AUTOMOTIVE CURRENT TRANSDUCER OPEN LOOP TECHNOLOGY HAH1DRW 100-S/SP5, HAH1DRW 200-S/SP5, HAH1DRW 300-S/SP5, HAH1DRW 400-S/SP5, HAH1DRW 500-S/SP5, HAH1DRW 600-S/SP5, HAH1DRW 700-S/SP5, HAH1DRW 800-S/SP5, HAH1DRW 900-S/SP5, HAH1DRW 1000-S/SP5, HAH1DRW 1200-S/SP5, HAH1DRW 1500-S/SP5 # Introduction The HAH1DRW family for the electronic measurement of DC, AC or pulsed currents in high power and low voltage automotive applications with galvanic separation between the primary circuit (high power) and the secondary circuit (electronic circuit). The HAH1DRW family gives you the choice of having different current measuring ranges in the same housing. #### **Features** - Ratiometric transducer - Open Loop transducer using the Hall effect - · Low voltage application - Unipolar +5 V DC power supply - Maximum RMS primary admissible current: defined by busbar to have T < +150 °C - Operating temperature range: -40 °C < T < 125 °C - Output voltage: full ratio-metric (in sensitivity and offset). #### **Special features** - Additional coating of the ASIC pins - Compressor limiter for M4 screw. # **Advantages** - Excellent accuracy - Very good linearity - · Very low thermal offset drift - Very low thermal sensitivity drift - Galvanic separation - High frequency bandwidth - Non intrusive solution. ## **Automotive applications** - Electrical Power Steering - Starter Generators - Converters - Battery Management - Motor drive application. # WARRANTY CE ARRIVERS # **Principle of HAH1DRW family** The open loop transducers use a Hall effect integrated circuit. The magnetic flux density B, contributing to the rise of the Hall voltage, is generated by the primary current $I_{\rm p}$ to be measured. The current to be measured I_p is supplied by a current source i.e. battery or generator (Figure 1). Within the linear region of the hysteresis cycle, ${\it B}$ is proportional to: $$B(I_{D}) = a \times I_{D}$$ The Hall voltage is thus expressed by: $$U_{\text{Hall}} = (c_{\text{Hall}} / d) \times I_{\text{Hall}} \times a \times I_{\text{P}}$$ Except for $I_{\rm p}$, all terms of this equation are constant. Therefore: $\begin{aligned} U_{\text{Hall}} &= b \times I_{\text{P}} \\ a & \text{constant} \\ b & \text{constant} \\ c_{\text{Hall}} & \text{Hall coefficient} \end{aligned}$ The measurement signal $U_{\mbox{\scriptsize Hall}}$ amplified to supply the user output voltage or current. Fig. 1: Principle of the open loop transducer. # Dimensions (in mm) # HAH1DRW 100-S/SP5...1500-S/SP5 #### **Mechanical characteristics** Plastic case PBT GF 30 Magnetic core FeSi wound core • Mass 58 g ±5 % Pins Brass tin plated IP level IPx 2. #### **Mounting recommendation** Connector type TYCO connector P/N 1473672-1 Assembly torque max 2.2 N·m ±5 % # **Electronic schematic** | | Components list | | |----|--------------------------|--------| | IC | Hall sensor ASIC | | | C1 | Decoupling capacitor | 47 nF | | C2 | EMC protection capacitor | 4.7 nF | | | Pin out | | | | | | | | | | |---|-----------------------------|--|--|--|--|--|--|--|--|--| | Α | $U_{ m out}$ | | | | | | | | | | | В | GND | | | | | | | | | | | С | <i>U</i> _c (5 V) | | | | | | | | | | | D | GND | | | | | | | | | | | | | | | | | | | | | | #### Remark • $U_{\rm out}$ > $U_{\rm o}$ when $I_{\rm p}$ flows in the positive direction (see arrow on drawing). #### **System architecture (example)** $C_{\rm L}$ < 2.2 nF EMC protection (optional) RC Low pass filter (optional) ### On board diagnostic $R_{\rm i} > 10~{\rm k}\Omega$. Resistor for signal line diagnostic (optional) | $U_{ m out}$ | Diagnostic | |--------------|------------------------------------| | Open circuit | $U_{\mathrm{IN}} = U_{\mathrm{C}}$ | | Short GND | U _{IN} = 0 V | # **Absolute ratings (not operating)** # HAH1DRW 100-S/SP5...1500-S/SP5 | Davamatav | Cumbal | Unit | Specification | | | Conditions | |-------------------------------------------|--------------------------------|-------|---------------|---------|----------------------|---------------------------------| | Parameter | Symbol | | Min | Typical | Max | Conditions | | Maximum supply voltage | $U_{\mathrm{C}\;\mathrm{max}}$ | V | -0.5 | | 8 | 1) | | Ambient storage temperature | T_{Ast} | °C | -40 | | 125 | | | Electrostatic discharge voltage (HBM) | U_{ESDHBM} | kV | | | 8 | | | Maximum admissible vibration (random RMS) | $\gamma_{\rm max}$ | m·s⁻² | | | 27.1 | 10 to 1000 Hz, −40 °C to 125 °C | | RMS voltage for AC insulation test | U_{d} | kV | | | 2.5 | 50 Hz, 1 min | | Creepage distance | d_{Cp} | mm | 4.85 | | | | | Clearance | d_{CI} | mm | 4.85 | | | | | Comparative traking index | CTI | | PLC 3 | | | | | Maximum output current | I _{out max} | mA | -10 | | 10 | | | Maximum output voltage | $U_{ m outmax}$ | V | -0.5 | | U _c + 0.5 | | # Operating characteristics in nominal range (I_{PN}) | Downwardow. | Compleal | 110014 | Specification | | | Conditions | | | | | |--------------------------------------------------------------------|-----------------------|--------|----------------------|--------------------------|----------------------|--------------------------------------------------------------------------------|--|--|--|--| | Parameter | Symbol | Unit | Min | Typical | Max | Conditions | | | | | | | | El | ectrical | Data | | | | | | | | Supply voltage | U_{C} | V | 4.75 | 5 | 5.25 | | | | | | | Ambient operating temperature | T_{A} | °C | -40 | | 125 | | | | | | | Output voltage (Analog) | U_{out} | V | $U_{\text{out}} = ($ | U _c / 5) × (U | $(S + S \times I_P)$ | | | | | | | Offset voltage | U_{o} | V | | 2.5 | | | | | | | | Current consumption | I_{C} | mA | | 20 | 25 | | | | | | | Load resistance | R_{L} | ΚΩ | 10 | | | | | | | | | Output internal resistance | R_{out} | Ω | | 1 | 10 | | | | | | | | Performance Data | | | | | | | | | | | Ratiometricity error | $\varepsilon_{\rm r}$ | % | | ±0.5 | | | | | | | | Magnetic offset voltage | U_{OM} | mV | | ±2 | | $\textcircled{@}\ U_{\text{C}}$ = 5 V, $\textcircled{@}\ T_{\text{A}}$ = 25 °C | | | | | | Linearity error | ε_{L} | % | -1 | | 1 | % of full scale | | | | | | Average temperature coefficient of U_{OE} | TCU_{OEAV} | mV/°C | | ±0.04 | | | | | | | | Average temperature coefficient of S | TCS _{AV} | %/°C | | ±0.02 | | | | | | | | Delay time to 90 % of the final output value for $I_{\rm PN}$ step | t _{D 90} | μs | | 2 | 6 | di/dt = 100 A / μs | | | | | | Frequency bandwidth | BW | kHz | 40 | | | @ -3 dB | | | | | | Peak-to-peak noise voltage | $U_{ m nopp}$ | mV | | | 14 | DC to 1 MHz | | | | | | Output RMS noise voltage | U_{no} | mV | | | 2.2 | | | | | | | Phase shift | Δφ | ٥ | -4 | | · | DC to 1 KHz | | | | | Note: 1) Exceeding 6.5 V may temporarily reconfigure the device until next power on. # **HAH1DRW 100-S/SP5** # HAH1DRW 100-S/SP5...1500-S/SP5 | Parameter | Cumbal | Unit | | Specification | | Conditions | | | | | |----------------------------------|----------------------------|------|------|---------------|-----|--------------------------------------------|--|--|--|--| | | Symbol | | Min | Typical | Max | | | | | | | Performance Data | | | | | | | | | | | | Primary current, measuring range | I_{PM} | Α | -100 | | 100 | | | | | | | Primary nominal RMS current | I_{PN} | Α | -100 | | 100 | | | | | | | Sensitivity | S | mV/A | | 20 | | @ T _A = 25 °C | | | | | | Sensitivity error | ε_{s} | % | | ±0.6 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | | Electrical offset voltage | $U_{{\sf OE}}$ | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | #### **HAH1DRW 200-S/SP5** | Parameter | Symbol | Unit | | Specification | | Conditions | | | | | |----------------------------------|----------------------------|------|------|---------------|-----|--------------------------------------------|--|--|--|--| | | Syllibol | | Min | Typical | Max | Conditions | | | | | | Performance Data | | | | | | | | | | | | Primary current, measuring range | I_{PM} | Α | -200 | | 200 | | | | | | | Primary nominal RMS current | I_{PN} | Α | -200 | | 200 | | | | | | | Sensitivity | S | mV/A | | 10 | | @ T _A = 25 °C | | | | | | Sensitivity error | ε_{s} | % | | ±0.6 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | | Electrical offset voltage | $U_{{\sf OE}}$ | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | ## **HAH1DRW 300-S/SP5** | Parameter | Symbol | Unit | | Specification | | Conditions | | | | | |----------------------------------|----------------------------|------|------|---------------|-----|--------------------------------------------|--|--|--|--| | | | | Min | Typical | Max | Conditions | | | | | | Performance Data | | | | | | | | | | | | Primary current, measuring range | I_{PM} | А | -300 | | 300 | | | | | | | Primary nominal RMS current | I_{PN} | А | -300 | | 300 | | | | | | | Sensitivity | S | mV/A | | 6.667 | | @ T _A = 25 °C | | | | | | Sensitivity error | ε_{s} | % | | ±0.6 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | | Electrical offset voltage | $U_{{\sf OE}}$ | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | #### **HAH1DRW 400-S/SP5** | Parameter | Symbol | Unit | | Specification | 1 | Conditions | | | | | |----------------------------------|----------------------------|------|------|---------------|-----|--------------------------------------------|--|--|--|--| | | | | Min | Typical | Max | | | | | | | Performance Data | | | | | | | | | | | | Primary current, measuring range | I_{PM} | А | -400 | | 400 | | | | | | | Primary nominal RMS current | I_{PN} | А | -400 | | 400 | | | | | | | Sensitivity | S | mV/A | | 5 | | @ T _A = 25 °C | | | | | | Sensitivity error | ε_{s} | % | | ±0.6 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | | Electrical offset voltage | $U_{{\sf OE}}$ | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | ## **HAH1DRW 500-S/SP5** | Parameter | Cymhal | Unit | | Specification | | Conditions | | | | |----------------------------------|--------------------------------|------|------|---------------|-----|--------------------------------------------|--|--|--| | | Symbol | | Min | Typical | Max | Conditions | | | | | Performance Data | | | | | | | | | | | Primary current, measuring range | I_{PM} | А | -500 | | 500 | | | | | | Primary nominal RMS current | I_{PN} | А | -500 | | 500 | | | | | | Sensitivity | S | mV/A | | 4 | | @ T _A = 25 °C | | | | | Sensitivity error | ε_{s} | % | | ±0.6 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | Electrical offset voltage | $U_{{\scriptscriptstyle{OE}}}$ | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | #### **HAH1DRW 600-S/SP5** | Parameter | Cymah al | Unit | | Specification | | Conditions | | | | | |----------------------------------|----------------------|------|------|---------------|-----|--------------------------------------------|--|--|--|--| | | Symbol | | Min | Typical | Max | Conditions | | | | | | Performance Data | | | | | | | | | | | | Primary current, measuring range | I_{PM} | А | -600 | | 600 | | | | | | | Primary nominal RMS current | I_{PN} | А | -600 | | 600 | | | | | | | Sensitivity | S | mV/A | | 3.333 | | @ T _A = 25 °C | | | | | | Sensitivity error | $\varepsilon_{ m s}$ | % | | ±0.6 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | | Electrical offset voltage | $U_{{\sf OE}}$ | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | Page 4/9 ## **HAH1DRW 700-S/SP5** # HAH1DRW 100-S/SP5...1500-S/SP5 | Parameter | Symbol | Unit | | Specification | | Conditions | | | | | |----------------------------------|----------------------------|------|------|---------------|-----|--------------------------------------------|--|--|--|--| | | Syllibol | | Min | Typical | Max | Conditions | | | | | | Performance Data | | | | | | | | | | | | Primary current, measuring range | I_{PM} | Α | -700 | | 700 | | | | | | | Primary nominal RMS current | I_{PN} | Α | -700 | | 700 | | | | | | | Sensitivity | S | mV/A | | 2.857 | | @ T _A = 25 °C | | | | | | Sensitivity error | ε_{s} | % | | ±0.6 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | | Electrical offset voltage | $U_{{\sf OE}}$ | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | | | #### **HAH1DRW 800-S/SP5** | Parameter | Symbol | Unit | | Specification | | Conditions | |----------------------------------|----------------------------|---------|------------|---------------|-----|--------------------------------------------| | Faranietei | Symbol | Offic | Min | Typical | Max | Conditions | | | | Perforn | nance Data | | | | | Primary current, measuring range | I_{PM} | Α | -800 | | 800 | | | Primary nominal RMS current | I_{PN} | Α | -800 | | 800 | | | Sensitivity | S | mV/A | | 2.5 | | @ T _A = 25 °C | | Sensitivity error | ε_{s} | % | | ±0.6 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | Electrical offset voltage | $U_{{\sf OE}}$ | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | #### **HAH1DRW 900-S/SP5** | Danamatan | Company of | 1.124 | Specification | | | O and distance | |----------------------------------|----------------------|---------|---------------|---------|-----|--------------------------------------------| | Parameter | Symbol | Unit | Unit Min | Typical | Max | Conditions | | | | Perforr | nance Data | | | | | Primary current, measuring range | I _{P M} | А | -900 | | 900 | | | Primary nominal RMS current | I_{PN} | А | -900 | | 900 | | | Sensitivity | S | mV/A | | 2.222 | | @ T _A = 25 °C | | Sensitivity error | $\varepsilon_{ m s}$ | % | | ±0.6 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | Electrical offset voltage | UoE | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | # **HAH1DRW 1000-S/SP5** | Parameter | Cymhol | Limit | Specification | | Conditions | | |----------------------------------|----------------------------|---------|---------------|---------|------------|--------------------------------------------| | Parameter | Symbol | Unit | Min | Typical | Max | Conditions | | | | Perforr | nance Data | | | | | Primary current, measuring range | I_{PM} | А | -1000 | | 1000 | | | Primary nominal RMS current | I _{PN} | Α | -1000 | | 1000 | | | Sensitivity | S | mV/A | | 2 | | @ T _A = 25 °C | | Sensitivity error | ε_{s} | % | | ±0.7 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | Electrical offset voltage | UoE | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | ## **HAH1DRW 1100-S/SP5** | Parameter | Cumbal | Unit | | Specification Typical Max | Conditions | | |----------------------------------|----------------------------|---------|------------|---------------------------|------------|--------------------------------------------| | ralametei | Symbol | Ullit | Min | | Max | Conditions | | | | Perforr | nance Data | | | | | Primary current, measuring range | I_{PM} | А | -1100 | | 1100 | | | Primary nominal RMS current | I_{PN} | А | -1100 | | 1100 | | | Sensitivity | S | mV/A | | 1.818 | | @ T _A = 25 °C | | Sensitivity error | ε_{s} | % | | ±0.7 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | Electrical offset voltage | $U_{{\sf OE}}$ | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | # **HAH1DRW 1200-S/SP5** | Parameter | Cumbal | Linit | Specification | | 1 | Conditions | |----------------------------------|-----------------------|---------|---------------|-------------|------------|--------------------------------------------| | | Symbol | Unit | Min | Typical Max | Conditions | | | | | Perforr | nance Data | | | | | Primary current, measuring