Current Transducer LTC 600-T For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit). #### **Electrical data** | I _{PN} I _P R _M | Primary nominal r.m.s. current
Primary current, measuring range @ 24 V
Max overload not measurable
Measuring resistance | | 500
0 ± 1
10 / 10
R _{M min} | | A
A
kA/ms | |---|--|-----------------------------|--|-----|--------------------| | | with ± 15 V | $@ \pm 500 \text{ A}_{max}$ | 0 | 70 | Ω | | | | @ ± 1200 A max | 0 | 5 | Ω | | | with ± 24 V | @ ± 500 A _{max} | 0 | 150 | Ω | | | | @ ± 1500 A _{max} | 0 | 20 | Ω | | I_{SN} | Secondary nominal r.m.s. current | | 100 | | m A | | K | Conversion ratio | | 1:500 | 0 | | | V _C | Supply voltage (± 5 %) | | ± 15 | 24 | V | | I _c | Current consumption | | $< 30 (@\pm 24 \text{V}) + I_s \text{ m}$ | | ·I _s mA | | I _C | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn | | 13.4 ¹⁾ | | kV | | - | | | 1.5 ²⁾ | | kV | | \mathbf{V}_{e} | R.m.s. voltage for partial | discharge extinction | > 2.8 | | kV | ## **Accuracy - Dynamic performance data** | X _G | Overall accuracy @ I _{PN} , T _A = 25°C | < ± 0.7 | % | |-------------------------------------|--|------------------------|-------------------| | $\mathbf{e}_{\scriptscriptstyle L}$ | @ \mathbf{I}_{PN} , \mathbf{T}_{A} = - 40°C + 85°C Linearity error | < ± 1.6
< 0.1 | %
% | | I _о | Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O - 40°C + 85°C | Max
± 0.5
± 1 | m A
m A | | t _r
di/dt
f | Response time ³⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB) | < 1
> 100
DC 100 | μs
A/μs
kHz | #### **General data** | $T_{_{A}}$ | Ambient operating temperature | - 40 + 85 | °C | | |---------------------------|---|----------------|---------------------|--| | T _s | Ambient storage temperature | - 45 + 90 | °C | | | \mathbf{R}_{s} | Secondary coil resistance @ T _A = 85°C | 44 | Ω | | | m | Mass | 1270 | g | | | | Standards | EN 50155 (01.1 | EN 50155 (01.12.20) | | | | | | | | Notes: 1) Between primary and secondary + shield ²⁾ Between secondary and shield 3) With a di/dt of 100 Å/µs. #### **Features** - Closed loop (compensated) current transducer using the Hall effect - Insulated plastic case recognized according to UL 94-V0 - · Railway equipment. #### **Advantages** - Excellent accuracy - · Very good linearity - Low temperature drift - Optimized response time - Wide frequency bandwidth - No insertion losses - High immunity to external interference - · Current overload capability. #### **Applications** - AC variable speed drives and servo motor drives - Static converters for DC motor drives - Battery supplied applications - Uninterruptible Power Supplies (UPS) - Switched Mode Power Supplies (SMPS) - Power supplies for welding applications. 040430/2 ## **Dimensions LTC 600-T** (in mm. 1 mm = 0.0394 inch) #### **Mechanical characteristics** • General tolerance ± 1 mm Fixing the transducer 2 holes Ø 13 mm or by the primary bar 2 steel screws M12 Recommended fastening torque 24.5 Nm Connection of secondary Recommended fastening torque M5 threaded studs 2.2 Nm or 1.62 Lb.-Ft. Faston 6.3 x 0.8 mm ### **Remarks** - I_s is positive when I_p flows in the direction of the arrow. - Temperature of the primary conductor should not exceed 100°C. - This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.