
Voltage Transducer LV 100/SP47

For the electronic measurement of voltages: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high voltage) and the secondary circuit (electronic circuit).

$I_{PN} = 10 \text{ mA}$ $V_{PN} = 100..2500 \text{ V}$

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		$ \begin{array}{ll} 10 \\ 0 \dots \pm 20 \\ \mathbf{R}_{M min} & \mathbf{R}_{M max} \end{array} $		mA mA
W	with ± 12 V with ± 18 V	@ ± 10 mA max @ ± 20 mA max @ ± 10 mA max @ ± 20 mA max	0 0 80 80	140 40 250 90	Ω Ω Ω
I _{SN} K _N V _C I _C V _d	Secondary nominal r.m.s. Conversion ratio Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isola		50 10000 : ± 12 25 (@ ±2 9	18	mA V mA kV

Accuracy - Dynamic performance data

X _G	Overall Accuracy @ \mathbf{I}_{PN} , \mathbf{T}_{A} = 25°C Linearity error		± 0.7 < 0.1		% %
I _о I _{от}	Offset current @ $\mathbf{I}_{\mathrm{p}} = 0$, $\mathbf{T}_{\mathrm{A}} = 25^{\circ}\mathrm{C}$ Thermal drift of \mathbf{I}_{O}	- 40°C + 85°C - 25°C + 70°C		Max ± 0.3 ± 1.0 ± 0.6	mA mA
t _r	Response time $^{1)}$ @ 90 % of \mathbf{V}_{PN}		20 1	00	μs

General data

T_{A}	Ambient operating temperature	- 40 + 85	°C
T _s	Ambient storage temperature	- 45 + 90	°C
R ᢆ∍	Primary coil resistance @ $T_{\Delta} = 85^{\circ}C$	2000	Ω
R _s	Secondary coil resistance @ $T_{\Delta} = 85^{\circ}C$	63	Ω
m	Mass	460	g
	Standards	EN 50155 (95.º	11.01)

Note: 1) L/R constant, produced by the resistance and inductance of the primary circuit.

Features

- Closed loop (compensated) voltage transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Principle of use

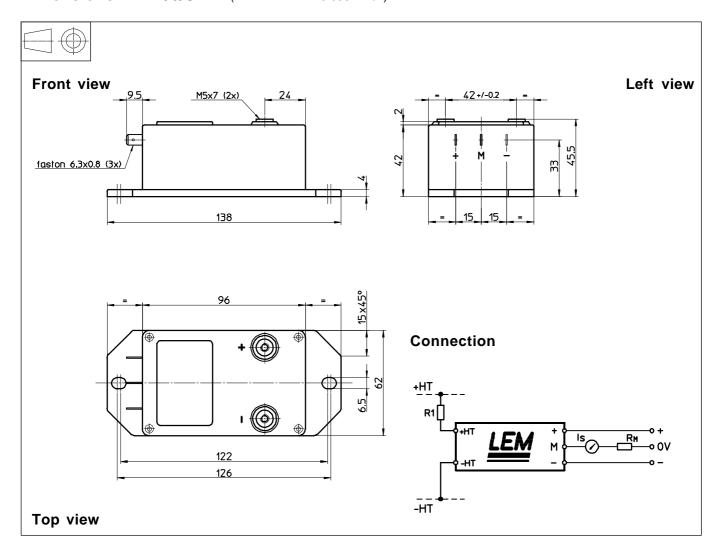
 For voltage measurements, a current proportional to the measured voltage must be collected through an external resistor R₁ which is selected by the user and installed in series with the primary circuit of the transducer.

Special features

- $V_{c} = \pm 12 ... 18 (\pm 5\%) V$
- $\mathbf{V}_{d}^{c} = 9 \,\mathrm{kV}$
- $T_{\Delta} = -40^{\circ}\text{C} .. + 85^{\circ}\text{C}$
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low thermal drift
- Low response time
- · High bandwidth
- High immunity to external interference
- Low disturbance in common mode.


Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications.

031110/4

Dimensions LV 100/SP47 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.3 mm

ullet Transducer fastening 2 holes arnothing 6.5 mm

2 M6 steel screws

Recommeded fastening torque
 5 Nm or 3.69 Lb - Ft.
 M5 screw terminals

Recommeded fastening torque 2.2 Nm or 1.62 Lb - Ft.

• Connection of secondary Faston 6.3 x 0.8 mm

Remark

• I_s is positive when V_p is applied on terminal +HT.

Instructions for use of the voltage transducer model LV 100/SP47

Primary resistor \mathbf{R}_1 : the transducer's optimum accuracy is obtained at the nominal primary current. As far as possible, \mathbf{R}_1 should be calculated so that the nominal voltage to be measured corresponds to a primary current of 10 mA.

Example: Voltage to be measured $\mathbf{V}_{PN} = 1000 \text{ V}$ a) $\mathbf{R}_1 = 100 \text{ k}\Omega/40 \text{ W}$, $\mathbf{I}_P = 10 \text{ mA}$ Accuracy = $\pm 0.7 \text{ % of } \mathbf{V}_{PN}$ (@ $\mathbf{T}_A = +25 ^{\circ} \text{C}$) b) $\mathbf{R}_1 = 400 \text{ k}\Omega/5 \text{ W}$, $\mathbf{I}_P = 2.5 \text{ mA}$ Accuracy = $\pm 2.5 ^{\circ} \text{ of } \mathbf{V}_{PN}$ (@ $\mathbf{T}_A = +25 ^{\circ} \text{C}$)

Operating range (recommended): taking into account the resistance of the primary windings (which must remain low compared to \mathbf{R}_1 in order to keep thermal deviation as low as possible) and the isolation, this transducer is suitable for measuring nominal voltages from 100 to 2500 V.