

Current Transducer LT 4000-T/SP42

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{DN} = 4400 A$

Electrical data

I _{PN}	Primary nominal r.m.s. cu	urrent	4400		Α
I _{PC}	Primary nominal cycle r.m	n.s. currents 1)	8500/60)s	Α
			4000/26	60s	Α
I _P	Primary current, measuring range @ ± 60 V		0 ± 12	2000	Α
Î	Max overload capability (not measurable)	150/10		kA/ms
			80/120		kA/ms
$\mathbf{R}_{_{\mathrm{M}}}$	Measuring resistance		$R_{_{ m Mmin}}$	R_{Mm}	ax
	with ± 60 V	@ ± 9200 A _{max}	9	15	Ω
		@ ± 12000 A max	9	9	Ω
I _{SN}	Secondary nominal r.m.s. current		880		mΑ
K	Conversion ratio		1:5000)	
v °	Supply voltage (± 5 %)		± 60		V
I c	Current consumption @ ±	: 60 V	< ± 30 +	\mathbf{I}_{S}	mA

Accuracy - Dynamic performance data

X _G E _L	Overall accuracy @ \mathbf{I}_{PN} , $\mathbf{T}_{A} = 25^{\circ}\text{C}$ Linearity	< ± 0.2 < 0.1	% %
	O"	Max	
I_{\circ}	Offset current @ $I_p = 0$, $T_A = 25$ °C	± 0.8	mΑ
I_{OT}	Thermal drift of $I_{\rm O}$ $T_{\rm A}$ - 25°C + 50°C	± 0.8	mΑ
t,	Response time 2 @ 90 % of I _{PN}	< 1	μs
di/dt	di/dt accurately followed	> 50	A/µs
f	Frequency bandwidth	DC 100	kHz

General data

т	Ambient operating temperature	- 25 + 50	°C
T _o	Ambient storage temperature	_0 00	°C
R _s	Secondary coil resistance @ $T_A = 50$ °C	14	Ω
m	Mass	11.4	kg
	Standards	EN 50178: 2001	Ū

Notes: 1) With a ventilation $V_{Air} > 0.5 \text{ m/s}$

2) With a di/dt \geq 100 A/µs.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Isolated plastic case recognized according to UL 94-V0.

Special features

- $I_p = 0 .. \pm 12000 A$
- $V_c = \pm 60 \text{ V } (\pm 5 \%)$
- T₀ = -25°C .. +50°C
- Shield, can be turned by 180°
- Primary busbar with cylindric mid-section
 Ø 60 mm
- Overload capability very high.

Advantages

- Very good linearity
- Low temperature drift
- Optimized response time
- · Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Application Domain

• Industrial.

070405/6

Current Transducer LT 4000-T/SP42

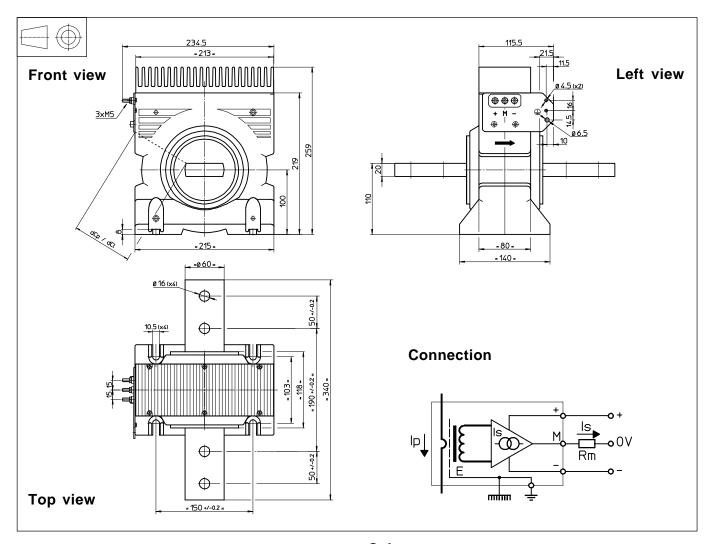
Isolation characteristics			
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn	12 ³⁾	kV
		1 4)	kV
Ŷ _w	Impulse withstand voltage 1.2/50 µs	41	kV
V _e	R.m.s. voltage for partial discharge extinction @ 10pC	Min 6.3	kV
		Min	
dCp	Creepage distance 5)	113.5	m m
dCl	Clearance distance 5)	92.2	mm
CTI	Comparative Tracking Index (Group II)	550	

Application examples

According to EN 50178 and CEI 61010-1 standards and following conditions :

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	CEI 61010-1
dCp, dCl, $\hat{\pmb{\mathbf{v}}}_{\mathbf{w}}$	Rated isolation voltage	Nominal voltage
Single isolation	8490 V	Cat III 1000 V rms
Reinforced isolation	4240 V	Cat III 1000 V rms


Notes: 3) Between primary and secondary + shield

4) Between secondary and shield

5) See outline drawing.

Dimensions LT 4000-T/SP42 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Transducer fastening

Max. recommended fastening torque 11.5 Nm or 8.48Lb - Ft

• Connection of primary

Max. recommended fastening torque 24.5 Nm or 18 Lb - Ft

· Connection of secondary

Earth connection

using primary bar or 4 slots Ø 10.5 mm 4 M10 steel screws 4 holes Ø 16 mm 4 M12 steel screws

± 1 mm

M5 threaded studs Max. recommended fastening torque 2.2 Nm or 1.62 Lb - Ft holes Ø 6.5 mm and/ or 2 holes Ø 4.5 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.

Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the following manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply). Ignoring this warning can lead to injury and/or cause serious damage.

This transducer is a built-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used. Main supply must be able to be disconnected.

070405/6

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice