

Current Transducer LA 305-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current		300				Α
I _P	Primary current, measuring range		0 ± 500			Α	
$\dot{\mathbf{R}}_{\mathrm{M}}$	Measuring resistance @		$T_{A} =$	70°C	T _ :	= 85°C	2
			R _{M mir}	\mathbf{R}_{Mmax}	R _{M min}	R _{M max}	
	with ± 12 V	$@ \pm 300 A_{max}$	0	52	0	50	Ω
		@ ± 500 A max	0	17	0	15	Ω
	with ± 15 V	@ ± 300 A max	0	75	5	73	Ω
		@ $\pm 500 A_{max}$	0	31	5	29	Ω
I_{SN}	Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %) Current consumption			120	0		mΑ
K _N			1 : 2500 ± 12 15 V 20 (@ ±15 V)+I _s mA				
V _c							V
I _c							
$\mathbf{V}_{_{\mathrm{b}}}$	R.m.s. rated voltage 1), safe separation			17	50		V
		basic isolation		350	00		V

Accuracy - D	vnamic perf	ormance data

Overall accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$

Linearity		< 0.1		%
		Тур	Max	
Offset current @ $I_p = 0$, $T_A = 25$ °C			± 0.20	mΑ
Residual current $^{2)}$ @ $I_p = 0$, after an	overload of 3 x I _{PN}		± 0.40	mΑ
Thermal drift of \mathbf{I}_{O}	- 10°C + 85°C	± 0.12	± 0.30	mΑ
Reaction time @ 10 % of \mathbf{I}_{PN}		< 500		ns
Response time 3) @ 90 % of I _{PN}		< 1		μs
di/dt accurately followed		> 100		A/µs
Frequency bandwidth (- 3 dB)		DC 1	00	kHz
	Linearity $ \begin{aligned} &\text{Offset current } @ \ \textbf{I}_{\text{P}} = 0, \ \textbf{T}_{\text{A}} = 25^{\circ}\text{C} \\ &\text{Residual current}^{2)} @ \ \textbf{I}_{\text{P}} = 0, \ \text{after an} \\ &\text{Thermal drift of } \ \textbf{I}_{\text{O}} \\ &\text{Reaction time } @ \ 10 \ \% \ \text{of } \ \textbf{I}_{\text{PN}} \\ &\text{Response time}^{3)} \ @ \ 90 \ \% \ \text{of } \ \textbf{I}_{\text{PN}} \\ &\text{di/dt accurately followed} \end{aligned} $	Linearity $ \begin{array}{l} \text{ Offset current @ $\mathbf{I}_{\rm P}=0$, $\mathbf{T}_{\rm A}=25^{\circ}$C} \\ \text{Residual current}^{2)} @ $\mathbf{I}_{\rm P}=0$, after an overload of 3 x $\mathbf{I}_{\rm PN}$ \\ \text{Thermal drift of $\mathbf{I}_{\rm O}$} & -10^{\circ}$C} +85^{\circ}$C} \\ \text{Reaction time @ 10 % of $\mathbf{I}_{\rm PN}$} \\ \text{Response time}^{3)} @ 90 \% \text{ of $\mathbf{I}_{\rm PN}$} \\ \text{di/dt accurately followed} \\ \end{array} $	Linearity $$<0.1$$	Linearity < 0.1 Offset current @ $\mathbf{I}_{\rm p} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$ Residual current ${}^{2}{}^{)}$ @ $\mathbf{I}_{\rm p} = 0$, after an overload of $3 \times \mathbf{I}_{\rm pN}$ ± 0.20 Thermal drift of $\mathbf{I}_{\rm O}$ $- 10^{\circ}{\rm C}$ $+ 85^{\circ}{\rm C}$ ± 0.12 ± 0.30 Reaction time @ 10 % of $\mathbf{I}_{\rm pN}$ < 500 Response time ${}^{3}{}^{)}$ @ 90 % of $\mathbf{I}_{\rm pN}$ < 1 di/dt accurately followed

 ± 0.8

General data

	Bellerai uala			
T _A	Ambient operating temperature		- 10 + 85	°C
T _s	Ambient storage temperature		- 40 + 90	°C
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70^{\circ}C$	35	Ω
3		$T_A = 85^{\circ}C$	37	Ω
m	Mass		200	g
	Standards 4)		EN 50178	

 $\underline{\text{Notes}}$: $^{\text{1)}}$ Pollution class 2. With a non insulated primary bar which fills the through-hole

- 2) The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs
- ⁴⁾ A list of corresponding tests is available.

$I_{DN} = 300 A$

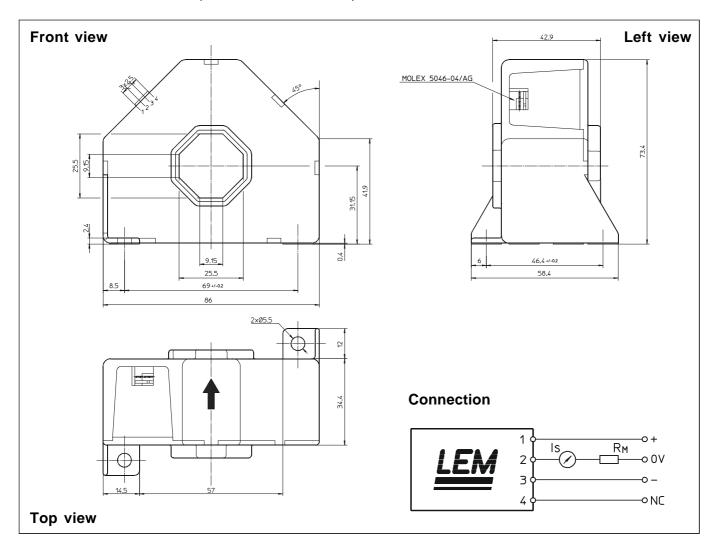
Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Copyright protected.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications


%

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

060628/8

Dimensions LA 305-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening

Fastening torque, maxi

- Primary through-hole
- · Connection of secondary
- ± 0.5 mm 2 holes Ø 5.5 mm 2 M5 steel screws 4 Nm or 2.95 Lb. - Ft 25.5 x 25.5 mm Molex 5046-04/AG

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.