
# **Current Transducer LT 10000-S**

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).





# $I_{PN} = 10000 A$



#### **Electrical data**

| $\mathbf{I}_{PN}$     | Primary nominal r.m.s. current                    |                            | 10000                         |                                       | Α        |
|-----------------------|---------------------------------------------------|----------------------------|-------------------------------|---------------------------------------|----------|
| <b>I</b> <sub>P</sub> | Primary current, measuring range (1 s/mn)         |                            | 0 ± 15000                     |                                       | Α        |
| $\mathbf{R}_{M}$      | Measuring resistance                              |                            | $\mathbf{R}_{_{	ext{M min}}}$ | $\mathbf{R}_{\mathrm{M}\mathrm{max}}$ |          |
|                       | with ± 48 V                                       | @ $\pm 10000 A_{max}$      | 0                             | 8                                     | Ω        |
|                       |                                                   | @ ± 12000 A max            | 0                             | 1                                     | $\Omega$ |
|                       | with ± 60 V                                       | @ ± 10000 A <sub>max</sub> | 0                             | 20                                    | $\Omega$ |
|                       |                                                   | @ ± 15000 A <sub>max</sub> | 0                             | 1.5                                   | Ω        |
| $I_{SN}$              | Secondary nominal r.m.s. current                  |                            | 1                             |                                       | Α        |
| K <sub>N</sub>        | Conversion ratio                                  |                            | 1:10000                       |                                       |          |
| $V_{c}$               | Supply voltage (± 5 %)                            |                            | ± 48                          | 60                                    | V        |
| I <sub>c</sub>        | Current consumption                               |                            | 40 (@±                        | 60V)+ <b>I</b> <sub>S</sub>           | mA       |
| $\mathbf{V}_{_{d}}$   | R.m.s. voltage for AC isolation test, 50 Hz, 1 mn |                            | 10 1)                         |                                       | k۷       |
|                       |                                                   |                            | 1 <sup>2)</sup>               |                                       | kV       |

# Accuracy - Dynamic performance data

| X <sub>G</sub>                    | Overall accuracy @ $\mathbf{I}_{PN}$ , $\mathbf{T}_{A}$ = 25°C Linearity error                              |               | ± 0.3 < 0.1         |                       | %<br>%            |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------|---------------|---------------------|-----------------------|-------------------|
| I <sub>о</sub><br>I <sub>от</sub> | Offset current @ $I_P = 0$ , $T_A = 25$ °C Thermal drift of $I_O$                                           | - 25°C + 70°C | Typ<br>± 0.6        | Max<br>± 1.5<br>± 0.8 | m A<br>m A        |
| t <sub>,</sub><br>di/dt<br>f      | Response time <sup>3)</sup> @ 90 % of I <sub>PN</sub> di/dt accurately followed Frequency bandwidth (-1 dB) |               | < 1<br>> 50<br>DC 1 | 100                   | μs<br>Α/μs<br>kHz |

#### **General data**

| T <sub>A</sub>   | Ambient operating temperature                     | - 25 + 70         | °C |
|------------------|---------------------------------------------------|-------------------|----|
| T <sub>s</sub>   | Ambient storage temperature                       | - 40 + 85         | °C |
| $\mathbf{R}_{s}$ | Secondary coil resistance @ T <sub>A</sub> = 70°C | 35                | Ω  |
| m                | Mass                                              | 17                | kg |
|                  | Standards                                         | EN 50178 (97.10.0 |    |
|                  |                                                   |                   |    |

#### **Features**

- Closed loop (compensated) current transducer using the Hall effect
- Insulated case.

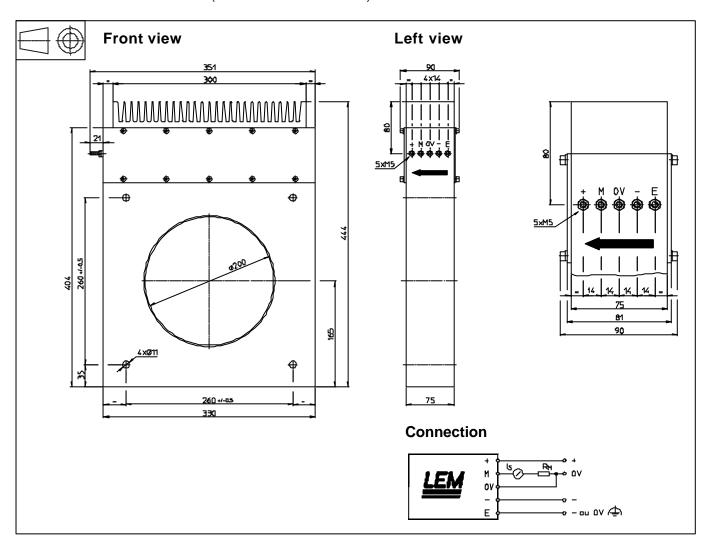
### **Advantages**

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

### **Applications**

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Notes: 1) Between primary and secondary + shield


2) Between secondary and shield

3) With a di/dt of 100 A/µs.

031003/8



# **Dimensions LT 10000-S** (in mm. 1 mm = 0.0394 inch)



# **Mechanical characteristics**

- General tolerance
- Transducer fastening

Recommended fastening torque

- Primary through-hole
- Connection of secondary Recommended fastening torque
- ± 1 mm
- 4 holes Ø 11 mm
- 4 x M10 steel screws
- 11.4 Nm or 8.48 Lb Ft

Ø 200 mm

M5 threaded studs

2.2 Nm or 1.62 Lb - Ft

#### Remarks

- $I_s$  is positive when  $I_p$  flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a primary bar in the center of the through-hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.