

Voltage Transducer LV 25-400

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

1627

$V_{PN} = 400 \text{ V}$

Electrical data

\mathbf{V}_{PN}	Primary nominal r.m.s. voltage		400		V
V _P	Primary voltage, measuring range		0 ± 600		V
I _{PN}	Primary nominal r.m.s. current		10		mΑ
\mathbf{R}_{M}	Measuring resistance		$\mathbf{R}_{M\;min}$	$\mathbf{R}_{\mathrm{Mmax}}$	
	with ± 12 V	$@ \pm 400 \text{ V}_{max}$	30	200	Ω
		@ ± 600 V max	30	100	Ω
	with ± 15 V	@ ± 400 V max	100	320	Ω
		@ ± 600 V max	100	180	Ω
I _{SN}	Secondary nominal r.m.s. current		25		mΑ
K _N	Conversion ratio		400 V /	25 mA	
v c	Supply voltage (± 5 %)		± 12	15	V
I _c	Current consumption		10 (@±	15V) + I s	mΑ
V _d	R.m.s. voltage for AC isola	ation test 1), 50 Hz, 1 mn	4.1	. 3	kV

Accuracy - Dynamic performance data

$\overset{\boldsymbol{x}_{G}}{\boldsymbol{e}_{L}}$	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = 25^{\circ} \text{C}$ Linearity error		± 0.8 < 0.2		% %
I _O	Offset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25$ °C Thermal drift of \mathbf{I}_{O}	- 25°C + 25°C + 25°C + 70°C	± 0.10	Max ± 0.15 ± 0.60 ± 0.35	mA mA
t ,	Response time @ 90 % of \mathbf{V}_{PN}		15		μs

General data

T_A	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	2500 : 1000	
Р	Total primary power loss	4	W
R_1	Primary resistance @ T _A = 25°C	40	$k\Omega$
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	110	Ω
m	Mass	60	g
	Standards 2)	EN 50178	

Notes: 1) Between primary and secondary

²⁾ A list of corresponding tests is available

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Transducer with insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

060901/4

Dimensions LV **25-400** (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

Connection of primaryConnection of secondary

 \pm 0.3 mm

4 holes Ø 4.2 mm

Faston 6.3 x 0.8 mm Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when V_p is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.