

AUTOMOTIVE CURRENT TRANSDUCER SMART SHUNT TECHNOLOGY SSVT-105

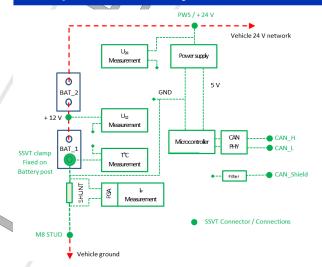
Introduction

The SSVT-105 is designed for a lead acid battery management system. It allows to manage a set of two 12 V batteries in serial (24 V application). Information are transmitted over a CAN high speed (ISO 11898-2) network.

Features

- Designed for 24 V application. Powered from the 24 V voltage
- Power supply range: 6 to 36 V
- Voltage, Current and Temperature measurement
- Operating temperature range: -40 °C to +105 °C
- Primary current measuring range ±1500 A
- 12 V voltage measuring range up to 18 V
- 24 V voltage measuring range up to 36 V
- Temperature measuring range: -40 °C to +105 °C
- Very low quiescent current allows monitoring the battery during engine key off.

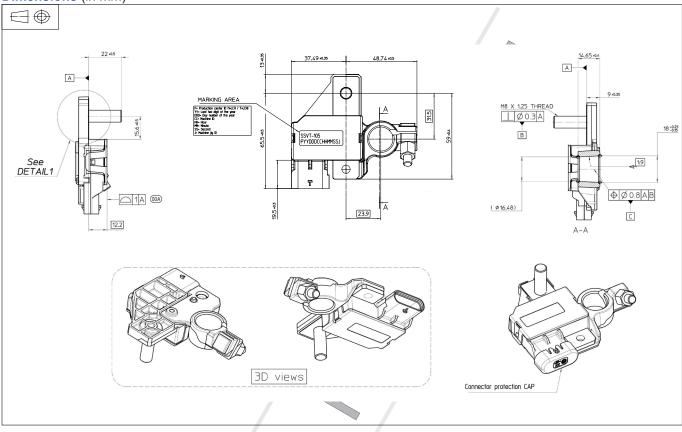
Advantages


- Synchronized measurement of I, U_{12} and U_{24}
- Excellent accuracy over the temperature range
- Very good linearity
- Low offset error for leakage current measurement.

Automotive applications

- 'Start stop' technology implementation in a truck
- Energy management for a long-haul truck.

Principle of SSVT family



Page 1/7

Dimensions (in mm)

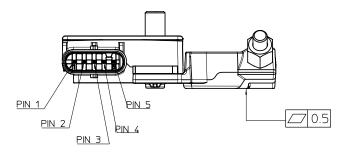
SSVT-105

Mechanical characteristics

- Mass
- 144 ± 8 g
- Terminals
- Electroplated tin
- Electroplated

CAN configuration

Parameter	Unit		Specifi	cation
Falameter	Unit	Min	Typical	Max
CAN controller version			CAN 2.0B	
CAN transceiver			NXP TJA 104	2
CAN bit rate	kbps		250	
CAN bit rate accuracy	%	0.05		
CAN termination resistor		l	No	
CAN wake-up capability	\square		Yes	


Connector housing

TE reference 1-1718806-1 keying/coding A

Connector pinouts

Pin Number	Name	Function
1	$U_{\rm bat_{24}}$	Power supply + $U_{\rm 24}$ sense
2	CAN_Shield	CAN bus shield
3	$U_{\rm bat_12}$	$U_{\rm 12}{ m sense}$
4	CAN_L	ISO 11898-2 CAN_L bus line
5	CAN_H	ISO 11898-2 CAN_H bus line

The ground connection is done by the battery clamp on negative battery pole connection

Page 2/7 LEM International SA Chemin des Aulx 8 1228 PLAN-LES-OUATES Switzerland www.lem.com

CAN message table overview

SSVT-105

Message name	ID	ID-Format	DLC [Byte]	Cycle time (ms)
IBS_2	0x18FF4EF4			100
VEP7	0x18FC0AF4	CAN Extended	8	100
VEP9	0x18FC08F4			100

