

Current Transducer HT 200 to 500-SRID

For the electronic measurement of DC, AC and pulsed currents, with a galvanic isolation between the primary (high power) circuit and the secondary (electronic) circuit.

Electrical data

	Type D(Primary nominal C or AC peak current I	Primary current measuring range I _s	
	HT 200-SRID	200 A	0 ± 200 A	
	HT 300-SRID	300 A	0 ± 300 A	
	HT 400-SRID	400 A	0 ± 400 A	
	HT 500-SRID	500 A	0 ± 500 A	
Î,	Overload capa	city (Ampere Turns)	30000	А
I _{OUT}	Analogue outp	ut current @ I _P = 0	4	mΑ
I _{OUT}	Analogue outpo	ut current @ ± I _{PN}	20	mΑ
R _{M max}	Maximum measuring resistance Supply voltage (± 5 %) Current consumption (max) ¹⁾		430 ± 15 40	Ω V mA
V _C				
I _c				
$\mathbf{V}_{_{\mathrm{b}}}$	Rms rated volt	age 2)	50	V
Ac	curacy - Dyn	amic performance dat	a	
X	Accuracy 3) @ I	_{PN} , T _A = 25°C, @ ± 15 V	± 1	%

Ac	Accuracy - Dynamic performance data					
X	Accuracy 3) @ I_{PN} , $T_A = 25^{\circ}C$, @ ± 15 V	± 1	%			
$\mathbf{E}_{\scriptscriptstyle oldsymbol{L}}$	Linearity 3)	± 0.5	%			
		Max				
I _{OE}	Electrical offset current @ $I_p = 0$, $T_A = 25$ °C	± 0.08	mA			
I _{OM}	Residual offset current $@ I_p = 0$					
	after an overload of 3 x I _{PN}	$< \pm 0.025$	mA			
I_{OT}	Thermal drift of offset current $T_A = 0 + 70^{\circ}C$	± 0.014	mA/°K			
TC E _G	Thermal drift of gain $T_A = 0 + 70$ °C	± 0.05	%/°K			
t _{av}	Averaging time constant	100	ms			
K _{CF}	Crest factor for stated accuracy	6				
f	Frequency bandwidth (- 1 dB) 4)	DC and				
		0.015 25	kHz			

General data				
T _A	Ambient operating temperature	0 + 70	°C	
T _s	Ambient storage temperature	- 10 + 85	°C	
m	Mass	160	g	

Notes : 1) Including I_{OUT}

- ²⁾ For use on SELV systems or with insulated conductors on higher rated systems
- 3) Excludes the electrical offset
- ⁴⁾ Refer to derating curves in the technical file to avoid excessive core heating at high frequency

$I_{PN} = 200.500 A$

Features

- Open loop transducer using Hall Effect
- Panel mounting
- Split core design for easy installation
- Insulated plastic case to UL 94-HB
- True Rms output.

Advantages

- Very good linearity
- Very good accuracy
- Low temperature drift
- Wide frequency bandwidth
- Very low insertion losses
- High immunity to external interference
- Current overload capability
- Low power consumption
- Wide dynamic range 200 to 500 A in one package.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptable Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

HT2/500RI990719/3

LEM Components www.lem.com

Dimensions HT 200 to 500-SRID (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

Connection of secondary

• Enclosure

± 0.5 mm Ø 23 mm

Via 4 core screened PVC cable 1.5 m in length

Moulded ABS plastic

Remarks

- I_{OUT} is positive when I_{P} flows in the direction of the arrow.
- When generating a voltage by insertion of R_M, the developed voltage will be floating with respect to zero volts. The output terminals must therefore not be grounded.
- Temperature of the primary conductor should not exceed 90°C.
- This is a standard model. For different versions (supply voltages, secondary connections, unidirectional measurements, operating temperatures, etc.) please contact us.