

<u>Grundlagen der Auslegung des Längsprofils</u> <u>einer Skisprungschanze</u>

von

Hans-H. Gasser

Mitglied des Subkomitees Sprungschanzen FIS

(Juni 2008)

FÉDÉRATION INTERNATIONALE DE SKI INTERNATIONAL SKI FEDERATION INTERNATIONALER SKI VERBAND

Inhaltsverzeichnis

1. Vorbemerkungen	Seite 3
2. Der Anlauf	3
2.1 Die Geometrie der Übergangskurve	4
2.2 Berechnung der Anlauflängen e und es	7
2.3 Festlegung der Anlaufskrümmung $1/r_1$ im Punkt E_2	10
3. Der Flug	13
4. Das Aufsprungprofil	15
5. Die Landung	18
6. Die Übergangskurve im Auslauf	19
7. Der Auslauf	21

Anhang

Der Einsatz von Flugbahnaufnahmen für die Optimierung von Sprungschanzenprofilen

1.	Vorl	bemerkungen	23				
2.	Wahl geegneter Beiwerte der Luftkräfte						
3.	Einf	luss des Windes auf die Flugbahn	24				
4.	Einschränkung der Gültigkeit der Ergebnisse						
5.	Bedi Gena	ngungen für die Gewährleistung einer gewünschten auigkeit der gewonnenen Luftkraftbeiwerte	25				
	5.1	Die gewünschte Genauigkeit der Luftkraftbeiwerte	25				
	5.2	Die näherungsweise Differentiation der Flugbahn mit der Kreisbogenmethode	25				
	5.3	Veranschaulichung an einem Beispiel	30				

1. Vorbemerkungen

Eine Arbeitsgruppe des Subkomitees Sprungschanzen der FIS erarbeitete die Grundzüge des Aufbaues eines Längsprofils einer Sprungschanze. Sie nützte dabei die jahrzehntelange Erfahrung und verfolgte die Entwicklung des Sprunglaufes durch Beobachtungen und über Gespräche mit Trainern und Aktiven. In einem Turnus von ca. zehn Jahren wurden seit 1976 und zuletzt 2006 Flugbahnaufnahmen bei Weltcupspringen durchgeführt, die die Luftwiderstands und –auftriebswerte des Skispringers im Flug bestimmen lassen. Mittels Computersimulationen von Sprüngen lassen sich die Aufsprungprofile optimieren. Mathematische Begründung der angewandten Methode siehe ANHANG.

Seit 1976 hat der Unterzeichnete, Mitglied des Subkomitees, die Messungen und deren Umsetzung in mathematische Formeln übernommen. In der vorliegenden Arbeit sind die Zusammenhänge, die sicherheitstechnischen Überlegungen und die Grundlagen der Formeln und Diagramme, wie sie in den vom Unterausschuss herausgegebenen ,Skisprungschanzen Bau-Normen 2008', ergänzt mit dem Computerprogramm ,Jump2' publiziert sind, nachvollziehbar zusammengestellt.

Für die Darstellung der mathematischen Ausdrücke wird die normal gebräuchliche algebraische Syntax mit den üblichen Prioritätsregeln verwendet. In allen Gleichungen sind Längen in Meter, Geschwindigkeiten in Meter pro Sekunde und Winkel in alten Grad (360°) einzusetzen. Koeffizienten in den Formeln sind in der Regel mit Dimensionen behaftet (Zeit, Beschleunigung, etc.), ohne dass darauf hingewiesen wird.

2. Der Anlauf

Beim Anlauf ist die gerade Beschleunigungsstrecke mit der Neigung γ bis heute in der Regel ohne Übergangskurve an einen Kreisbogen tangential angeschlossen worden. Nach dem Tangentenpunkt E wirkt eine Zentrifugalkraft auf den Springer, die den Druck auf die Skis bei grossen Schanzen plötzlich veranderthalbfacht, wie in Kapitel 2.3 gezeigt wird. Als weitere Folge davon wird auch schlagartig die Reibung zwischen Schnee und Ski erhöht, die auf den Springer eine nach vorne wirkende Trägheitskraft erzeugt.

Es soll künftig ein Übergangsbogen eingebaut werden, der die Zentrifugalkraft vom Punkt E_1 von Null allmählich auf den Maximalwert im Anschlusspunkt E_2 an die gerade Tischebene ansteigen lässt. Als Übergangsbogen steht die im Strassenbau bekannte Klothoide zur Diskussion. Bei ihr nimmt die Krümmung bis zum Erreichen der vorgegebenen Krümmung am Tischanfang von Null proportional zur zurückgelegten Strecke zu.

Die Form der Übergangskurve hängt allein von der Neigungsänderung $\gamma - \alpha$ ab. Die Bogenlänge ist proportional zum Endradius der Krümmung. Die Auswirkung des Ersatzes des Kreisbogens durch eine Übergangskurve soll an einem Extrembeispiel überprüft werden. Die grösste Neigungsänderung $\gamma - \alpha$ ergibt sich aus der grössten zulässigen Neigung $\gamma = 37^{\circ}$ und der kleinsten zulässigen Tischneigung $\alpha = 8^{\circ}$ und beträgt somit 29°.

Aus den Tabellenwerken für Klothoiden erhält man für $\gamma - \alpha = 29^{\circ}$ eine Exzentrizität von 0.0423, die gleich ist der Parallelverschiebung der Anlaufgeraden von 37° Neigung gegenüber der bisherigen Geraden mit kreisförmigem Übergangsbogen. Bei einem Radius r₁ von 100 m ist diese Verschiebung somit 4.23 m. Bei einem künstlichen Anlauf ist dies ohne Belang. Bei einem Naturanlauf bedeutet dies aber unter Umständen ein Eingraben der Spur auf eine Tiefe von 4 Meter, was sich verteuernd auswirkt. Es soll daher versucht werden, diesen Nachteil zu reduzieren.

Es zeigt sich, dass dieses Ziel am besten und einfachsten erreicht wird, wenn man sich bei der Reihenentwicklung der Klothoide auf deren erstes Glied beschränkt. Man erhält eine **kubische Parabel** und damit jene Kurve, die auch beim Eisenbahnbau als Übergangskurve verwendet wird.

2.1 Die Geometrie der Übergangskurve

Verwenden wir für das um den Anlaufneigungswinkel γ gedrehte Koordinatensystem die Buchstaben ξ und η , so lautet die Funktion

Abb. 1 Kubische Parabel als Übergangskurve im Anlauf

Gegeben sind die geometrischen Daten des Tisches t und α , der Krümmungsradius r₁ im Tangentenpunkt E₂ und die Neigung γ der Beschleunigungsstrecke. Daraus erhält man der Reihe nach

$$d = 2*r_1*\sin(\gamma-\alpha)*\cos^2(\gamma-\alpha)]$$
$$C = tg(\gamma-\alpha)/3/d^2$$
$$f = tg(\gamma-\alpha)*d/3$$
$$l = \int_0^d [1+9*C^{2*}\xi^4]^{0.5*}d\xi$$

Für das Integral kann mit ausreichender Genauigkeit die Näherung

$$l = d*[1+0, 1* tg^{2}(\gamma-\alpha)]$$

verwendet werden.

