Voltage Transducer LV 100-2000

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

Electrical data

CE

V _{PN} V _P	Primary nominal r.m.s. Primary voltage, measu	0	2000 0 ± 3	000	V V	
I _{PN}	Primary nominal r.m.s. current		5		mA	
R _M	Measuring resistance		$\mathbf{R}_{_{Mmin}}$	R _{Mmax}		
	with ± 15 V	@ ± 2000 V _{max} @ ± 3000 V _{max}	0 0	170 90	Ω Ω	
I _{SN}	Secondary nominal r.m.s. current		50		mA	
K	Conversion ratio		2000 V	2000 V / 50 mA		
V _c	Supply voltage (± 5 %)		± 15		V	
I _c	Current consumption		10 + I _s		mA	
Ŭ _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		9		kV	

Accuracy - Dynamic performance data

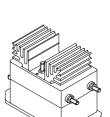
Х _G €_	Overall Accuracy @ \mathbf{V}_{PN} , $\mathbf{T}_{A} = 25^{\circ}C$ Linearity		± 0.7 < 0.1		% %
l _o	Offset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}$ C	0°C + 70°C	Тур	Max	mA
l _{ot}	Thermal drift of \mathbf{I}_{O}		± 0.2	± 0.2	mA
t _r	Response time @ 90 % of \mathbf{V}_{PN}		150	± 0.3	µs

General data

Т.	Ambient operating temperature	0+70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
Ň	Turns ratio	20000 : 2000	
Р	Total primary power loss	10	W
\mathbf{R}_{1}	Primary resistance @ T _A = 25°C	400	kΩ
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	60	Ω
m	Mass	850	g
	Standards	EN 50178	

V_{PN} = 2000 V

Features

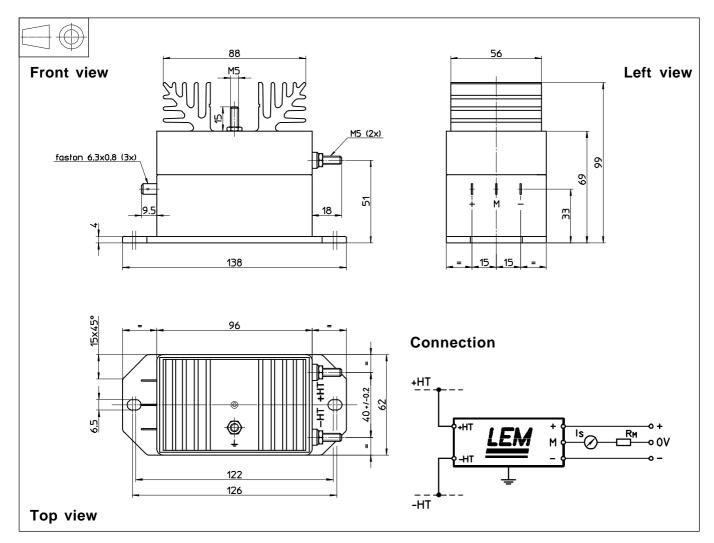

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor R , incorporated into the housing.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- · Power supplies for welding applications.



www.lem.com

Dimensions LV 100-2000 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening
- Fastening torque max
- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque max

 \pm 0.3 mm 2 holes Ø 6.5 mm M6 steel screws 5 Nm or 3.69 Lb - Ft. M5 threaded studs Faston 6.3 x 0.8 mm M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- $\mathbf{I}_{_{\! \mathrm{S}}}$ is positive when $\mathbf{V}_{_{\! \mathrm{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.