
Modbus Communications June 2010

1 Programming

Meters fitted with the Modbus option have two additional stages in the front panel programming menu.

Unique Modbus Address

In programming mode press until the required parameter is shown.

To change a parameter press or until the required value is set.

For full information on entering and using programming mode refer to the latest "*Cube350* Operating Guide".

2 Connection

2.1 Cable Selection

A dedicated, screened twisted pair cable is required to provide basic RS485 connection. A second twisted pair may be used for 0V connection if required. The cable should be chosen to suit the data rate and maximum length to be installed. The EIA RS-485-A standard provides curves that relate cable length to data rate for 24 AWG screened, twisted pair, telephone cable with a shunt capacitance of 50pf/m. For baud rates up to 19,200 the standard suggests a maximum length of 1200m for this type of cable. If other types of cable are to be used it is recommended that the cable supplier is consulted as to the suitability for use with RS485 to 19,200 baud.

2.2 Signal 0V and Cable Shield

A signal 0V termination is provided on each meter. Although RS485 does not strictly require a signal 0V, it is recommended this is connected as shown in the diagram below. This creates a known reference for the isolated RS485 system thereby reducing potential common-mode errors in the meter's RS485 driver circuit.

A cable shield is used to attenuate noise picked up from external sources. This should be continuous, and cover as much of the signal pairs as possible. It is recommended that the shield should be connected to ground at the host (PC) only. The cable shield should <u>not</u> be used as the 0V connection.

2.3 Terminating Resistors

In order to minimise signal errors due to noise over long cable lengths, terminating resistors may be fitted. These match the RS485 device impedance to that of the cable. Two 120Ω resistors, one at the host port terminals and the other at the most remote meter terminals are recommended for this purpose.

2.4 Connection To Meters

The bus wires should be taken to meters at each location for termination, using the meter terminals as a loop in-out connection. 3-Pairs of terminals, internally shorted, are provided for convenience. The use of spurs should be avoided wherever possible.

2.4.1 Basic Connection

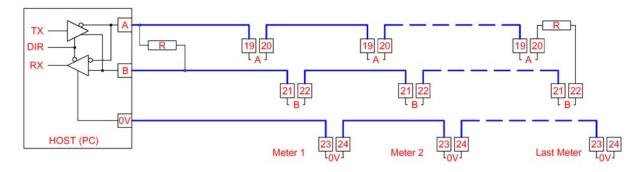


Figure 2-1 Basic RS485 Bus Network

3 Modbus Commands

The *Cube350* meter supports the following standard Modbus commands:

Command	Function	Broadcast
03	Read Multiple Holding Registers	No
04	Read Multiple Input Registers	No
06	Preset a Single Register	Yes
08 (SF=00)	Sub Function 00 only (Loop Back)	No
16	Preset Multiple Registers	Yes

3.1 Exception Responses

If the meter receives a Modbus command, with no errors and a valid address, it will attempt to handle the query and provide an appropriate response. If the meter cannot handle the query a standard Modbus exception response is sent (except broadcast queries). An exception response is characterised by its function byte which has 80H added to that sent in the query. The following exceptions codes are supported:

Code	Function	
1	Preset data is out of range for parameter	
2	Function cannot access requested register address	

4 Modbus Data Tables

4.1 Energy Registers

Data Address	Modbus Register	Data	Access	
512	40513	eScale High Word	Read Only	
513	40514	eScale Low Word	Read Only	
514	40515	kWh High Word	Read/Write	
515	40516	kWh Low Word	Read/Wille	
516	40517	kVAh High Word	Read/Write	
517	40518	kVAh Low Word	Read/Wille	
518	40519	kvarh Inductive High Word	Read/Write	
519	40520	kvarh Inductive Low Word	Read/Wfile	
520	40521	kvarh Capacitive High Word	Dood AMrito	
521	40522	kvarh Capacitive Low Word	Read/Write	
522	40523	Import kvarh High Word	Read/Write	
523	40524	Import kvarh Low Word	Read/White	
524	40525	Export kWh High Word	Read/Write	
525	40526	Export kWh Low Word	Read/White	
526	40527	Export kvarh High Word	Pood/M/rito	
527	40528	Export kvarh Low Word	Read/Write	
528	40529	Hours Run High Word	Dood/Mrito	
529	40530	Hours Run Low Word	Read/Write	

Note 1: Modbus registers containing Hours Run have a resolution of 0.1 hour.

Note 2: Export kWh may not be available on all Cube350 meters in which case the export kWh registers will return 0.