Anfangs- und Endpunkt der Übergangskurve E_1 und E_2 sind:

$$\begin{split} E_1 &= \left[-\left(t^* \cos\alpha + f^* \sin\gamma + d^* \cos\gamma \right); \left(t^* \sin\alpha - f^* \cos\gamma + d^* \sin\gamma \right) \right] \\ \stackrel{\rightarrow}{\to} \\ E_2 &= \left[-t^* \cos\alpha ; t^* \sin\alpha \right]. \end{split}$$

Das Längsprofil im Übergangsbogen kann mit einfachen Rechenhilfen im gedrehten Koordinatensystem ξ , η mit der Funktion $\eta = C^*\xi^3$ berechnet werden. Mit einem programmierbaren Taschenrechner lässt sich die Übergangskurve auch im x-z-Koordinatensystem einfach berechnen. Die einer gegebenen Abszisse x zugehörende Abszisse ξ muss als Erstes aus einer Gleichung dritten Grades berechnet werden. Dazu dienen die Hilfsgrössen

$$P = ctg\gamma/3/C;$$
$$Q = (x + t^*\cos\alpha + f^*\sin\gamma + d^*\cos\gamma)/2/C/\sin\gamma.$$

Damit erhält man $\xi = [(Q^2 + P^3)^{\frac{1}{2}} + Q]^{\frac{1}{3}} - [(Q^2 + P^3)^{\frac{1}{2}} - Q]^{\frac{1}{3}}$

und schliesslich $z = t^* \sin \alpha - f^* \cos \gamma + d^* \sin \gamma - \xi^* \sin \gamma + C^* \xi^{3*} \cos \gamma$.

Mit Einsetzen der Werte $\gamma - \alpha = 29^{\circ}$ und $r_1 = 100$ m erhält man eine Parallelverschiebung der Beschleunigungsgeraden, die nur noch 1.17 m beträgt und damit 3.06 m geringer ist als bei der Verwendung einer Klothoide.

In Tabelle 1 sind die geometrischen Eckwerte der drei Kurvenformen mit den Vorgaben: $\gamma = 37^{\circ}$, $\alpha = 8^{\circ}$ und $r_1 = 100$ m zusammen gestellt. Es fällt auf, dass die Werte für die kubische Parabel annähernd die Mittelwerte von Kreis und Klothoide annehmen, was aber rein zufällig ist. Die Eckwerte der kubischen Parabel nähern sich mit abnehmender Neigungsänderung ($\gamma - \alpha$) jenen der Klothoide.

Form	Kurvenlänge	Horizontaldistanz E_1 bis E_2	Höhendifferenz E_1 bis E_2	
Kreis	50.61 m	46.26 m	19.16 m	
Klothoide	101.23 m	88.87 m	45.98 m	
Kub.Parab.	76.36 m	67.48 m	33.69 m	
Tab. 1. Exclusion für $n = 100$ m and $\alpha = 200$ (arright the set Want)				

Tab. 1 Eckdaten für $r_1 = 100$ m und $\gamma - \alpha = 29^{\circ}$ (grösstmöglicher Wert)

Abb. 2 Krümmungsverlauf bei den drei Kurvenarten von E_1 bis E_2 für verschiedene Richtungsänderungen γ - α .

Bei $\gamma - \alpha = 29^{\circ}$ (Abb. 2) wird die maximale Krümmung bei der kubischen Parabel bereits bei 66.62 m erreich. Sie ist 2% höher, als die für das Kurvenende vorgegeben Krümmung, was ohne Belang ist. Die ganze Übergangskurve ist mit 76.36 m rund 25 m kürzer als bei Verwendung einer Klothoide, worin der Hauptvorteil der kubischen Parabel gegenüber der Klothoide liegt. Wenn $\gamma - \alpha = \operatorname{arctg}(1/\sqrt{5}) = 24.095^{\circ}$ die Richtungsänderung ist, wird die geforderte Krümmung genau in Punkt E₂ erreicht. In diesem Bereich liegt das Gros der Schanzen. Mit kleiner werdender Differenz γ - α nähert sich die kubische Parabel der Klothoide an.

2.2 Berechnung der Anlauflängen e und es

Die Auswertung der Filmaufnahmen vom Dezember 2006 in Engelberg CH hat ergeben, dass der **Luftwiderstandskoeffizient** des Springers in der Kauerstellung $\mathbf{k} = \mathbf{0.0011} \text{ m}^{-1}$ mit einer Standardabweichung von 0.0001 m⁻¹ beträgt (siehe Bericht der ETHZ vom 29. März 2008, Seite 31). Für die Berechnung des Diagrammes Abbildung 2 in den "Grundlagen für die Projektierung einer Skisprungschanze" 1996 haben wir k = 0.0014 angenommen. Damit kann eine Verringerung des Reibungsverlustes von rund 20 % festgestellt werden. Für den Gleitreibungskoeffizient wurde ein Reibungswinkel $\rho = 1.7^{\circ}$ mit einer Streuung von 0.6° ermittelt.

Für die Bestimmung der obersten Einstiegluke ist von einem v_0 auszugehen, das ein Mittelklassespringer braucht, um bei $\rho = 3^{\circ}$ bei Windstille K zu erreichen.

Für die Ermittlung des Ortes der untersten Einstiegluke ist davon auszugehen, dass ein Spitzenspringer bei besten Spurverhältnissen von dieser Luke startend den Konstruktionspunkt K nicht überspringen soll. Bei Aufwind ist ein noch etwas tieferer Startplatz erforderlich. Für die Berechnung kann, auf die sichere Seite gehend, $\rho = 0^{\circ}$ gesetzt werden.

Die Anlauflängen erhält man aus der Bewegungsdifferentialgleichung. Sie ist vom Typus einer linearen, inhomogenen Differentialgleichung erster Ordnung und damit geschlossen lösbar, wenn man v^2 als Funktion definiert, für s als unabhängige Variable den zurückgelegten Bahnabschnitt einsetzt, und wenn das Längsprofil z(s) mit einer mathematischen Funktion beschrieben wird. Natürlich kann eine Lösung mit den Methoden der angewandten Mathematik und mit den heute gebräuchlichen Hilfsmitteln (z.B. Excel-Programm) einfach und schnell gefunden werden. Trotzdem soll hier die klassische, geschlossene Lösung dargestellt werden.

Die Differentialgleichung lautet

 $d(v^2)/ds = 2g \sin(\varphi - \rho) - 2(k + \rho/r)v^2$.

Dabei ist φ die Bahnneigung und r der Bahnkrümmungsradius als Funktionen von s. ρ ist der Reibungswinkel Ski auf Anlaufspur und k der Luftwiderstandsbeiwert. ρ und k können als konstant angenommen werden.

Für eine **gerade Fahrspur** mit der Neigung γ ist die Lösung der Differentialgleichung

$$v^{2}(s) = v_{A}^{2*} EXP(-2ks) + g/k*sin(\gamma-\rho)*[1 - EXP(-2ks)],$$

wobei v_A die Geschwindigkeit am Anfang, also bei s = 0 ist. Wenn es sich um den Startpunkt des Anlaufes handelt, ist $v_A = 0$ und bei E_1 ist

 $v_1^2 = g/k*sin(\gamma-\rho)*[1 - EXP(-2kl_g)],$

wenn l_g die Länge vom Startpunkt bis E_1 ist.

Die Lösung für die kubische Parabel als Übergangskurve ist

$$v^{2} = [v_{1}^{2} + 2g \int_{0}^{s} (\sin(\gamma - \varphi - \rho) * EXP(2 \int (k + \rho/r) ds) ds] * EXP(-2 \int (k + \rho/r) ds)).$$

 v_1 ist die Geschwindigkeit bei E_1 am Anfang der Übergangskurve, ϕ die Neigung und r der Krümmungsradius der Kurve als Funktion der durchfahrenen Strecke s. Es empfiehlt sich für die Integration, letztere in Potenzreihen von s umzuwandeln. Die Reihen erreichen mit drei Gliedern die wünschbare Genauigkeit und sind

$$\varphi = 180/\pi * (3C*s^2 - 14.4C^3*s^6 + 71.28C^5*s^{10})$$

$$1/r = 6Cs^*(1 - 14.4C^2*s^4 + 216,0C^4*s^8).$$

Das Integral in der Exponentialfunktion der Lösung kann mit den Reihen einfach bestimmt werden. Die Lösung ist

$$v^{2}(s) = [v_{1}^{2} + 19.62*](sin(\gamma - \rho - 180/\pi*(3C*s^{2} - 14.4C^{3}*s^{6} + 71.28C^{5}*s^{10}))* \\ EXP(2ks + 2\rho*\pi/180*6C*(0.5s^{2} - 2.4C^{2}*s^{6} + 21.6C^{4}*s^{10}))ds]* \\ EXP(-2ks - 2\rho*\pi/180*6C*(0.5s^{2} - 2.4C^{2}*s^{6} + 21.6C^{4}*s^{10})).$$

Das Integral ist in den Grenzen 0 bis s zu berechnen.

Für s = l erhält man v₂² in E₂ am Anfang des Schanzentisches.

Der Vollständigkeit halber sei auch noch die Lösung für die **kreisförmige Über**gangskurve mit Radius r_1 angegeben:

$$v^{2} = [v_{1}^{2} - 2*g*r_{1}*\cos\lambda*\cos(\gamma - \rho - \lambda)]*EXP(-2(k + \rho* \pi/180/r_{1})*s) + 2*g*r_{1}*\cos\lambda*\cos(\gamma - \rho - \lambda - 180/\pi*s/r_{1})$$

wobei $\lambda = \operatorname{arctg}(2(k*r_1 + \pi/180*\rho))$ ist.

Für s = $(\gamma - \alpha)^* \pi / 180^* r_1$ erhält man v_2^2 in E₂ am Anfang des Schanzentisches

$$\begin{split} v_2{}^2 &= \; [v_1{}^2 - 2^*g^*r_1*\cos\lambda*\cos(\gamma-\rho-\lambda)]*EXP(-2(k+\rho^*\,\pi/180/r_1)*(\gamma-\alpha)*\pi\,/180*r_1) \\ &+ 2^*g^*r_1*\cos\lambda*\cos(\alpha-\rho-\lambda). \end{split}$$

Die Beschleunigung auf dem Schanzentisch

 v_0 ist die Komponente parallel zur Tischneigung der Startgeschwindigkeit des Fluges und damit die erreichte Endgeschwindigkeit auf der Schanzentischkante. Aus der Gleichung für die gerade Anlaufbahn folgt

$$v_0^2 = v_2^{2*} EXP(-2k*0.25*v_2) + g/k*sin(\alpha-\rho)*(1 - EXP(-2k*0.25*v_2))$$

wenn für s die Tischlänge t = $0.25*v_0 \approx 0.25*v_2$ gesetzt wird, (0.25 hat die Dimension Sekunde). k nimmt von 0.0011 bei E₂ bis zur Tischkante auf 0.0017 zu (Bericht ETHZ Seite 31). Man kann den Mittelwert **k** = **0.0014** als Konstante in die Rechnung einführen. Die Abweichung des Ergebnisses liegt weit unter einem Promille. Die Reihenentwicklung der Exponentialfunktion liefert als erste Näherung

$$v_0^2 = v_2^{2*} (1 - 0.5*k*v_2) + 0.5*g*\sin(\alpha - \rho)*v_2$$

Für die **Berechnung der Anlauflänge e** ist von der Tischkante aufwärts zu rechnen. Die Geschwindigkeitsquadrate sind dann, wenn wiederum in dieser Näherung $v_2 \approx v_0$ gesetzt wird

Tisch:
$$v_2^2 = v_0^2 * (1 + 0.5 * k * v_0) - 0.5 * g * sin(\alpha - \rho) * v_0$$

Kubische Parabel:

$$v_1^2 = v_2^2 * EXP(2kl + 2\rho*\pi/180*6C*(0.5l^2 - 2.4C^2*l^6 + 21.6C^4*l^10))$$

 $- 19.62* \int_{0}^{l} (\sin(\gamma-\rho-180/\pi*(3C*s^2 - 14.4C^3*s^6 + 71.28C^5*s^10))*$
 $EXP(2ks + 2\rho*\pi/180*6C*(0.5s^2 - 2.4C^2*s^6 + 21.6C^4*s^10))ds$

Kreis:

 $v_1^2 = [v_2^2 - 2^*g^*r_1^*\cos\lambda^*\cos(\alpha - \rho - \lambda)]^*EXP(2(k + \rho^* \pi/180/r_1)^*(\gamma - \alpha)^*\pi/180^*r_1 + 2^*g^*r_1^*\cos\lambda^*\cos(\gamma - \rho - \lambda), \text{ wobei}$ $\lambda = \operatorname{arctg}(2(k^*r_1 + \pi/180^*\rho)) \text{ ist.}$

Es kommt vor, dass v_1^2 negativ ausfällt, was bedeutet, dass $v_1 = 0$ auf der Übergangskurve erreicht wird. Damit liegt der Startpunkt B unter E₁.

Gerade Anlaufspur:

Die Länge zwischen Startpunkt und E₁ ist

$$l_{g} = -1/(2k)*\ln(1-v_{1}^{2}*k/g/\sin(\gamma-\rho)).$$

Wenn v_1^2 negativ ist, wird auch l_g negativ. Die Formel für l_g berechnet die Länge zwischen Startpunkt und E₁ auch in diesem Fall richtig und vorzeichengerecht.

