Current Transducer LT 4000-T/SP11

 $I_{PN} = 4000 \text{ A}$

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data I_{PN} Primary nominal r.m.s. current 4000 А 0..±6000 Primary current, measuring range А \mathbf{I}_{P} R_M Measuring resistance ${\bm R}_{\rm M\,min}$ ${\bf R}_{\rm M\,max}$ @ ± 4000 A_{max} 0 with ± 24 V 10 Ω @ ± 6000 A_{max} 0 2 Ω 800 Secondary nominal r.m.s. current mΑ I_{SN} κ_N Conversion ratio 1:5000 ± 24 V_c V Supply voltage (± 5 %) I_C V_d Current consumption 30 + I mΑ R.m.s. voltage for AC isolation test, 50 Hz, 1 mn 9¹⁾ kν 1²⁾ kν V_e R.m.s. voltage for partial discharge extinction @ 50 pC k٧ 2.5 Accuracy - Dynamic performance data Х Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$ ± 0.5 % $\mathbf{E}_{\mathbf{I}}$ Linearity < 0.1 % | Typ | Max

Ι _ο Ι _{στ}	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$ Thermal drift of I_o	- 40°C + 70°C	± 0.4	± 0.8 ± 0.8	m A m A
t _, di/dt f	Response time ³⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	00	µs A⁄µs kHz

General data

T _A	Ambient operating temperature	- 40 + 70	℃
T _s	Ambient storage temperature	- 50 + 85	℃
R _s	Secondary coil resistance @ $T_A = 70^{\circ}C$	15	Ω
m	Mass	13	kg
	Standards	EN 50155	ĸġ

Notes : 1) Between primary and secondary + shield

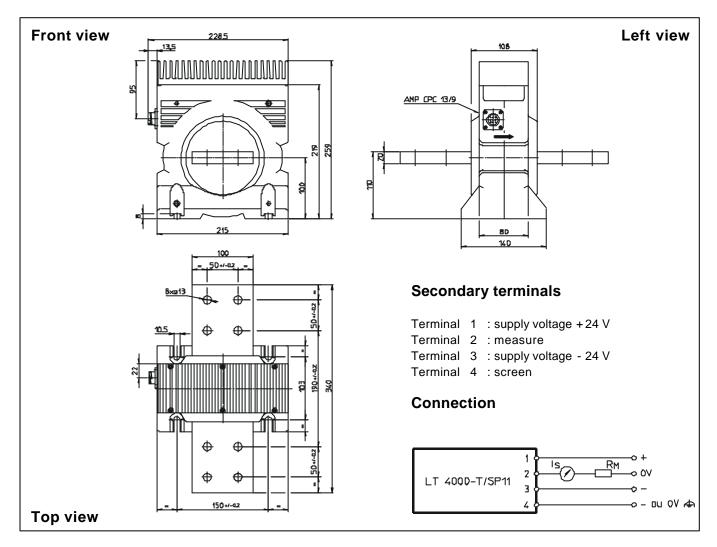
- ²⁾ Between secondary and shield
- ³⁾ With a di/dt of 100 A/µs.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $V_d = 9 \, kV^{-1}$
- \mathbf{T}_{A}° = -40°C ... + 70°C
- Shield
- Connection to secondary circuit on AMP CPC 13/9
- Burn-in
- Railway equipment.


Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies
 (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Dimensions LT 4000-T/SP11 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening
- Fastening torque max.
- Connection of primary
- Connection of secondary

± 1 mm

4 slots Ø 10.5 mm 4 M10 steelscrews 11.5 Nm or 8.48 Lb. - Ft. 8 holes Ø 13 mm AMP CPC 13/9

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.