Current Transducer HT 200 to 500-SRID For the electronic measurement of DC, AC and pulsed currents, with a galvanic isolation between the primary (high power) circuit and the secondary (electronic) circuit. #### **Electrical data** | | Type
D(| Primary nominal C or AC peak current I | Primary current
measuring range I _s | | |------------------------------|---|--|---|--------------| | | HT 200-SRID | 200 A | 0 ± 200 A | | | | HT 300-SRID | 300 A | 0 ± 300 A | | | | HT 400-SRID | 400 A | 0 ± 400 A | | | | HT 500-SRID | 500 A | 0 ± 500 A | | | Î, | Overload capa | city (Ampere Turns) | 30000 | А | | I _{OUT} | Analogue outp | ut current @ I _P = 0 | 4 | mΑ | | I _{OUT} | Analogue outpo | ut current @ ± I _{PN} | 20 | mΑ | | R _{M max} | Maximum measuring resistance Supply voltage (± 5 %) Current consumption (max) ¹⁾ | | 430
± 15
40 | Ω
V
mA | | V _C | | | | | | I _c | | | | | | $\mathbf{V}_{_{\mathrm{b}}}$ | Rms rated volt | age 2) | 50 | V | | Ac | curacy - Dyn | amic performance dat | a | | | X | Accuracy 3) @ I | _{PN} , T _A = 25°C, @ ± 15 V | ± 1 | % | | Ac | Accuracy - Dynamic performance data | | | | | | |--|---|---------------|-------|--|--|--| | X | Accuracy 3) @ I_{PN} , $T_A = 25^{\circ}C$, @ ± 15 V | ± 1 | % | | | | | $\mathbf{E}_{\scriptscriptstyle oldsymbol{L}}$ | Linearity 3) | ± 0.5 | % | | | | | | | Max | | | | | | I _{OE} | Electrical offset current @ $I_p = 0$, $T_A = 25$ °C | ± 0.08 | mA | | | | | I _{OM} | Residual offset current $@ I_p = 0$ | | | | | | | | after an overload of 3 x I _{PN} | $< \pm 0.025$ | mA | | | | | I_{OT} | Thermal drift of offset current $T_A = 0 + 70^{\circ}C$ | ± 0.014 | mA/°K | | | | | TC E _G | Thermal drift of gain $T_A = 0 + 70$ °C | ± 0.05 | %/°K | | | | | t _{av} | Averaging time constant | 100 | ms | | | | | K _{CF} | Crest factor for stated accuracy | 6 | | | | | | f | Frequency bandwidth (- 1 dB) 4) | DC and | | | | | | | | 0.015 25 | kHz | | | | | General data | | | | | |----------------|-------------------------------|-----------|----|--| | T _A | Ambient operating temperature | 0 + 70 | °C | | | T _s | Ambient storage temperature | - 10 + 85 | °C | | | m | Mass | 160 | g | | Notes : 1) Including I_{OUT} - ²⁾ For use on SELV systems or with insulated conductors on higher rated systems - 3) Excludes the electrical offset - ⁴⁾ Refer to derating curves in the technical file to avoid excessive core heating at high frequency # $I_{PN} = 200.500 A$ #### **Features** - Open loop transducer using Hall Effect - Panel mounting - Split core design for easy installation - Insulated plastic case to UL 94-HB - True Rms output. #### **Advantages** - Very good linearity - Very good accuracy - Low temperature drift - Wide frequency bandwidth - Very low insertion losses - High immunity to external interference - Current overload capability - Low power consumption - Wide dynamic range 200 to 500 A in one package. #### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - · Battery supplied applications - Uninterruptable Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. HT2/500RI990719/3 LEM Components www.lem.com ### **Dimensions HT 200 to 500-SRID** (in mm. 1 mm = 0.0394 inch) #### **Mechanical characteristics** • General tolerance • Primary through-hole Connection of secondary • Enclosure ± 0.5 mm Ø 23 mm Via 4 core screened PVC cable 1.5 m in length Moulded ABS plastic #### Remarks - I_{OUT} is positive when I_{P} flows in the direction of the arrow. - When generating a voltage by insertion of R_M, the developed voltage will be floating with respect to zero volts. The output terminals must therefore not be grounded. - Temperature of the primary conductor should not exceed 90°C. - This is a standard model. For different versions (supply voltages, secondary connections, unidirectional measurements, operating temperatures, etc.) please contact us.