In den "Sprungschanzen Bau-Normen 2008" sind die Anlauflängen e in Funktion von γ und v_0 für $\alpha = 10^\circ$, Reibungswinkel $\rho = 3^\circ$ und $r_1 = 0.14*v_0^2$ graphisch dargestellt. Die Verkürzung e_s des Anlaufs, wenn $\rho = 0^\circ$ ist, kann mit der Näherung

$$e_{\rm s} = e_{\rm vo} / (2.3 + \gamma/6)$$

berechnet werden. Für ein kleineres v_0 auf unverändertem Anlauf fällt e etwas zu kurz aus, weil ein verkleinerter Radius r_1 einer bestimmten Anlauflänge e eine grössere Höhendifferenz zuordnet. Diesen Fehler macht man, wenn auf einem Anlauf, dimensioniert für den Mittelklassespringer der Anlauf für den Spitzenklassespringer mit der geringeren Absprunggeschwindigkeit bestimmen wird. Die Durchrechnung ergibt, dass bei einer 20 m Schanze B um 1.40 m und bei einer 130 m Schanze B um 0.60 m zu tief ausfällt. Der Fehler liegt auf der sicheren Seite.

2.3 Festlegung der Anlaufspurkrümmung 1/r₁ im Punkt E₂

Beim bisherigen Kreisbogen war der Radius r_1 zwischen $0.14*v_0^2$ und $0.16*v_0^2$ zu wählen, wobei in letzter Zeit vermehrt der obere Grenzwert gewählt wurde, weil die Springer gegenüber früher mit verstärkter Vorlage den Anlauf befahren.

In Abbildung 3 ist die Druckentwicklung im Anlauf, die ein Springer erfährt, aufgezeigt und zwar für Kreis und kubische Parabel als Übergangskurve. Die Eingangsdaten für die Berechnung sind für beide Übergangskurven: $\alpha = 8^\circ$; $\gamma = 37^\circ$; $\rho = 3^\circ$; k = 0.0011; t = 6.5 m; $v_0 = 26$ m/s.

Für die **Kreisform** wird der heute übliche Wert $r_1 = 0.16*v_0^2 = 108.16$ m gewählt. Auf dem geraden Teil von 40.60 m Länge wirkt allein die Komponente des Gewichtes des Springers senkrecht zur Bahnneigung, also $\cos\gamma^*g = 0.80^*g$. Beim Übergang in das Kreisprofil hat der Springer die Geschwindigkeit 20.64 m/s erreicht. Sie erzeugt zusätzlich zum Gewicht eine Zentrifugalkraft von 0.40*g. Der Druck nimmt also plötzlich vom 0.8-fachen Druck um 50 % auf den 1.20-fachen Wert zu. Auf der Kreisbahn erfolgt eine weitere Zunahme auf 1.63*g. Beim Übergang auf den Schanzentisch sinkt der Druck plötzlich ab auf $\cos\alpha^*g = 0.99^*g$, was hier aber erwünscht ist. Auf der Tischkante wird $v_0 = 26.00$ m/s erreicht.

Bei der **kubischen Parabel** wird für den Endradius vor dem Schanzentisch $0.14*v_0^2 = 94.64$ m eingesetzt. Der gerade Teil ist noch 21.69 m lang und die Geschwindigkeit an deren Ende beträgt 15.24 m/s. Auf dem 72.27 m langen Teil der Übergangskurve nimmt die Geschwindigkeit auf den vorgegebene Wert von 26 m/s zu und der Druck steigt allmählich auf 1.72*g. Dieser Druck ist um 5 % höher als beim Kreisprofil, was am Ende der Übergangskurve aber ohne Belang ist.

Abb. 3 Normalbeschleunigung auf die Spur. Vergleich Kreis/kubische Parabel

Aus dieser Betrachtung folgt, dass bei einer Reduktion des Endradiuskoeffizienten r_1 von 0.16 auf 0.14 der Druck nur um 5 % höher ausfällt, was nicht relevant ist. Demgegenüber ist der Umstand, dass beim Einbau einer kubischen Parabel am Anfang der Übergangskurve der schlagartige Anstieg des Druckes entfällt und der Enddruck erst allmählich erreicht wird, eine grosse Komfortverbesserung..

Abschliessend soll die Auswirkung der Wahl der kubischen Parabel gegenüber der bisherigen Wahl eines Kreises auf die Geometrie des Anlaufes, insbesondere auf die Anlauflänge, dargestellt werden (Abbildung 4). Dazu sollen Ausgangswerte angenommen werden, wie sie bei Grossschanzen häufig sind:

 $\alpha = 11^{\circ}$: $\gamma = 35^{\circ}$; t = 6.5 m; v₀ = 26 m/s; $\rho = 3^{\circ}$; k_w = 0.0011

Fall 1	$r_1 = 0.14 * v_0^2 = 94.64 m;$	
Kreis:	Anlauflänge 88.95 m.	Startpunkt [-83.00 44.90]
Kub. Parabel	Anlauflänge 91.34 m.	Startpunkt [-85.65 45.10]
Fall 2	$r_1 = 0.16 * v_0^2 = 108.16$	
Kreis:	Anlauflänge 91.21 m.	Startpunkt [-85.39 45.15]
Kub. Parabel	Anlauflänge 93.91 m.	Startpunkt [-88.40 45.37]

In Abbildung 4 sind die obigen Ergebnisse dargestellt. Sie zeigt die Unterschiede zwischen Kreis und kubischer Parabel. Die Anlauflänge ist bei ein und demselben gewählten Radius bei der kubischen Parabel ca. 2.50 m länger als beim Kreis. Interessant ist die Feststellung, dass der Startpunkt beim Kreis mit dem jetzt gebräuchlichen Koeffizienten 0.16 für r_1 und jener bei der kubischen Parabel auf wenig Zentimeter gleich ist, wenn bei letzterer der Koeffizient 0.14 verwendet wird. Damit ist aufgezeigt, dass die oben begründete Möglichkeit der Radiusverkleinerung zu gleich langen Anläufen und gleicher Lage führt, wie bisher bei der Verwendung eines Kreisbogens.

Es wird daher bei Verwendung einer kubischen Parabel als Übergangskurve festgelegt, dass der Radius bei Erreichen des Schanzentisches mindestens

$$r_1 = 0.14 * {v_0}^2$$

erreichen muss, höchstens aber

$$r_1 = 0.16 * v_0^2$$

erreichen darf. Dies deshalb, damit ein ausreichender Entlastungseffekt durch den plötzlichen Wegfall der Zentrifugalkraft auf dem Schanzentisch erhalten bleibt.

Eine weitere wichtige Feststellung: Wenn bei einem bestehenden Anlauf mit Kreisbogen sein Radius $r_1 = 0.16*v_0^2$ beträgt, kann ohne Veränderung des geraden Anlaufteils mit kleinem Aufwand nachträglich die Kreisform in eine kubisch Parabel umgebaut werden.

Abb. 4 Vergleich Kreis/kubische Parabel. Einfluss des Krümmungsradius r₁

3. Der Flug

Die Koordinaten eines Punktes der Flugbahn sowie deren Neigung an dieser Stelle erhält man aus der Integration des Differentialgleichungssystems, das den Flug beschreibt.