CAN signal overview

IBS_2 message

Name	Startbit	Length [Bit]	Byte Order	Value Type	Factor	Offset	Minimum	Maximum	Unit
🔁 BatteryCurrent	0	32	Intel	Unsigned	0.001	-2105540.607	-2105540.607	2105540.608	А
☆ Reserved_32	32	32	Intel	Unsigned	1	0	0	16777215	
VEP7 message									
Name	Startbit	Length [Bit]	Byte Order	Value Type	Factor	Offset	Minimum	Maximum	Unit
☆ Reserved_16_1	0	16	Intel	Unsigned	1	0	0	65535	
🔂 Batt1Temp	16	8	Intel	Unsigned	1	-40	-40	210	deg (
🔂 Batt1Voltage	24	16	Intel	Unsigned	0.05	0	0	3212.75	V
ि Reserved_24_1	40	24	Intel	Unsigned	1	0	0	16777215	
						~_/			

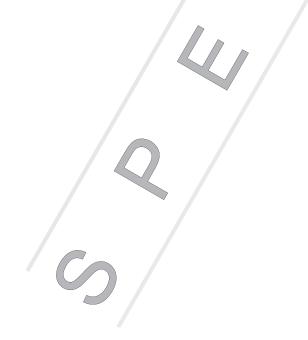
VEP9 message

Name	Startbit	Length [Bit]	Byte Order	Value Type	Factor	Offset	Minimum	Maximum	Unit
☆ Reserved_16_2	0	16	Intel	Unsigned	1	0	0	65535	
🔂 Batt2Temp	16	8	Intel	Unsigned	1	-40	-40	210	deg C
🔂 Batt2Voltage	24	16	Intel	Unsigned	0.05	0	0	3212.75	v
☆ Reserved_24_2	40	24	Intel	Unsigned	1	0	0	16777215	
				~					

Page 3/7

Absolute ratings (not operating)

SSVT-105


Pin/Parameter	Value	Unit	
All connector pins	±36	V	
	±3640		Duration ≤ 200 ms
	±1620		Duration ≤ 1 s
Primary Current	±510	A	Duration ≤ 10 s
	±300		Duration ≤ 30 s
	±210		Duration ≤ 60 s
Storage temperature	-40 to 115	°C	

Operating conditions

Mode	Pin/Parameter	Value	Unit
Functional operating supply voltage - Sensor is fully functional. All features are operating	U _{bat_24}	6 to 32	v
Functional operating U_{bat_24} sense	U _{bat_24}	6 to 36	V
Functional operating $U_{\text{bat_{12}}}$ sense	U _{bat_12}	0 to 18	V
Functional temperature sense	T _{PM}	-40 to 105	°C
Functional operating primary current sense	I _{PM}	-1500 to 1500	A
Operating ambient temperature	T _A	-40 to 105	°C

Supply currents

Mode	Pin/Parameter	Min	Typical	Max	Unit
Normal mode current. CAN communication active. CAN frame acknowledged. $U_{bat_{24}}$ = 32 V	$I_{\rm C}/U_{\rm bat_24}$		18		mA
Sleep mode current. No CAN communication. $U_{\rm bat,24}$ < 26 V	$I_{\rm C}/U_{\rm bat_{24}}$			250	μA
Sleep mode current. No CAN communication. $U_{ba_12} < 13 \text{ V}$	$I_{\rm C}/U_{\rm bat_{12}}$			30	μA

Page 4/7

Static electrical characteristics

SSVT-105

Parameters	Name	Min	Typical	Max	Unit
Cur	rrent measurement ¹⁾				
 Sensitivity error from −10 °C to 55 °C		-1.2	±0:5	+1.2	%
 Sensitivity error from −40 °C to 105 °C	ε _s	-1.6	±0.6	+1.6	70
Offset error from −40 °C to 105 °C	I _{oe}	-20	±10	+20	mA
 	Voltage measurement				
Total error from -10 °C to 55 °C, $I_{\rm p}$ = 0 A		-0.35	±0.15	+0.35	%
Total error from -40 °C to 105 °C, -1200 A $\leq I_p \leq$ +200 A	£ _{tot}	-0.8	±0.2	+0.8	%
 U _{bat_24}	Voltage measurement				
Tota error from -10 °C to 55 °C, $I_{\rm p}$ = 0 A		-0.35	±0.15	+0.35	%
Total error from -40 °C to 105 °C, -1200 A $\leq I_p \leq$ +200 A	£ _{tot}	-0.8	±0.2	+0.8	%
Temp	perature measurement				
Internal temperature accuracy 2)			±3		°C

1) The current consumed by the sensor (IC) is not included in the measurement. A negative current means a current sourced by the battery (discharging current).