Note 3: Energy registers are stored as 32-bit Long Integers data in the range 0 to 4,294,967,295. Each LONG requires two consecutive Modbus data words. Standard software often handles long integer reads, however, a LONG may be calculated from the individual data words as:

LONG = (65536 x High Word) + Low Word

4.1.1 Energy Scaling

Energy registers are copies of the value displayed on the LCD without decimal point or scaling. For example if the meter displays 123456.78kWh, Holding Registers 40515-40516 will contain a long integer 12345678. This may be scaled in Wh or kWh, using eScale as:

Wh = Holding Reg[40513] x
$$10^{\text{(eScale-3)}}$$

kWh = Holding Reg[40513] x $10^{\text{(eScale-6)}}$

The eScale constant is set, along with the kWh register resolution and scaling, by the CT and PT programmed settings. The display scaling and eScale therefore remain constant once a meter is installed and commissioned. A read of eScale High Word always returns zero.

Example:

If the meter displays 1234567.8 kWh then eScale would be 5 and the Holding Register 40513 would contain 12345678.

The host would calculate the scaled energy reading as:

12345678 x
$$10^{(5-3)}$$
 = 12345678 x 100 = 1,234,567,800 Wh or 12345678 x $10^{(5-6)}$ = 12345678 x 0.1 = 1,234,567.8 kWh

The host programmer could take two approaches to interpreting the data from the meter:

- ✓ Enter a fixed scaling factor (x100 for Wh or x0.1 for kWh in above example). This would be set for each meter in the system based on its display after commissioning.
- ✓ Use the transmitted eScale constant, as shown above, to automatically position the decimal point in the interpreted result.

4.2 Instantaneous Meter Values

Data	Modbus	Data	Scaling
Address	Register	Data	Camig
2816	42817	System kW	Кр
2817	42818	System kVA	Кр
2818	42819	System kvar	Кр
2819	42820	System PF	1000 = 1.000
2820	42821	Frequency	500 = 50.00
2821	42822	Phase 1 Volts	Kvp
2822	42823	Phase 1 Amps	Ki
2823	42824	Phase 1 kW	Кр
2824	42825	Phase 2 Volts	Kvp
2825	42826	Phase 2 Amps	Ki
2826	42827	Phase 2 kW	Кр
2827	42828	Phase 3 Volts	Kvp
2828	42829	Phase 3 Amps	Ki
2829	42830	Phase 3 kW	Кр
2830	42831	Phase 1 PF	1000 = 1.000
2831	42832	Phase 2 PF	1000 = 1.000
2832	42833	Phase 3 PF	1000 = 1.000
2833	42834	Ph1-Ph2 Volts	KvI
2834	42835	Ph2-Ph3 Volts	KvI
2835	42836	Ph3-Ph1 Volts	KvI
2836	42837	Neutral Current	Ki
2837	42838	Amps Scale <i>Ki</i>	-
2838	42839	Phase Volts Scale <i>Kvp</i>	-
2839	42840	Line Volts Scale Kvl	-
2840	42841	Power Scale <i>Kp</i>	-

Note: All values in this table are Signed Integers with read only access.

4.2.1 Instantaneous Register Scaling

Instantaneous readings are provided as signed integer values with no decimal point or legend (e.g. kW or MW). Scaling factors are provided to enable conversion of the raw data to real numbers in basic unit form (amps, volts, watts, VA, or var). These scaling factors are constant values calculated as a function of CT and PT Primary programming.

To convert raw data to real numbers:

 $R = I \times 10^{(K-3)}$

Where: I = Integer number

K = Relevant Scaling FactorR = Real number result

Example:

If the meter is programmed with CT Primary=50Amps and PT Primary=415V:

LCD values would be scaled as: 50.00A, 240.0V, 415.7V_{LL} and 36.00kW.

Scaling factors would be: I Scale=1, Kvp=2, Kvl=2, Kp=4.

Integer Values would be transmitted as: 5000, 2400, 4157 and 3600

Amps would be calculated as $5000 \times 10^{(1-3)} = 5000/100 = 50.00A$

Phase Volts would be calculated as $2400 \times 10^{(2-3)} = 2400/10 = 240.0 \text{V}$

Line Volts would be calculated as $4157 \times 10^{(2-3)} = 4157/10 = 415.7V$

3-Ph Power would be calculated as $3600 \times 10^{(4-3)} = 3600 \times 10 = 36000 \text{W}$

4.3 Additional Instantaneous Values

Data Address	Modbus Register	Data	Scaling
3072	43073	Phase 1 kVA	Кр
3073	43074	Phase 2 kVA	Кр
3074	43075	Phase 3 kVA	Кр
3075	43076	Phase 1 kvar	Кр
3076	43077	Phase 2 kvar	Кр
3077	43078	Phase 3 kvar	Кр

Note: All values in this table are Signed Integers with read only access.