Es sind dies die vier nichtlinearen Differentialgleichungen erster Ordnung

$$\begin{aligned} \dot{x} &= v^* \cos \varphi & (\phi \text{ in alter Teilung 360}^\circ) & (1) \\ \dot{z} &= -v^* \sin \phi & (2) \\ \dot{v} &= g^* \sin \phi - k_W^* v^2 & (3) \\ \phi &= (g^* \cos \phi - k_A^* v^2)^* 180 / \pi / v & (4) \end{aligned}$$

mit den Anfangsbedingungen:

$$\begin{aligned} x(o) &= 0 \\ z(0) &= 0 \\ v(0) &= (v_0^2 + v_{\perp}^2)^{\wedge} 0.5 \\ \phi(0) &= \alpha - \delta \end{aligned}$$

Dabei ist v die aktuelle Fluggeschwindigkeit, φ der Neigungswinkel der Flugbahn im Uhrzeigersinn gemessen und δ der Winkel, um den der Absprungwinkel (Neigung der Flugbahn bei x = 0) durch den Absprungeffekt gegenüber der Tischneigung angehoben wird.

 $\delta = arctg(v_{\perp}/v_0)$

 v_{\perp} ist die Geschwindigkeit senkrecht zur Tischebene, die der Schwerpunkt des Körper-Ski-Systems im Augenblick des Abhebens erreicht. Auswertungen von weitesten Sprüngen haben für $v_{\perp}~2.2$ m/s ergeben. Dieser Wert ist bei der Berechnung der Diagramme Abbildung 4 bis 11 in den "Skisprungschanzen Bau-Normen 2008" für alle Tischneigungen eingesetzt worden.

An dieser Stelle ist noch auf eine immer wieder hartnäckig vertretene Meinung hinzuweisen, die dahin geht, dass der Springer bei geeigneter Absprungtechnik die Absprunggeschwindigkeitskomponente parallel zur Tischebene vergrössern könne. Das ist natürlich Unsinn und gehört in die gleiche Kategorie wie das noch "zu erfindende Perpetuum Mobile".

Die Luftwiderstands- und Auftriebskoeffizienten k_w bzw. k_a sind abhängig vom Anströmwinkel der Luft und von der Haltung des Springers. Sie sind somit zeitlich veränderlich. Aus der Vermessung der Flugbahnen 2006 in Engelberg hat das Biomechanische Institut der ETHZ für die weltbesten Springer folgende Werte in Funktion der Bahnneigung ϕ ermittelt

Luftkraftbeiwerte Engelberg 2006						
	Rang 1 - 5 Rang 6 - 15			Rang 16 - 25		
φ°	k _w	k _A	k _w	k _A	k _w	k A
0	0.00185	0.00093	0.00232	0.00116	0.00261	0.00130
2	0.00204	0.00139	0.00245	0.00180	0.00271	0.00177
4	0.00223	0.00185	0.00258	0.00244	0.00282	0.00224
6	0.00243	0.00231	0.00272	0.00308	0.00293	0.00270
8	0.00261	0.00275	0.00285	0.00365	0.00304	0.00316
10	0.00281	0.00316	0.00298	0.00396	0.00315	0.00350
12	0.00301	0.00354	0.00311	0.00424	0.00326	0.00382
14	0.00319	0.00390	0.00325	0.00450	0.00337	0.00411
16	0.00338	0.00424	0.00337	0.00472	0.00347	0.00436
18	0.00355	0.00455	0.00350	0.00492	0.00357	0.00459
20	0.00372	0.00484	0.00362	0.00508	0.00367	0.00479
22	0.00388	0.00511	0.00374	0.00522	0.00376	0.00496
24	0.00403	0.00534	0.00386	0.00534	0.00386	0.00510
26	0.00418	0.00555	0.00398	0.00543	0.00396	0.00521
28	0.00432	0.00574	0.00410	0.00550	0.00407	0.00531
30	0.00447	0.00591	0.00422	0.00555	0.00419	0.00538
32	0.00462	0.00605	0.00436	0.00560	0.00432	0.00545
34	0.00479	0.00617	0.00453	0.00565	0.00449	0.00551
36	0.00502	0.00628	0.00474	0.00571	0.00471	0.00558
38	0.00537	0.00638	0.00504	0.00582	0.00503	0.00569
40	0.00614	0.00655	0.00553	0.00606	0.00555	0.00590
42	0.00691	0.00672	0.00602	0.00629	0.00606	0.00611
44	0.00767	0.00689	0.00651	0.00652	0.00658	0.00632

Tab. 2 Luftkraftbeiwerte mit der Dimension m⁻¹

Damit kann durch Integration der Differentialgleichungen die einer bestimmten Tischneigung α und einer bestimmten Absprunggeschwindigkeit v₀ zugehörige Flugbahn berechnet werden. Als Landepunkt K wird vereinfachend der Schnittpunkt der Flugbahn mit dem Terrainprofil definiert, so wie auch der Anfang der Flugbahn auf den Ursprung [0;0] gelegt wird.

Der Winkel, mit dem sich die Flugbahn mit der Landepiste schneidet, ist massgebend für den Landestoss, den der Springer erfährt. Mit dem Begriff der äquivalenten Landehöhe kann dieser Vorgang anschaulich beschrieben werden. Welche Höhe soll dem Springer zugemutet werden, aus der er vergleichsweise auf eine Horizontalebenen fallen und dabei den Stoss sicher auffangen soll? Aus langjähriger Erfahrung weiss man, dass 0.90 m für gute Springer ein gutes Mass ist. Für schwächere Springer soll auf 0.70 m reduziert werden.

Der erste Wert wird für Normal- und Grossschanzen (Tischneigungen von 10° bis 11.5°), der zweite für kleine und mittlere Schanzen (Tischneigungen von 8° bis 9.5°) eingesetzt. Sie ergeben Geschwindigkeiten von 4.2 m/s bzw. 3.7 m/s und sind gleich-

zusetzen mit der Landegeschwindigkeitskomponente senkrecht zum Aufsprungprofil in K. Wenn die Flugbahn im Landepunkt die Neigung ϕ_K hat, muss das Aufsprungprofil die Neigung

für α von 10° bis 11.5°	$\beta = \varphi_{\rm K} - \arcsin(4.2/ v_{\rm K})$	(1 (1	5)
und für a von 8° bis 9.5°	$\beta = \varphi_{\rm K} - \arcsin(3.7/ v_{\rm K})$	()	6)

haben, wobei 1v_KnaL red gartebtulosbA red 1degeschwindigkeit bedeutet.

Für Normal- und Grossschanzen (Tischneigungen von 10° bis 11.5°) sind die k-Werte der Spitzenspringer (Kolonne 1 und 2 Tab. 2), und für kleine und mittlere Schanzen (Tischneigungen von 8° bis 9.5°) sind die k-Werte für schwächere Springer (Kolonne 5 und 6 Tab. 2) eingesetzt worden.

Auf diesen Grundlagen sind die Diagramme für die Tischneigungen 8° bis 11.5° der Sprungschanzen-Baunormen 2008 berechnet worden. Die Eingrenzungen der zulässigen Bereich der Wertepaare w und h/n hat der Ausschuss des Subkomitees auf Grund von Erfahrungen festgelegt.