Apositive current means a charging current 2) After temperature convergence (≤ 10 hours), Accuracy specification of the thermal model for a known environment.

Page 5/7

Recommendations For Use:

SSVT-105

IMPORTANT:

According to the EC regulation NO. 1907/2006 (REACH), we would like to make you aware that our sensors SSVT-105 contain the substance lead (CAS 7439-92-1, EC 231-100-4) at a concentration of more than 0.1 percent by mass. Lead has been classified as a SVHC (Substances of Very High Concern), since 27th June 2018 in accordance with REACH regulation (see https://echa.europa.eu/en/candidate-list-table). Nevertheless, the lead contained in our sensor isn't directly contactable by the user.

Sensor without the connector cap

STORAGE :

The LEM transducers must be stored in a dry location, within the following ambient room conditions(< 40 °C and < 60 % RH) The product should be stored in its closed and original packing. Ensure during storage and transport, the units are not damaged by applying excess weight to the boxes

The transducers mustn't be stored more than 2 years.

Ensure during storage and transport, the units are not damaged by applying excess weight to the boxes Maximal stackup storage of secondary container (pallet) must not exceed 2.

UNPACKING :

When unpacking, care must be taken with cutting tools not to damage the transducer.

Sensor with the connector cap connector cap

HANDLING :

The LEM transducers must be handled with care and not undergo any shocks or falls (fall = scrap).

It is recommended to handle the transducer as long as possible inside its original packing (thermoformed tray on customer's assembly station).

ESD gloves are mandatory to handle the transducer.

It is forbidden to handle the transducers neither by their terminals nor by the shunt (copper), nor by the connector cap - risk of ESD and/or corrosion and/or fall. Any rework operation is forbidden and will conduct part out of LEM warranty.

INSTALLATION :

The workshop and the people in contact with the transducers must be ESD protected

Before installing the sensor on the battery, the connector area's cap must be removed and rejected

Place the cable on the sensor's stud and tighten a M8 nut respecting the torque 20 Nm ±2.

We recommend having a dedicated support for this operation

Install the sensor's clamp on the negative battery post : it is in abutment on the battery terminal Tighten the clamp screw at the torque of 6 Nm ±1.5.

Plug the connector to the sensor : the connector type to use is the TE reference 1-1718806-1 key A.

Do not install (or re-install) a damaged part (broken or crushed element...) LEM do not recommend customers to make any maintenance on LEM sensors other wise, it will drive sensors directly out of warranty. The transducer installation must be done unless otherwise specified on this page and in the datasheet, according to LEM Transducer Generic Mounting Rules available on our Web site:

http://www.lem.com/images/stories/files/Products/app_note_ane120504_1_web.pdf

DISASSEMBLY :

Unplug the connector from the sensor Suppress all electricity power before disassembling the transducer.

RECYCLING :

The sensor must be disposed of in an appropriate recovery and recycling structure (contains lead).

Page 6/7

LEM

Test specifications

SSVT-105

Торіс	Norm	Chapter in the norn
High temperature endurance test		700 hours / 105 °C
Humidity test		900 hours / 85 °C / 85 % RH
hermal cycling test		2000 hours (-40 °C ↔105 °C
ligh temperature storage test	GB/T 28046.4	48 hours / 105 °C
ow temperature storage test	GB/T 28046.4	24 hours / -40 °C
hermal shock	GB/T 28046.4	300 cycles / −40°C ↔105 °C
Dust test	GB/T 28046.4	
Vaterproof test	GB/T 28046.4	ІР6К9К
ibration test	GB/T 28046.3	Random, 32 hours per axis
alt spray	GB/T 28046.4	
ce water impact	GB/T 28046.4	
ree fall test	GB/T 28046.3	
lechanical impact test	GB/T 28046.3	Chapter 4.2.2
hemical resistance test	GB/T 28046.5	External installation Code D
MC test	JA 3700-93C-1	

Page 7/7