172 § 9.4.8 version July 2010					
ELECTR	ICAL TESTS					
Reverse polarity	GMW3172 § 8.2.2 version July 2010					
State change waveform characterization	GMW3172 § 8.2.4 version July 2010					
Ground path inductance sensitivity	GMW3172 § 8.2.5 version July 2010					
Power supply interruptions	GMW3172 § 9.2.2 version July 2010					
Intermittent short circuit	GMW3172 § 9.2.6 version July 2010					
Continuous short circuit	GMW3172 § 9.2.7 version July 2010					
Open circuit – single line interruption	GMW3172 § 9.2.9 version July 2010					
CONNECTORS TESTS						
Connector installation abuse: side forces	GMW3172 § 9.3.9 version July 2010					
Crush for housing: elbow load	GMW3172 § 9.3.6 version July 2010					
Terminal push out force	GMW 3191 § 4.10 version December 2007					
Connector to connector engagement force	GMW 3191 § 4.11 version December 2007					
Locked connector disengagement force	GMW 3191 § 4.13 version December 2007					
Unlocked connector disengagement force	GMW 3191 § 4.14 version December 2007					
Fretting corrosion	GMW3172 § 9.3.12 version July 2010					
Water freeze	GMW3172 § 9.5.4 version July 2010					
Thermal shock / Water splash	GMW3172 § 9.4.4 version July 2010					
Mechanical shock - Collision	GMW3172 § 9.3.4 version July 2010					
Free fall	GMW3172 § 9.3.11 version July 2010					
EMC TESTS						
ALSE	GMW3097 §3.3.1 version April 2012					
CE, Artificial Network	GMW3097 §3.3.2 version April 2012					
Bulk Current Injection	GMW3097 §3.4.1 version April 2012					
Reverb, mode tuning	GMW3097 §3.4.3 version April 2012					
Magnetic field	GMW3097 §3.4.4 version April 2012					
I/O Lines	GMW3097 §3.5.3 version April 2012					
Sensor Lines	GMW3097 §3.5.4 version April 2012					
(Optional) 85V I/O	GMW3097 §3.5.5 version April 2012					
Handling	GMW3097 §3.6.3 version April 2012					