4. Das Aufsprungprofil

Das Aufsprungprofil vom Schanzentisch bis zum Punkt K soll für alle Sprungweiten gute Landebedingungen ermöglichen. Dazu soll es bei weiten Sprüngen die Höhe der Flugbahn über Terrain möglichst klein halten. Das 1992 eingeführte, und 1996 verfeinerte Aufsprungprofil in der Form einer kubischen Parabel hat sich bewährt. Für die Optimierung der freien Parameter β_0 und $\delta\beta$ ist die Kurvenschar aller in Engelberg vermessenen Flüge zu Rate gezogen worden. Die Herleitung der Formeln, die in den Bau-Normen das Aufsprungprofil beschreiben, ist reine analytische Geometrie und bedarf keiner weiter gehenden Erklärung.

Für die Berechnung des Endes L des Landebereiches wurden folgende Annahmen getroffen.

Bei Skisprungwettkämpfen wird der Punkt K bekanntlich von einzelnen wenigen Springern übersprungen. Aus einer grösseren Anzahl Resultatlisten wurden die Überweiten $\Delta w = w_{K'} - w_{K}$ bestimmt, wobei $w_{K'}$ die grösste erreichte Weite eines Wettkampfes ist.

15

Abb. 5 Grösste Weite bei K', die bei einem Wettkampf erreicht wurde

In Abbildung 5 ist die bei dieser Auswertung zu beachtende, damals geltende Geometrie mit dem Kreisbogen r₂ dargestellt. Aus Δw und dem zur betreffenden Schanze gehörenden r₂, β und der Flugbahnneigung ϕ_K bei der Landung ergibt sich für die Verschiebung der Flugbahn

$$D = r_2 * [\cos(\varphi_K - \beta) - \cos(\varphi_K - \beta_{K'})], \text{ wobei } \beta_{K'} = \beta - \Delta w / r_2 * 180/\pi \text{ ist.}$$

Es hat sich gezeigt, dass der Grenzwert für D etwa bei 0.018*w liegt. Für diese möglichen Grösstweiten bei L soll eine äquivalente Landehöhe von 1.60 m eingeplant werden. Messungen anlässlich der Skiflug-WM 1976 in Oberstdorf haben gezeigt, dass die damit verbundene Landegeschwindigkeitskomponente senkrecht zum Aufsprungprofil v \perp von 5.6 m/s noch gestanden werden kann. Bei L soll somit die Neigung der Landepiste

$$\beta_{\rm L} = \varphi_{\rm L} - \arcsin(5.6/|v_{\rm L}|) \tag{7}$$

betragen.

Der Landebereich von K bis L wird als Kreisabschnitt gestaltet. Der Radius des Bogens sei r_L . Für den Abstand l_2 von K und L ergibt sich

$$l_2 = (\beta - \beta_L) * r_L * \pi / 180 = [(\phi_K - \arcsin(4.2/|v_K)) + ((|-(\phi_L - \arcsin(5.6/|v_L r)) + ((|L * \pi / 180)) + (($$

für α von 10° bis 11.5°. Für die kleineren α -Werte müsste der zweite Term im Klammerausdruck konsequenterweise $\arcsin(3.7/|v_K|, \text{gnugelrebÜ})$ nehcielg red tiM .netual (1 mit der die Landekomponente v $_{\perp}$ bei K für schwächere Springer herabgesetzt wurde, soll dies auch bei L geschehen, so dass der angeschriebene Ausdruck für l_2 für alle α -Werte gelten kann.

Am Ende der Flugbahn, besonders bei den grossen Schanzen, ist man nicht mehr weit von der stationären Endgeschwindigkeit entfernt, so dass die Änderung von Betrag und Richtung der Fluggeschwindigkeit in diesem kurzen Abschnitt im Rahmen der hier gebotenen Genauigkeit vernachlässigbar wird. Im weiteren sind die Landewinkel so klein, dass ihr Sinus durch das Bogenmass ersetzt werden kann. Mit $|v_L v| \approx |_K dnu |\phi_L \approx \phi_K$ vereinfachen sich die Gleichungen auf

$$\beta_{\rm L} = \beta - 1.4 / v_{\rm K} * 180 / \pi \tag{8}$$

$$l_2 = 1.4 * r_{\rm L} / v_{\rm K} \tag{9}$$

Abb. 6 Landebereich K bis L

Aus Abbildung 6 erhält man schliesslich

$$d = 0.018*w = l_2*tg(\phi_K - \beta) + l_2^2/2/r_L = 1.4*4.2*r_L/v_K^2 + 1.4^{2*}r_L/v_K^2/2,$$

oder $r_L = v_K^{2*}w/380$ (10)

Die letzte Gleichung stellt die Verbindung zwischen dem bei grösseren Schanzen beobachteten durchschnittlichen Mass d und dem Unterschied des zugelassenen v $_{\perp}$ bei K und L her. r_L muss aber auch gewährleisten, dass beim Durchfahren der Landestrecke die Zentrifugalbeschleunigung in Grenzen bleibt. Sie soll 80 % von g nicht übersteigen. Es ist somit auch

$$r_{\rm L} \ge 0.125^* \, {\rm v_K}^2 \tag{10a}$$

einzuhalten. Diese Dimensionierung wird somit bei Schanzen mit $w \le 48 \text{ m}$ massgebend. r_L soll auf den nächsten Zehnerwert aufgerundet werden

Mit β_L und r_L sind die Koordinaten von L gegeben.

Die Landegeschwindigkeit v_K erhält man mit der Integration der Flugbahn. Da die zulässigen Felder für die Wertepaare [w ; h/n] für die verschiedenen Tischneigungen α einen relativ schmalen Streifen bilden, gilt mit ausreichender Genauigkeit die lineare Beziehung

$$\mathbf{v}_{\rm K} = 0.68^* \mathbf{v}_0 + 12.44. \tag{11}$$

Wenn immer hier von "ausreichender" Genauigkeit die Rede ist, heisst das, dass der eingeräumte Fehler im Bereich weniger Prozente liegt, in einem Toleranzbereich, der auch den biomechanischen Ausgangsgrössen, wie äquivalente Landehöhe, zugesprochen werden muss. Allerdings muss festgehalten werden, dass für die Anwendung solcher Vereinfachung vorausgesetzt werden muss, dass der Planer nicht von den Vorgaben abweicht.

Bei den ganz kleinen Schanzen wird v_K von der Näherungsformel gegenüber der Wirklichkeit etwas zu gross berechnet. Man liegt damit aber auf der sicheren Seite.

5. Die Landung

Wer in L landet, fährt mit der grösstmöglichen Geschwindigkeit in den anschliessenden Übergangsbogen. Der Springer muss durch seine Muskelkraft die Normalkomponente seiner Geschwindigkeit $v_{\perp L}$ = 5.6 m/s auf Null abbremsen. Die kinetische Energie ist

 $m*5.6^2/2 = 15.68*m$, m = Masse Springer und Ski.