4.4 Peak Hold Values

Data Address	Modbus Register	Data	Scaling
3328	43329	Peak Hold Ph1 Amps	Ki
3329	43330	Peak Hold Ph2 Amps	Ki
3330	43331	Peak Hold Ph3 Amps	Ki
3331	43332	Peak Hold Ph1 Volts	Kvp
3332	43333	Peak Hold Ph2 Volts	Kvp
3333	43334	Peak Hold Ph3 Volts	Kvp
3334	43335	Peak Hold kW Demand	Кр
3335	43336	KW Demand Period	1-60 Minutes
3336	43337	KW Demand	Кр
3337	43338	KVA Demand	Кр
3338	43339	Peak Hold kVA Demand	Кр
3339	43340	Kvar Demand	Кр
3340	43341	Peak Hold kvar Demand	Кр

Note: All values in this table are Signed Integers with read/write access except 43337 ,43338 and 43340 which have read only access.

4.5 Meter Setup

•			
Data Address	Modbus Register	Data	Scaling
3584	43585	CT Primary	5 - 25,000 Amps
3585	43586	Nominal Volts	10 - 55,000 Volts
3586	43587	Pulse 1 Rate	1-1000 Counts/Pulse
3587	43588	Pulse 2 Rate (= Pulse 1 Rate)	1-1000 Counts/Pulse
3588	43589	Baud	96 = 9600baud etc
3589	43590	Modbus ID	0 – 247
3590	43591	Meter Model	Cube350 = 350
3591	43592	Meter Type	Basic Cube350 = 1
3592	43593	Firmware Version	Eg. $0x14 = 1.04$
3593	43594	Current Demand Period	1 = 10Sec, 2=20Sec etc
3594	43595	Pulse ON Time	1 = 100ms, 2=200ms etc
3595	43596	Security Pin	0 - 9999
3596	43597	Hours Run Limit	1-100% of (I1+I2+I3)/3
3597	43598	PT Scaling Factor	1 – 10

Note: All values in this table are unsigned Integers with read/write access except 43591-43593 which are read only

Note: If a value greater than zero is set for the security code then the user must enter this code before access to the programming menu is allowed using the front panel keys.

Note: . The overall PT Primary is calculated as: Nominal Volts x PT scaling Factor.

4.6 Peak Hold Current Demand

Data Address	Modbus Register	Data	Scaling
3840	43841	Peak Ph1 Amps Demand	Ki
3841	43842	Peak Ph2 Amps Demand	Ki
3842	43843	Peak Ph3 Amps Demand	Ki
3843	43844	Peak Ph1 Volts Demand	Kvp
3844	43845	Peak Ph2 Volts Demand	Kvp
3845	43846	Peak Ph3 Volts Demand	Kvp

Note: All values in this table are Unsigned Integers with read/write access.

4.7 Current Demand

Data Address	Modbus Register	Data	Scaling
4096	44097	Ph1 Amps Demand	Ki
4097	44098	Ph2 Amps Demand	Ki
4098	44099	Ph3 Amps Demand	Ki
4099	44100	Ph1 Volts Demand	Kvp
4100	44101	Ph2 Volts Demand	Kvp
4101	44102	Ph3 Volts Demand	Kvp

Note: All values in this table are Unsigned Integers with read only access.

4.8 Total Harmonic Distortion Values

Data Address	Modbus Register	Data	Scaling
4352	44353	V1 % THD	1000 = 100%
4353	44354	V2 % THD	1000 = 100%
4354	44355	V3 % THD	1000 = 100%
4355	44356	I1 % THD	1000 = 100%
4356	44357	I2 % THD	1000 = 100%
4357	44358	I3 % THD	1000 = 100%

4.9 Power Demand Values

Data Address	Modbus Register	Data	Scaling
4608	44609	kW Demand	Кр
4609	44610	kVA Demand	Кр
4610	44611	Kvar Demand	Кр
4611	44612	Peak Hold kW Demand	Кр
4612	44613	Peak Hold kVA Demand	Кр
4613	44614	Peak Hold kvar Demand	Кр

Note: All values in this table are signed Integers. Peak hold values have read/write access.

