

Current Transducer LA 205-S/SP6

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Flectrical data

	1	6	•

	ectricai data						
I _{PN}	Primary nominal r.m.s. current			200			
I _P	Primary current, measuring range			0 ± 300			
Î _{P max}	Measuring overload 1)			600			
R _M	Measuring resistance @	0	$T_A = 7$	′0°C	$T_A =$	85°(2
		$R_{_{ m Mmin}}$ I	$R_{\text{M min}} R_{\text{M max}} R_{\text{M min}} R_{\text{M max}}$				
	with ± 12 V	$@ \pm 200 A_{max}$	0	68	0	66	Ω
		@ ± 300 A max	0	33	0	30	Ω
	with ± 15 V	@ ± 200 A max	5	95	5	93	Ω
		@ ± 300 A max	5	50	5	49	Ω
I _{SN}	Secondary nominal r.m.s. current			100			mΑ
K _N	Conversion ratio			1:2000			
V _c	Supply voltage (± 5 %)			± 12 15			
I _c	Current consumption			20 (@ ± 15 V)+I _s mA			
V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn			6			kV
V _b	R.m.s. rated voltage 2), safe separation			1625			V
			3250			V	
Ad	ccuracy - Dynamic _I	oerformance da	ta				
X _G	Overall accuracy @ I _{PN} , T _A = 25°C			± 0.8			%
\mathbf{e}_{L}^{S}	Linearity			< 0.1			
				Тур) Ma	ax	
Io	Offset current @ $I_P = 0$, $T_A = 25$ °C					.15	mΑ
I _{OM}	Residual current ³⁾ @ $I_p = 0$, after an overload of 3				± 0	.50	mΑ
I _{OT}	Thermal drift of I _o	- 40°C	+ 85°C ်		20 ± 0	.50	mΑ
t _{ra}	Reaction time @ 10 % of \mathbf{I}_{PN}			< 500			ns
tr	Response time 4) @ 90 % of I _{PN}			< 1			μs
di/dt	di/dt accurately followed			> 100		A/µs	
f	Frequency bandwidth (-	3 dB)		DC.	. 100		kHz
Ge	eneral data						
T _A	Ambient operating temp	perature		- 40	+ 85	5	°C

 $\overline{\text{Notes}}$: 1) 3 mn/hour @ \mathbf{V}_{C} = ± 15 V, \mathbf{R}_{M} = 5 Ω

Ambient storage temperature

Secondary coil resistance @

- 2) Pollution class 2. With a non insulated primary bar which fills the through-hole
- 3) The result of the coercive field of the magnetic circuit
- 4) With a di/dt of 100 A/µs
- ⁵⁾ A list of corresponding tests is available

200 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $T_A = -40^{\circ}C ... + 85^{\circ}C$
- Connection to secondary circuit on Faston 6.3 x 0.8 mm
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

°C

Ω Ω

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.

060705/7

page 1/2

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.

 $T_A = 70$ °C $T_A = 85$ °C

- 50 .. + 90

EN 50155 (01.11.95)

m

Mass

Standards 5)

Dimensions LA 205-S/SP6 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Trasnducer fastening

Fastening torque max

- Primary through-hole
- Connection of secondary
- ± 0.5 mm
- 2 holes \varnothing 5.5 mm
- 2 M5 steel screws
- 4 Nm or 2.95 Lb. Ft.
- 23 x 18 mm

Faston 6.3 x 0.8 mm

Remarks

- \bullet ${\bf I}_{_{\rm S}}$ is positive when ${\bf I}_{_{\rm P}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.