Voltage Transducer LV 25-1000 For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit). # $V_{PN} = 1000 V$ ### Electrical data | $egin{aligned} oldsymbol{V}_{PN} \ oldsymbol{V}_{P} \ oldsymbol{I}_{PN} \ oldsymbol{R}_{M} \end{aligned}$ | Primary nominal r.m.s. voltage Primary voltage, measuring range Primary nominal r.m.s. current Measuring resistance | | 1000
0 ± 1
8
R _{M min} | 500 R _{Mmax} | V
V
mA | |---|---|--|---|--|--------------| | | with \pm 12 V with \pm 15 V | @ ±1000 V max
@ ±1500 V max
@ ±1000 V max
@ ±1500 V max | 30
30
100
100 | 200
100
320
180 | Ω
Ω
Ω | | I _{SN} K _N V _C I _C V _d | Secondary nominal r.m.s. current Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isolation test 1), 50 Hz, 1 mn | | ± 12 | 7 / 25 m <i>A</i>
15
15V)+ I _S | V | # Accuracy - Dynamic performance data | $\overset{\boldsymbol{x}_{\scriptscriptstyle{G}}}{\boldsymbol{e}_{\scriptscriptstyle{L}}}$ | Overall Accuracy @ V_{PN} , $T_A = 25^{\circ}C$
Linearity | | ± 0.8 < 0.2 | %
% | |--|---|--------------------------------|---|----------| | I _o | Offset current @ $\mathbf{I}_{\rm P} = 0$, $\mathbf{T}_{\rm A} = 25^{\circ}{\rm C}$
Thermal drift of $\mathbf{I}_{\rm O}$ | - 25°C + 25°C
+ 25°C + 70°C | Typ Max
± 0.15
± 0.10 ± 0.60
± 0.10 ± 0.35 | mA
mA | | t, | Response time @ 90 % of $\mathbf{V}_{_{\mathrm{PN}}}$ | | 40 | μs | #### General data | \mathbf{T}_{A} | Ambient operating temperature | - 25 + 70 | °C | |------------------|---|-------------|-----------| | T _s | Ambient storage temperature | - 40 + 85 | °C | | N | Turns ratio | 3100 : 1000 | | | Р | Total primary power loss | 8 | W | | $R_{_1}$ | Primary resistance @ T _A = 25°C | 125 | $k\Omega$ | | R _s | Secondary coil resistance @ T _A = 70°C | 110 | Ω | | m | Mass | 60 | g | | | Standards 2) | EN 50178 | | | | | | | #### **Features** - Closed loop (compensated) voltage transducer using the Hall effect - Transducer with insulated plastic case recognized according to UL 94-V0 - Primary resistor R₁ and transducer mounted on printed circuit board 128 x 60 mm. #### **Advantages** - Excellent accuracy - Very good linearity - · Low thermal drift - High immunity to external interference. #### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Uninterruptible Power Supplies (UPS) - Power supplies for welding applications. Notes: 1) Between primary and secondary ²⁾ A list of corresponding tests is available ## **Dimensions LV 25-1000** (in mm. 1 mm = 0.0394 inch) #### **Mechanical characteristics** General tolerance Fastening Connection of primaryConnection of secondary \pm 0.3 mm 4 holes \varnothing 4.2 mm Faston 6.3 x 0.8 mm Faston 6.3 x 0.8 mm ### **Remarks** - \mathbf{I}_{S} is positive when \mathbf{V}_{P} is applied on terminal +HT. - The primary circuit of the transducer must be linked to the connections where the voltage has to be measured. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.