4.10 Amalgamated Data Table

Data	Modbus		
Address	Register	Data	Scaling
7680	47681	KWh High Word	eScale
7681	47682	KWh Low Word	escale
7682	47683	KVAh High Word	eScale
7683	47684	KVAh Low Word	escale
7684	47685	Kvarh High Word	eScale
7685	47686	Kvarh Low Word	escale
7686	47687	Export kWh High Word	eScale
7687	47688	Export kWh Low Word	escale
7688	47689	Phase 1 Amps	
7689	47690	Phase 2 Amps	Ki
7690	47691	Phase 3 Amps	
7691	47692	Phase 1 Volts	
7692	47693	Phase 2 Volts	Kvp
7693	47694	Phase 3 Volts	
7694	47695	Ph1-Ph2 Volts	
7695	47696	Ph2-Ph3 Volts	Kvl
7696	47697	Ph3-Ph1 Volts	
7697	47698	Frequency	500 = 50.00
7698	47699	Phase 1 PF	
7699	47700	Phase 2 PF	1000 1000
7700	47701	Phase 3 PF	1000 = 1.000
7701	47702	System PF	
7702	47703	Phase 1 kW	
7703	47704	Phase 2 kW	17.
7704	47705	Phase 3 kW	Кр
7705	47706	System kW	
7706	47707	Phase 1 kVA	
7707	47708	Phase 2 kVA	1/-
7708	47709	Phase 3 kVA	Кр
7709	47710	System kVA	
7710	47711	Phase 1 kvar	
7711	47712	Phase 2 kvar	17.
7712	47713	Phase 3 kvar	Kp
7713	47714	System kvar	
7714	47715	Ph1 Amps Demand	
7715	47716	Ph2 Amps Demand	Ki
7716	47717	Ph3 Amps Demand	
7717	47718	Ph1 Volts Demand	
7718	47719	Ph2 Volts Demand	Kvp
7719	47720	Ph3 Volts Demand	·
7720	47721	Peak Ph1 Amps	
7721	47722	Peak Ph2 Amps	Ki
7722	47723	Peak Ph3 Amps	
7723	47724	Peak Ph1 Volts	
7724	47725	Peak Ph2 Volts	Kvp
7725	47726	Peak Ph3 Volts	'
7726	47727	kW Demand	
7727	47728	kVA Demand	Кр
7728	47729	kvar Demand	'
7729	47730	Peak Hold kW Demand	
7730	47731	Peak Hold kVA Demand	Kp
7731	47732	Peak Hold kvar Demand	1
7732	47733	Neutral Current	Ki
7733	47734	Amps Scale Ki	-
7734	47735	Phase Volts Scale Kvp	_
7735	47736	Line Volts Scale Kvl	_
7736	47737	Power Scale Kp	-
7737	47738	Energy Scale Ke	-
	1,700	Energy Could No	<u> </u>

Note: All values in this table have read only access.

The amalgamated data table provides a copy of key variables in a single table, which may be read with a single Modbus command. The format and scaling of each parameter is identical to that found in the main tables.

4.11 V1 Harmonics

Data Address	Modbus Register	Data	Scaling
7936	47937	V1: 2 nd Harmonic	1000 = 100%
7937	47938	V1: 3 rd Harmonic	1000 = 100%
7938	47939	V1: 4 th Harmonic	1000 = 100%
7939	47940	V1: 5 th Harmonic	1000 = 100%
7940	47941	V1: 6 th Harmonic	1000 = 100%
7941	47942	V1: 7 th Harmonic	1000 = 100%
7942	47943	V1: 8 th Harmonic	1000 = 100%
7943	47944	V1: 9 th Harmonic	1000 = 100%
7944	47945	V1: 10 th Harmonic	1000 = 100%
7945	47946	V1: 11 th Harmonic	1000 = 100%
7946	47947	V1: 12 th Harmonic	1000 = 100%
7947	47948	V1: 13 th Harmonic	1000 = 100%
7948	47949	V1: 14 th Harmonic	1000 = 100%
7949	47950	V1: 15 th Harmonic	1000 = 100%

