

Current Transducer LTC 1000-TF

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

 $I_{PN} = 1000 A$

Electrical data

	Primary nominal r.m.s. current Primary current, measuring range @ 24 V Max overload not measurable Measuring resistance		1000 0 ± 2 10 / 10 R _{M min}		A A A/ms
	with ± 15 V	@ $\pm 1000 A_{max}$	0	15	Ω
		@ ± 1200 A _{max}	0	7	Ω
	with ± 24 V	@ ± 1000 A max	0	50	Ω
		@ $\pm 2000 A_{max}$	0	7	Ω
I _{SN}	Secondary nominal r.m.s. current		200		mΑ
K _N	Conversion ratio		1:500	0	
V _C	Supply voltage (± 5 %)		± 15	24	V
	Current consumption		$<30 (@\pm 24 V) + I_s mA$		_s mA
I _C	R.m.s. voltage for AC isol	ation test, 50 Hz, 1 mn	13.4 ²⁾ 1.5 ³⁾		kV kV
\mathbf{V}_{e}	R.m.s. voltage for partial discharge extinction		> 2.8		kV

Accuracy - Dynamic performance data

X _G	Overall accuracy @ I _{PN} , T _A = 25°C	$< \pm 0.4$	%
e L	@ $\mathbf{I}_{_{\mathrm{PN}}}$, $\mathbf{T}_{_{\mathrm{A}}}$ = - 40°C + 85°C Linearity	< ± 1 < 0.1	% %
I _о	Offset current @ $I_P = 0$, $T_A = 25$ °C Thermal drift of I_O - 40°C + 85°C	Max ± 0.5 ± 1	mA mA
t _, di/dt f	Response time ⁴⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1 > 100 DC 100	μs Α/μs kHz

General data

T _A T _S R _S m	Ambient operating temperature Ambient storage temperature Secondary coil resistance @ T _A = 85°C Mass Standards	- 40 + 85 - 45 + 90 44 1300 FN 50155 (01.1	°C °C Ω g
	Standards	EN 50155 (01. ²	12.20)

Notes: 1) With a di/dt of > 5 A/µs

2) Between primary and secondary + shield

3) Between secondary and shield

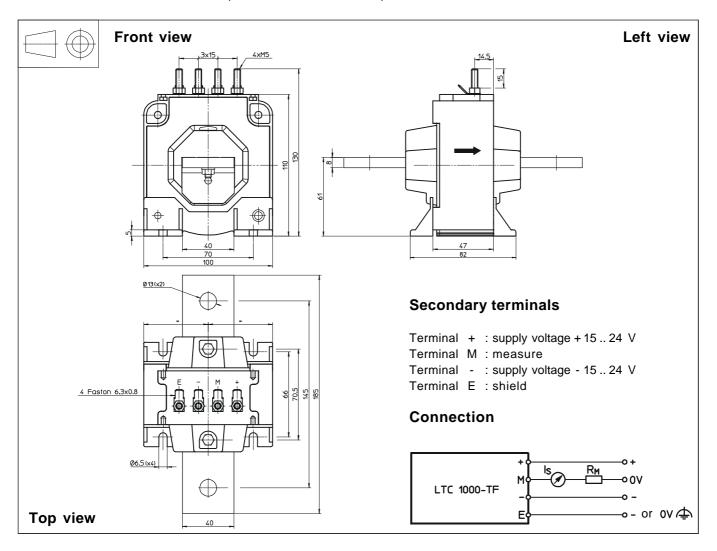
4) With a di/dt of 100 Å/µs.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- · Mounting base included
- · Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

030604/0

Dimensions LTC 1000-TF (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening By the primary bar

Fastening torque max Or by fastening feet

Fastening torque max

 Connection of secondary Fastening torque max ± 1 mm

2 holes \varnothing 13 mm 2 x M12 steel screws 24.5 Nm or 18.07 Lb.-Ft. 4 slots \varnothing 6.5 mm 4 x M6 steel screws 5 Nm or 3.69 Lb.-Ft. M5 threaded studs 2.2 Nm or 1.62 Lb.-Ft.

Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.