Wenn er konstant die Kraft, die seinem Gewicht samt Ski entspricht, bei der Landung einsetzten würde, hätte er die äquivalente Fallhöhe von 1.60 m zurückzulegen. Die Zeit, die er dazu benötigt, ist t = 5.6/9.81 = 0.571 s. Während dieser Zeit ist der Druck auf die Spur um sein Gewicht grösser, so dass er eine um tgp*m*g erhöhte Reibungskraft erfährt und dies über eine Strecke von v_L *cos($\phi_K - \beta_L$)*0.571. Diese Reibungsenergie geht auf Kosten der kinetischen Energie, die in der Geschwindigkeitskomponente v_{II} parallel zum Hang liegt. Die verbleibende Energie ist

$$\frac{1}{2}m^{*}v_{II}^{2} = \frac{1}{2}m^{*}v_{L}^{2*}\cos^{2}(\phi_{K} - \beta_{L}) - tg\rho^{*}m^{*}g^{*}v_{L}^{*}\cos(\phi_{K} - \beta_{L})^{*}0.571 = \frac{1}{2}m^{*}v_{L}^{*}\cos(\phi_{K} - \beta_{L})^{*}[v_{L}^{*}\cos(\phi_{K} - \beta_{L}) - 2^{*}tg\rho^{*}9.81^{*}0.571].$$

Nach einiger Umformung erhält man für die verbleibende Gleitgeschwindigkeit bei einer Landung in L in erster Näherung

$$v_{II} = v_K - 16/v_K - 0.1*\rho$$
 (Reibungswinkel ρ in alt Grad.) (12)

Der Kraft-Zeit-Verlauf ist in Wirklichkeit weder genau m*g, noch ist er konstant. Wie man leicht zeigen kann, ist das Ergebnis aber nicht davon beeinflusst, ausser dass sich die Geschwindigkeit am Ende des Landungsprozesses früher oder später einstellt. Da die Geschwindigkeitsabminderung aber sehr klein ist, kann dieser Umstand vernachlässigt werden.

Der Normaldruck auf das Profil soll analog zur Übergangskurve im Anlauf auf 1.8*g beschränkt werden, d.h.

$$g^* \cos\beta_L + v_{||}^2 / r_{2L} \le 1.8^* g \approx 18$$
 (13)

Damit erhält man für r_{2L} die Eingrenzung

$$r_L \ge r_{2L} \ge v_{||}^2 / (18 - 10^* \cos\beta_L)$$
 (14)

Bei Grossschanzen ist der Spielraum für r_{2L} nach oben durch die Forderung

$$z_U \leq 88 \text{ m}.$$

eingeschränkt. Mehr dazu im nächsten Kapitel.

6. Die Übergangskurve im Auslauf

Der Übergangsbogen von Punkt L bis U (siehe Abbildung 7), bisher ein Kreisbogen mit Radius r_2 , soll durch eine (quadratische) Parabel ersetzt werden. Sie soll im Punkt L die Neigung β_L übernehmen und im Punkt U eine horizontale Tangente haben. Die Krümmungsradien r_{2L} und r_2 in den Punkten L bzw. U sind frei wählbar. Ideal ist die Wahl $r_{2L} = r_L$.

Um die vier Freiheitsgrade zu gewährleisten, muss die Parabel auch schief gedreht werden können. Der Drehwinkel sei τ und im Gegenuhrzeigersinn positiv.

Abb. 7 Übergangsbogen von Punkt L bis U

Die Gleichung der Parabel im gedrehten Koordinatensystem ist

$$\eta = C^* \xi^2$$

Aus der transzendenten Gleichung

$$\mathbf{r}_{2L}/\mathbf{r}_2 = \left[\cos\tau/\cos(\tau + \beta_L)\right]^3 \tag{15}$$

ist zunächst der Drehwinkel z zu berechnen. Dann ergeben sich der Reihe nach

$$C = 1/(2*r_2*(\cos\tau)^3)$$
(16)

$$a = -tg(\beta_L + \tau)/2/C \tag{17}$$

$$\mathbf{b} = -\mathrm{tg}(\tau)/2/\mathbf{C} \tag{18}$$

$$U = [x_L + C^* \sin\tau^* (a^2 - b^2) + \cos\tau^* (b - a); z_L - C^* \cos\tau^* (a^2 - b^2) + \sin\tau^* (b - a)]$$
(19)

Das gedrehte Koordinatensystem hat seinen Ursprung in S (Parabelscheitel)

$$\mathbf{S} = [\mathbf{x}_{L} + \mathbf{C}^* \mathbf{a}^2 * \sin \tau - \mathbf{a}^* \cos \tau ; \mathbf{z}_{L} - \mathbf{C}^* \mathbf{a}^2 * \cos \tau - \mathbf{a}^* \sin \tau]$$

Bei Grossschanzen ist sicher zu stellen, dass

$$z_{\rm U} = z_{\rm L} - C^* \cos \tau^* (a^2 - b^2) + \sin \tau^* (b - a) \ge -88 \ m \tag{20}$$

eingehalten wird (Art. 411.2 IWO)

Der Ersatz des Kreises durch die Übergangskurve beansprucht eine grössere Höhendifferenz. Bei Grossschanzen ist allenfalls durch Verkleinern von r_{2L} und/oder r_2 z_U so zu korrigieren, dass die Grenze -88 m eingehalten wird. Man kann - als Grenzfall auch den bisherigen Kreis annähern, indem man $r_{2L} = r_2$ setzt.

Die Funktion z(x) im Bereich L bis U ist

$$z(x) = z_{\rm L} - C^* \cos \tau (a^2 - \xi^2) - \sin \tau^* (a - \xi), \qquad (21)$$

wobei

$$\xi = (\cos\tau - [(\cos\tau)^2 - 4*C*(x - x_L - C*a^2*\sin\tau + a*\cos\tau)*\sin\tau]^{0.5})/2/C/\sin\tau$$
(22)

ist. Damit sind alle Elemente für die Konstruktion der Übergangskurve gegeben.

Bei der Wahl von r_{2L} und r_2 ist nebst Art. 411.2 IWO auch Gleichung (13) - für den Punkt L formuliert – über die ganze Übergangskurve zu beachten. In der Regel nimmt der Normaldruck am Anfang wegen der Zunahme von v _{II}noch zu. Da im Unterschied zur Anlaufspur eine Variable mehr gegeben ist, kann eine geschlossene Lösung nicht gegeben werden. Vielmehr ist hier die Differentialgleichung

$$d(v^{2})/ds = 2g \sin(\varphi - \rho) - 2(k + \rho/r)v^{2},$$
(23)

gleich lautend, wie für die Anlaufspur, zu integrieren.

Im Bericht der ETHZ werden als Ergebnis der Messungen in Engelberg die Werte k = 0.004 und ein Gleitreibungskoeffizient von 0.015, was einem Reibungswinkel $\rho \approx 1^{\circ}$ entspricht, gegeben.

