

Current Transducer LA 25-P

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Χ

FI	ect	ria	al	da	ta
	せし	. 11	Jai	ua	ιa

1	Primary naminal r m s o	urront		25			A
I _{PN}	Primary nominal r.m.s. current Primary current, measuring range		25 0 ± 55			A	
\mathbf{R}_{M}	Measuring resistance @		$T_A =$	70°C	T _A :	= 85°C	;
			\mathbf{R}_{Mmin}	$\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$	$\mathbf{R}_{\mathrm{Mmin}}$	$\mathbf{R}_{\mathrm{M}\mathrm{max}}$	
	with ± 12 V	$@ \pm 25 A_{max}$	10	280	60	275	Ω
		@ ± 55 A _{max}	10	80	60	75	Ω
	with ± 15 V	@ ± 25 A _{max}	50	400	135	395	Ω
		@ ± 55 A _{max}	50	140	135	135	Ω
I _{SN}	Secondary nominal r.m.s	. current		25			mΑ
ι _{sν} Κ _ν	Conversion ratio			1:	1000		
V _c	Supply voltage (± 5 %)			± 1	2 1	5	V
I _c	Current consumption			10	(@ ±15	(V)+I _s	mA
$\mathbf{V}_{_{d}}$	R.m.s. voltage for AC isol	lation test, 50 Hz, 1 n	nn	3		C	kV
u							

Accuracy - Dynamic performance data

Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$

	@ ±	12 15 V (± 5 %)	± 1.25		%
$\mathbf{e}_{\scriptscriptstyle\! L}$	Linearity error		< 0.15		%
I _О I _{ОМ} I _{ОТ}	Offset current @ \mathbf{I}_{p} = 0, \mathbf{T}_{A} = 25°C Residual current 1) @ \mathbf{I}_{p} = 0, after a Thermal drift of \mathbf{I}_{O}	n overload of 3 x I _{PN} 0°C + 70°C - 25°C + 85°C	± 0.1 ± 0.1	Max ± 0.2 ± 0.3 ± 0.5 ± 0.6	mA mA mA
t _{ra} t _r di/dt f	Reaction time @ 10 % of $I_{\rm P\ max}$ Response time @ 90 % of $I_{\rm P\ max}$ di/dt accurately followed Frequency bandwidth (- 1 dB)		< 500 < 1 > 200 DC 2	200	ns µs A/µs kHz

@ ± 15 V (± 5 %)

 ± 0.95

%

General data

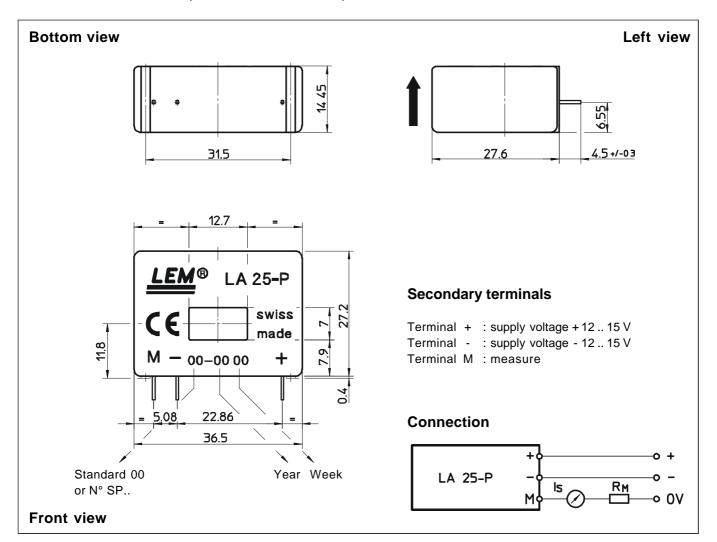
$T_{\scriptscriptstyle \Delta}$	Ambient operating temperature		- 25 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	80	Ω
Ü		$T_A = 85^{\circ}C$	85	Ω
m	Mass		24	g
	Standards		EN 50178 : 1	997

Notes: 1) Result of the coercive field of the magnetic circuit.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Printed circuit board mounting
- Insulated plastic case recognized according to UL 94-V0.

Advantages


- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Dimensions LA 25-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

• Fastening & connection of secondary

Recommended PCB hole

± 0.2 mm 12.7 x 7 mm 3 pins 0.63 x 0.56mm 0.9 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.