Voltage Transducer LV 100-1000/SP16 V

 $V_{PN} = 1000 V$

For the electronic measurement of voltages : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

E	lectrical data				
V _{PN}	Primary nominal r.m.s	. voltage	1000		V
V _P	Primary voltage, measuring range		0 ± 1700		V
I _{PN}	Primary nominal r.m.s	. current	10		mΑ
R _M	Measuring resistance		$\mathbf{R}_{M \min}$	\mathbf{R}_{Mma}	x
	with ± 15 V	@ ± 1000 V _{max}	0	178	Ω
		@ ± 1700 V max	0	80	Ω
	with ± 24 V	@ ± 1000 V	32	340	Ω
		@ ± 1700 V _{max}	32	175	Ω
ŝN	Secondary nominal r.m.s. current		50		mA
ς _Ν	Conversion ratio		1000 V/50 mA		
v c	Supply voltage (± 10 %)		± 15 24		V
c	Current consumption		30 + I _s		mА
Ĭ _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6 ¹⁾		k٧
u			1 ²⁾		kV

Accuracy - Dynamic performance data

X _G e	Overall Accuracy @ V_{PN} , $T_A = 25^{\circ}C$ Linearity		± 0.7 < 0.1		% %
I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$ Thermal drift of I_0	- 25°C + 70°C	Тур ± 0.4	Max ± 0.3 ± 0.6	mA mA
t _r	Response time @ 90 % of ${f V}_{_{\sf P\ max}}$		100		μs

General data

T _A	Ambient operating temperature	- 25 + 70	°C
T _s	Ambient storage temperature	- 40 + 85	°C
N	Turns ratio	10000 : 2000	
Ρ	Total primary power loss	10	W
R ₁	Primary resistance @ $T_{A} = 25^{\circ}C$	100	kΩ
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	60	Ω
m	Mass	850	g

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Primary resistor R₁ incorporated into the housing.

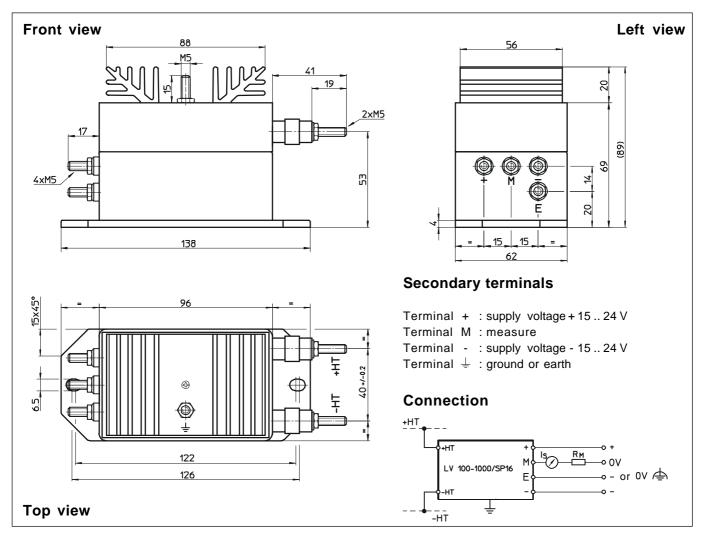
Special features

- **V**_P = 0 .. ± 1700 V
- **V**_c = ± 15 .. 24 (± 10 %) V
- $T_{A} = -25^{\circ}C ... + 70^{\circ}C$
- Connection to secondary circuit on M5 threaded studs
- · Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- High immunity to external interference.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- Railway overhead line voltage measurement.

Notes : 1) Between primary and secondary + shield

²⁾ Between secondary and shield

020227/7

Dimensions LV 100-1000/SP16 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- Connection to the ground
- Fastening torque

± 0.3 mm

2 holes Ø 6.5 mm M5 threaded studs M5 threaded studs M5 threaded stud 2.2 Nm or 1.62 Lb. -Ft.

Remarks

- $\mathbf{I}_{_{\!\!\mathsf{S}}}$ is positive when $\mathbf{V}_{_{\!\!\mathsf{P}}}$ is applied on terminal +HT.
- The primary circuit of the transducer must be linked to the connections where the voltage has to be measured.