

Current Transducer LT 4000-S

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

_

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		4000 0 ± 6000 $R_{M min}$ $R_{M max}$		A A
	with ± 24 V	@ $\pm 4000 A_{max}$ @ $\pm 6000 A_{max}$	0 0	10 2	Ω
I _{SN} K _N V _C I _C V _d	Secondary nominal r.m.s. current Conversion ratio Supply voltage (±5%) Current consumption R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		800 1:500 ±24 35(@±		mA V s mA kV

Accuracy - Dynamic performance data

$\overset{{f x}_{\scriptscriptstyle G}}{e}_{\scriptscriptstyle L}$	Overall accuracy @ I_{PN} , $T_A = 25$ °C Linearity		± 0.5 < 0.1		% %
I _о I _{от}	Offset current @ $\mathbf{I}_{p} = 0$, $\mathbf{T}_{A} = 25^{\circ}\text{C}$ Thermal drift of \mathbf{I}_{O}	- 25°C + 70°C	Тур ± 0.6	Max ± 0.8 ± 0.8	m A m A
t _, di/dt f	Response time $^{1)}$ @ 90 % of $I_{P max}$ di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	100	μs Α/μs kHz

General data

T_A	Ambient operating temperature	- 25 + 70	°C	
T _s	Ambient storage temperature	- 40 + 85	°C	
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	15	Ω	
m	Mass	6	kg	
	Standards	EN 50178: 19	EN 50178: 1997	

 $I_{DN} = 4000 A$

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Note: $^{1)}$ With a di/dt of 100 A/ μ s.

070706/9

Dimensions LT 4000-S (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Primary through-hole
- Connection of secondary fastening torque
- ± 1.0 mm
- 4 holes Ø 10.5 mm Ø 102 mm
- M5 threaded studs 2.2 Nm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.