4.12 V2 Harmonics

Data Address	Modbus Register	Data	Scaling
8192	48193	V2: 2 nd Harmonic	1000 = 100%
8193	48194	V2: 3 rd Harmonic	1000 = 100%
8194	48195	V2: 4 th Harmonic	1000 = 100%
8195	48196	V2: 5 th Harmonic	1000 = 100%
8196	48197	V2: 6 th Harmonic	1000 = 100%
8197	48198	V2: 7 th Harmonic	1000 = 100%
8198	48199	V2: 8 th Harmonic	1000 = 100%
8199	48200	V2: 9 th Harmonic	1000 = 100%
8200	48201	V2: 10 th Harmonic	1000 = 100%
8201	48202	V2: 11 th Harmonic	1000 = 100%
8202	48203	V2: 12 th Harmonic	1000 = 100%
8203	48204	V2: 13 th Harmonic	1000 = 100%
8204	48205	V2: 14 th Harmonic	1000 = 100%
8205	48206	V2: 15 th Harmonic	1000 = 100%

4.13 V3 Harmonics

Data Address	Modbus Register	Data	Scaling
8448	48449	V3: 2 nd Harmonic	1000 = 100%
8449	48450	V3: 3 rd Harmonic	1000 = 100%
8450	48451	V3: 4 th Harmonic	1000 = 100%
8451	48452	V3: 5 th Harmonic	1000 = 100%
8452	48453	V3: 6 th Harmonic	1000 = 100%
8453	48454	V3: 7 th Harmonic	1000 = 100%
8454	48455	V3: 8 th Harmonic	1000 = 100%
8455	48456	V3: 9 th Harmonic	1000 = 100%
8456	48457	V3 10 th Harmonic	1000 = 100%
8457	48458	V3: 11 th Harmonic	1000 = 100%
8458	48459	V3: 12 th Harmonic	1000 = 100%
8459	48460	V3: 13 th Harmonic	1000 = 100%
8460	48461	V3: 14 th Harmonic	1000 = 100%
8461	48462	V3: 15 th Harmonic	1000 = 100%

4.14 I1 Harmonics

Data Address	Modbus Register	Data	Scaling
8704	48705	I1: 2 nd Harmonic	1000 = 100%
8705	48706	I1: 3 rd Harmonic	1000 = 100%
8706	48707	I1: 4 th Harmonic	1000 = 100%
8707	48708	I1: 5 th Harmonic	1000 = 100%
8708	48709	I1: 6 th Harmonic	1000 = 100%
8709	48710	I1: 7 th Harmonic	1000 = 100%
8710	48711	I1: 8 th Harmonic	1000 = 100%
8711	48712	I1: 9 th Harmonic	1000 = 100%
8712	48713	I1: 10 th Harmonic	1000 = 100%
8713	48714	I1: 11 th Harmonic	1000 = 100%
8714	48715	I1: 12 th Harmonic	1000 = 100%
8715	48716	I1: 13 th Harmonic	1000 = 100%
8716	48717	I1: 14 th Harmonic	1000 = 100%
8717	48718	I1: 15 th Harmonic	1000 = 100%

4.15 I2 Harmonics

Data Address	Modbus Register	Data	Scaling
8960	48961	I2: 2 nd Harmonic	1000 = 100%
8961	48962	I2: 3 rd Harmonic	1000 = 100%
8962	48963	I2: 4 th Harmonic	1000 = 100%
8963	48964	I2: 5 th Harmonic	1000 = 100%
8964	48965	I2: 6 th Harmonic	1000 = 100%
8965	48966	I2: 7 th Harmonic	1000 = 100%
8966	48967	I2: 8 th Harmonic	1000 = 100%
8967	48968	I2: 9 th Harmonic	1000 = 100%
8968	48969	I2: 10 th Harmonic	1000 = 100%
8969	48970	I2: 11 th Harmonic	1000 = 100%
8970	48971	I2: 12 th Harmonic	1000 = 100%
8971	48972	I2: 13 th Harmonic	1000 = 100%
8972	48973	I2: 14 th Harmonic	1000 = 100%
8973	48974	I2: 15 th Harmonic	1000 = 100%

4.16 I3 Harmonics

Data Address	Modbus Register	Data	Scaling
9216	49217	I3: 2 nd Harmonic	1000 = 100%
9217	49218	I3: 3 rd Harmonic	1000 = 100%
9218	49219	I3: 4 th Harmonic	1000 = 100%
9219	49220	I3: 5 th Harmonic	1000 = 100%
9220	49221	I3: 6 th Harmonic	1000 = 100%
9221	49222	I3: 7 th Harmonic	1000 = 100%
9222	49223	I3: 8 th Harmonic	1000 = 100%
9223	49224	I3: 9 th Harmonic	1000 = 100%
9224	49225	I3: 10 th Harmonic	1000 = 100%
9225	49226	I3: 11 th Harmonic	1000 = 100%
9226	49227	I3: 12 th Harmonic	1000 = 100%
9227	49228	I3: 13 th Harmonic	1000 = 100%
9228	49229	I3: 14 th Harmonic	1000 = 100%
9229	49230	I3: 15 th Harmonic	1000 = 100%

Modbus Data Tables

4.17 Custom Data Table

This provides a custom table containing 32 Modbus registers, selected and arranged to suit individual requirements.

