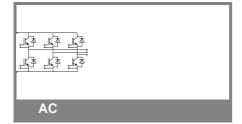
SKiiP 24AC12T4V1

3-phase bridge inverter

SKiiP 24AC12T4V1

Target Data


Features

- Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications

Absolute Maximum Ratings $T_c = 25$ °C, unless otherwise specified					
Symbol	Conditions			Values	Units
IGBT					
V_{CES}	T _j = 25 °C			1200	V
I _C	T _j = 175 °C	T _c = 25 °C		56	Α
		$T_c = 70 ^{\circ}C$		45	Α
I _{CRM}	I _{CRM} = 3xI _{Cnom}			105	Α
V_{GES}				±20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; $V_{CES} < 1200$ V	T _j = 150 °C		10	μs
Inverse D	Piode				
I _F	T _j = 175 °C	$T_c = 25 ^{\circ}C$		41	Α
		$T_c = 70 ^{\circ}C$		33	Α
I _{FRM}	$I_{CRM} = 3xI_{Cnom}$			105	Α
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C		165	Α
Module					
I _{t(RMS)}				100	Α
T_{vj}		·		-40+175	°C
T _{stg}				-40+125	°C
V _{isol}	AC, 1 min.			2500	V

Characteristics T _c		$T_c =$	= 25 °C, unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT						_	
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = mA$		5	5,8	6,5	V	
I _{CES}	$V_{GE} = V, V_{CE} = V_{CES}$	$T_j = ^{\circ}C$				mA	
V _{CE0}		T _j = 25 °C		1,1	1,3	V	
		T _j = 150 °C		1	1,2	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		22	22	mΩ	
		T _j = 150°C		36	36	mΩ	
V _{CE(sat)}	I _{Cnom} = 35 A, V _{GE} = 15 V			1,85	2,05	V	
		$T_j = 150^{\circ}C_{chiplev.}$		2,25	2,45	V	
C _{ies}						nF	
C _{oes}	$V_{CE} = , V_{GE} = V$	f = MHz				nF	
C _{res}						nF	
R_{Gint}	T _j = 25 °C			0		Ω	
t _{d(on)}						ns	
t _r E _{on}	R _{Gon} =	V _{CC} = 600V				ns	
E _{on}		I _{Cnom} = 35A		4,2		mJ	
^t d(off)	R _{Goff} =	T _j = 150 °C V _{GE} = ±15V				ns ns	
t _f ⊏		V _{GE} - ±13V		2.8			
E _{off}				2,8		mJ	
$R_{th(j-s)}$	per IGBT			0,8		K/W	

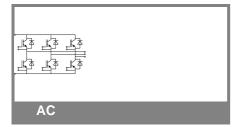
SKiiP 24AC12T4V1

3-phase bridge inverter

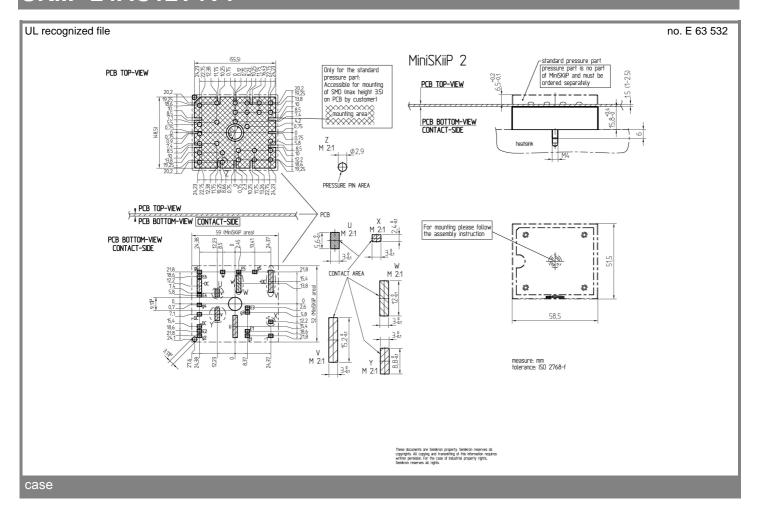
SKiiP 24AC12T4V1

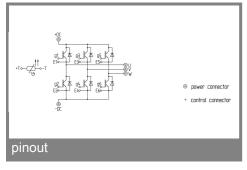
Target Data

Features


- · Trench 4 IGBT's
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


Characteristics								
Symbol	Conditions	I	min.	typ.	max.	Units		
Inverse D	Inverse Diode							
$V_F = V_{EC}$	$I_{Fnom} = 35 \text{ A}; V_{GE} = 0 \text{ V}$	$T_j = 25 ^{\circ}C_{chiplev.}$		2,3	2,6	V		
		T _j = 150 °C _{chiplev.}		2,3	2,6	V		
V _{F0}		T _j = 25 °C		1,3	1,5	V		
		T _j = 150 °C		0,9	1,1	V		
r _F		T _j = 25 °C		29	31	mΩ		
		T _j = 150 °C		40	43	mΩ		
I _{RRM}	I _{Fnom} = 35 A	T _j = 150 °C				Α		
Q_{rr}						μC		
E _{rr}	V _{GE} = ±15V			2,63		mJ		
R _{th(j-s)}	per diode			1,37		K/W		
M_s	to heat sink		2		2,5	Nm		
w				65		g		
Temperat	ure sensor							
R _{ts}	3%, Tr=25°C			1000		Ω		
R_{ts}	3%, Tr=100°C			1670		Ω		


This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

SKiiP 24AC12T4V1

3 15-10-2007 LAN © by SEMIKRON