range | I_{PM} | Α | -1200 | | 1200 | | | Primary nominal RMS current | I_{PN} | Α | -1200 | | 1200 | | | Sensitivity | S | mV/A | | 1.67 | | @ T _A = 25 °C | | Sensitivity error | $\varepsilon_{\rm s}$ | % | | ±0.7 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | Electrical offset voltage | $U_{{\sf OE}}$ | mV | | ±3 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | Page 5/9 ## **HAH1DRW 1500-S/SP5** # HAH1DRW 100-S/SP5...1500-S/SP5 | Parameter | Symbol | Unit | Specification | | | Conditions | | |----------------------------------|----------------------------|------|---------------|---------|------|--------------------------------------------|--| | | | | Min | Typical | Max | Conditions | | | Performance Data | | | | | | | | | Primary current, measuring range | I_{PM} | А | -1500 | | 1500 | | | | Primary nominal RMS current | I_{PN} | А | -1500 | | 1500 | | | | Sensitivity | S | mV/A | | 1.33 | | @ T _A = 25 °C | | | Sensitivity error | ε_{s} | % | | ±0.9 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | | Electrical offset voltage | $U_{{\sf OE}}$ | mV | | ±3.6 | | @ $T_{\rm A}$ = 25 °C, @ $U_{\rm C}$ = 5 V | | # HAH1DRW 100-S/SP5...1500-S/SP5 # Total error $\varepsilon_{\mbox{\tiny tot}}$ | | Total error $arepsilon_{ ext{tot}}$ specification | | | | | | | |-----------------------|---------------------------------------------------|----------------------------------------|-------|-------------------------|--|--|--| | $I_{p}\left(A\right)$ | $T_{\rm A}$ = 25 °C, | $T_{\rm A}$ = 25 °C, $U_{\rm C}$ = 5 V | | 5 °C, $U_{\rm c}$ = 5 V | | | | | - I _{P M} | 45 mV | 2.25 % | 65 mV | 3.25 % | | | | | 0 | 13 mV | 0.65 % | 18 mV | 0.90 % | | | | | I_{PM} | 45 mV | 2.25 % | 65 mV | 3.25 % | | | | #### PERFORMANCES PARAMETERS DEFINITIONS ## **Primary current definition:** #### Definition of typical, minimum and maximum values: Minimum and maximum values for specified limiting and safety conditions have to be understood as such as values shown in "typical" graphs. On the other hand, measured values are part of a statistical distribution that can be specified by an interval with upper and lower limits and a probability for measured values to lie within this interval. Unless otherwise stated (e.g. "100 % tested"), the LEM definition for such intervals designated with "min" and "max" is that the probability for values of samples to lie in this interval is 99.73 %. For a normal (Gaussian) distribution, this corresponds to an interval between -3 sigma and +3 sigma. If "typical" values are not obviously mean or average values, those values are defined to delimit intervals with a probability of 68.27 %, corresponding to an interval between -sigma and +sigma for a normal distribution. Typical, minimum and maximum values are determined during the initial characterization of a product. #### Output noise voltage: The output voltage noise is the result of the noise floor of the Hall elements and the linear amplifier. #### **Magnetic offset:** The magnetic offset is the consequence of an any current on the primary side. It's defined after a stated excursion of primary current. #### Linearity: The maximum positive or negative discrepancy with a reference straight line $U_{\rm out}$ = $f(I_{\rm p})$. Unit: linearity (%) expressed with full scale of $I_{\rm P\,N}$. ## HAH1DRW 100-S/SP5...1500-S/SP5 # Delay time $t_{D 90}$: The time between the primary current signal (I_{PN}) and the output signal reach at 90 % of its final value. #### Sensitivity: The transducer's sensitivity S is the slope of the straight line $U_{\text{out}} = f(I_{\text{p}})$, it must establish the relation: $$U_{\text{out}}(I_{\text{P}}) = U_{\text{C}}/5 (S \times I_{\text{P}} + U_{\text{O}})$$ #### Offset with temperature: The error of the offset in the operating temperature is the variation of the offset in the temperature