To set up a custom table first write the Modbus Data Addresses of the required parameters to the following Modbus table. (Write 514 to Modbus Register 419201 etc.)

Data Address	Modbus Register	Data		Example
19200	419201	Custom Address 0	514	kWh High Word
19201	419202	Custom Address 1	515	kWh Low Word
19202	419203	Custom Address 2	516	kVAh High Word
19203	419204	Custom Address 3	517	kVAh Low Word
19204	419205	Custom Address 4	518	kvarh Inductive High Word
19205	419206	Custom Address 5	519	kvarh Inductive Low Word
19206	419207	Custom Address 6	520	kvarh Capacitive High Word
19207	419208	Custom Address 7	521	kvarh Capacitive Low Word
19208	419209	Custom Address 8	522	Import kvarh High Word
19209	419210	Custom Address 9	523	Import kvarh Low Word
19210	419211	Custom Address 10	524	Export kWh High Word
19211	419212	Custom Address 11	525	Export kWh Low Word
19212	419213	Custom Address 12	526	Export kvarh High Word
19213	419214	Custom Address 13	527	Export kvarh Low Word
19214	419215	Custom Address 14	2816	System kW
19215	419216	Custom Address 15	2817	System kVA
19216	419217	Custom Address 16	2818	System kvar
19217	419218	Custom Address 17	2819	System PF
19218	419219	Custom Address 18	2820	Frequency
19219	419220	Custom Address 19	2821	Phase 1 Volts
19220	419221	Custom Address 20	3331	Peak Hold Ph1 Volts
19221	419222	Custom Address 21	2824	Phase 2 Volts
19222	419223	Custom Address 22	3332	Peak Hold Ph2 Volts
19223	419224	Custom Address 23	2827	Phase 3 Volts
19224	419225	Custom Address 24	3333	Peak Hold Ph3 Volts
19225	419226	Custom Address 25	2822	Phase 1 Amps
19226	419227	Custom Address 26	3328	Peak Hold Ph1 Amps
19227	419228	Custom Address 27	2825	Phase 2 Amps
19228	419229	Custom Address 28	3329	Peak Hold Ph2 Amps
19229	419230	Custom Address 29	2828	Phase 3 Amps
19230	419231	Custom Address 30	3330	Peak Hold Ph3 Amps
19231	419232	Custom Address 31	3584	CT Primary

The Data Addresses may be any valid Modbus register address listed in the above tables. Data Addresses in this table have read/write access.

The corresponding Modbus Parameters pointed to by Data Address 0 – Data Address 31 are available as Modbus registers at 419457 – 419488.

For example if a value of 514 is written to Modbus Register 419201 (*Custom Address 0*), then a read of register 419457 will provide kWh High Word.

5 Specification

Aux Mains	Internally supplied from <i>Cube350</i> Auxiliary		
Aux Mains	Requires additional 1W max		
Modbus	RS485 Half duplex, 2 Wires + 0V		
Modbus	RX Load:	1/4 Unit load per meter (max 128 per bus)	
	TX Drive:	32 Unit loads maximum	
	Protocol:	Modbus RTU/JBUS, 16-Bit CRC	
	Baud:	4800, 9600, 19200 user programmable	
	Address: 1-247 user programmable		
Isolation	2.5kV (1 minute) RS485 port from all other circuit		
Performance	Reply:	Maximum 250ms	
1 CHOIMance	Rate:	Min 10ms from reply to next request	
	Data:	Meter readings & programmable settings	
	Maximum data length 20 Words.		
General	Environmental: Refer to <i>Cube350</i> specification		
General	Dimensions: Add 10mm to depth of <i>Cube350</i>		
	Terminals: Rising clamp, max wire 4mm ²		

6 Safety

The *Cube350* is intended for connection to dangerous voltages giving a risk of electric shock. Refer to the safety/installation instructions in the *Cube350 Operating Guide* before connecting the communications.

WARNING

The meter contains no user serviceable parts. Installation and commissioning should only be carried out by qualified personnel