considered with the initial offset at 25 °C. The offset variation $I_{\text{O }T}$ is a maximum variation the offset in the temperature range: $$I_{OT} = I_{OE} \max - I_{OE} \min$$ The offset drift $TCI_{\text{O E AV}}$ is the $I_{\text{O }T}$ value divided by the temperature range. ## Sensitivity with temperature: The error of the sensitivity in the operating temperature is the relative variation of sensitivity with the temperature considered with the initial offset at 25 °C. The sensitivity variation $S_{\scriptscriptstyle T}$ is the maximum variation (in ppm or %) of the sensitivity in the temperature range: S_{τ} = (Sensitivity max - Sensitivity min) / Sensitivity at 25 °C. The sensitivity drift $\mathit{TCS}_{\mathsf{AV}}$ is the S_{T} value divided by the temperature range. Deeper and detailed info available is our LEM technical sales offices (www.lem.com). # Offset voltage @ $I_p = 0$ A: The offset voltage is the output voltage when the primary current is zero. The ideal value of $U_{\rm O}$ is $U_{\rm C}/$ 2. So, the difference of $U_{\rm o}$ – $U_{\rm c}/2$ is called the total offset voltage error. This offset error can be attributed to the electrical offset (due to the resolution of the ASIC quiescent voltage trimming), the magnetic offset, the thermal drift and the thermal hysteresis. Deeper and detailed info available is our LEM technical sales offices (www.lem. com). #### **Environmental test specifications:** Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking Test Plan Auto" sheet. # **Environmental test specifications:** # HAH1DRW 100-S/SP5...1500-S/SP5 Refer to LEM GROUP test plan laboratory CO.11.11.515.0 with "Tracking_Test Plan_Auto" sheet. | Name | Standard | |------------------------------------------------------------|---------------------------------------------------------------------| | CHARACTERIZATIO | N @ 25 °C (initial) | | Sensitivity / Accuracy / Total error | LEM 98.20.00.574.0 | | Offset / Electrical Offset / Magnetic Offset | LEM 98.20.00.573.0 | | Linearity error | LEM 98.20.00.370.0 | | Current Consumption | LEM 98.20.00.579.0 | | CHARACTERIZATION | | | Sensitivity / Accuracy / Total error | LEM 98.20.00.574.0 | | T °C variation of / Temperature Coefficient of G | LEM 98.20.00.574.0 | | Offset / Electrical Offset / Magnetic Offset | LEM 98.20.00.573.0 | | T °C variation of /Temperature Coefficient of Offset | LEM 98.20.00.573.0 | | Linearity error | LEM 98.20.00.370.0 | | Current Consumption | LEM 98.20.00.579.0 | | ELECTRICAL TI | | | Phase delay check | 100 Hz to 100 KHz @ 20 A peak | | Noise measurement | Sweep from DC to 1 MHz | | Delay time di/dt | 100 A/ μ s. I pulse = $I_{P \text{ max}}$ | | dv/dt | 2000 V/µs. U = 2000 V | | Dielectric Withstand Voltage test | 2500 V AC / 1 min / 50 Hz | | Insulation Resistance test | 500 V DC, time = 60 s
$R_{\rm INS} \ge$ 500 M Ω Minimum | | ENVIRONMENTAL T | ESTS (CLIMATIC) | | | ISO 16750-4 § 5.3.2 (04/2010) | | | 500 cycles (500 hours), | | Thermal shock | 30 min @ -40 °C // 30 min @ +125 °C | | | $U_{\rm C}$ not connected, $I_{\rm P}$ = 0 | | Steady state T°C Humidity bias life test | JESD 22-A 101 (03/2009) | | MECHANICA | AL TESTS | | Vibration Random in <i>T</i> °C | ISO 16750-3 § 4.1.2.4(12/2012)
27.1 m/s², 8 h/axe 10 Hz -1000 Hz | | | ISO 16750-3 § 4.2.2 (12/2012) | | | 50 g/ 6 ms Half Sine @ 25 °C | | Shocks | 10 shocks of each direction (Total: 60) | | | $U_{\rm C}$ not connected, $I_{\rm P}$ = 0 | | Free Fall (Device not packaged) | IEC 60068-2-31
§5.2: method 1 (05/2008) | | EM | c | | Immunity to ElectroStatic Discharges (Handling of devices) | ISO 10605 (07/2008) | | Immunity to Conducted disturbances (BCI) | ISO 11452-4 (12/2011) | | Emission Radiated (ALSE) | CISPR 25 (03/2008) | | FINAL CHARAC | CTERIZATION | | = 0 | | | Characterization @ 25 °C Characterization with T °C | |