Die gegenüber bisher neu vorgegebene, sorgfältige Austarierung der Übergangskurve zum Auslauf bringt einen erheblichen Gewinn an Fahrkomfort, der auch bei kleinen und mittleren Schanzen den Springern zugute kommt. Mit der Anwendung der Software wird der Berechnungsaufwand minimal. Für Vorstudien kann die bisherige Lösung mit Kreisbogen herangezogen werden. Der Radius r_2 ist näherungsweise

$$r_2 = v_K^2 / (20^* \cos\beta_L + v_K^2 * \beta_L / 7000 - 12.5)$$
(24)

7. Der Auslauf

Der Springer hat bei der Überfahrt von U die Geschwindigkeit v_U , die die Integration der Differentialgleichung (23) liefert. Ein genäherter Wert ist

$$v_{\rm U}^{2} = 8^{*} v_{\rm K}^{2} / (20^{*} \cos\beta_{\rm L} + v_{\rm K}^{2*} \beta_{\rm L} / 7000 - 12.5)$$
⁽²⁵⁾

Der Bericht der ETHZ über den Geschwindigkeitsverlauf im ebenen und horizontalen Auslauf in Engelberg zeigt drei Phasen:

- Beruhigungsstrecke nach U von ca. 1 Sekunde, auf welcher der Springer freie Fahrt lässt und nur der Luftwiderstand mit einem k-Wert von 0.003 bremst. Auf die Berücksichtigung einer Bremsung oder Beschleunigung bei einem allfälligen Gefälle des Auslaufes kann verzichtet werden, da in diesem Abschnitt der Ausrundung der Einfluss gering ist.
- Danach setzt eine Bremsung ein, die nicht konstant und individuell verschieden ist. Es lässt sich aus 23 ausgewerteten Sprüngen aber eine durchschnittliche Verzögerung aus Schneereibung und Luftwiderstand von zusammen 4.8 m/s² ermitteln. Dazu ist ein allfälliges Gefälle mit zu berücksichtigen.
- 3. Wenn die Abbremsung auf ca. 18 m/s erfolgt ist, wird ein Abschwung eingeleitet, der noch eine auf die Schanzenachse projizierte Länge von ca. 15 m beansprucht.

Am Ende des ersten Abschnittes nach v_U Metern ist das Quadrat der Geschwindigkeit auf $v_U^{2*}(1 - 2*0.003*v_U)$ und im zweiten Abschnitt auf ca. $18^2 \approx 300$ gebremst. Daraus rechnet sich die Auslauflänge

$$a = v_{\rm U} + [v_{\rm U}^{2} * (1 - 2^* 0.003^* v_{\rm U}) - 300] / [2^* (4.8 - 9.81^* \sin \delta] + 15 + 5.$$
(26)

 δ ist der Neigungswinkel des Auslaufes; bei Gegensteigung negativ. Der letzte Term von 5 m ist ein Sicherheitszuschlag.

Damit folgt bei horizontalem Auslauf mit gerundeten Werten und linearisiert

$$a = 5^* v_U - 55,$$
 (27)

oder, wie die Durchrechnung einer grösseren Zahl von Schanzen mit w von 20 bis 130 m und Tischneigungen von 8.0° bis 11.5° ergeben hat, trifft die nachstehende Näherung die Länge a auf 1 m genau

$$a = 18.9 + 1.113^* w - 0.00482^* w^2.$$
⁽²⁸⁾

Bei einer Neigung δ der Ebene ist

$$a = v_{\rm U} + [v_{\rm U}^{2*}(1 - 0.006^*v_{\rm U}) - 300]/[9.6 - 20^*\sin\delta] + 20.$$
(29)

Bei den Messungen in Engelberg herrschten griffige Schneeverhältnisse vor. Bei vereister Piste werden Bremswege länger. Es ist deshalb anzumerken, dass für die Übernahme der Normwerte die Beachtung der Weisung Art 401.2.3.2 FIS-IWO Band III Voraussetzung ist. Für kleine Schanzen ist mit Rücksicht auf Anfänger eine Mindestanlauflänge von 45m erforderlich.

Für Sommerbetrieb mit Rasenauslauf ist a generell um 15 m zu erhöhen.

CH-6078 Lungern, Juni 2008

ANHANG

Der Einsatz von Flugbahnaufnahmen für die Optimierung von Sprungschanzenprofilen

1. Vorbemerkungen

Skisprungschanzen unterscheiden sich im Wesentlichen durch die erreichbaren Weiten (Hill-Size) und durch ihre Steilheit (h/n-Verhältnis). Die Baunormen der FIS beschreiben das Längsprofil (Anlauf, Aufsprung und Auslauf) innerhalb gesetzter Grenzen der vorgenannten Parametern. Die Gestalt des Aufsprungprofils soll den Benützern ermögliche, kurze und weite Sprünge sicher zu stehen.

Voraussetzung für diese Optimierungsaufgabe ist die Kenntnis der Flugbahn der Springer. Flugbahnen lassen sich mittels Videoaufnahmen anlässlich von Skisprungwettbewerben sehr genau aufzeichnen. Es wäre aber zu aufwändig, solche Analysen auf all den verschiedenen Schanzentypen vorzunehmen. Es war daher eine Methode zu suchen, die es erlaubt, aus Flugbahnaufnahmen, die auf einer einzigen Schanze gewonnen werden, die dahinter steckenden physikalischen Gesetze zu ermitteln, die dann auch auf andere Schanzentypen übertragen werden können.

Die einzige Methode der Bereitstellung verschieden gestalteter Flugbahnen ist die mathematische Simulation des physikalischen Vorganges eines Skisprunges. Dieser wird beherrscht von der Erdbeschleunigung und den auf den Springer einwirkenden Luftkräften. Wenn man die Kräfte parallel und senkrecht zur Flugbahn kennt, kann jede beliebige Bahn berechnet werden. Ein System von Differentialgleichungen mit Anfangsbedingungen beschreibt den Vorgang. Es sind somit einerseits die Anfangsbedingungen, bestehend aus Betrag und Richtung der Absprunggeschwindigkeit über der Schanzentischkante und andrerseits die Entwicklung der erwähnten Luftkraftkomponenten als Funktion der Zeit oder - wie noch zu zeigen ist - besser als Funktion der Bahnneigung zu bestimmen.

2. Wahl geeigneter Beiwerte der Luftkräfte

Die Werte k_W (Luftwiderstand) und k_A (Auftrieb) liefern, multipliziert mit v^2 , die Verzögerung der Springer in Flugrichtung und die Auftriebsbeschleunigung senkrecht zur Flugbahn und haben die Dimension m⁻¹. Sie haben für die Erarbeitung von Schanzenbaunormen gegenüber den individuellen, dimensionslosen Koeffizienten c_W und c_A , wie sie in der Aerodynamik gebräuchlich sind, den Vorteil, dass sie direkt die allein interessierenden, bahnformenden Beschleunigungen liefern. Die individuellen Einflüsse (Gewicht und Anströmquerschnitt) können beim Bau von Schanzen ja nicht berücksichtigt werden. Für die Ermittlung des Einflusses der Meereshöhe auf die spezifische Masse der Luft und damit auf die Gestalt der Flugbahn sind allenfalls gesonderte Untersuchungen vorzunehmen.

Das Institut für Biomechanik der Eidgenössischen Technischen Hochschule Zürich (ETHZ) hat anlässlich des Weltcupspringens vom 15. bis 17. Dezember 2006 in Engelberg (Schweiz) Flugbahnen der Spitzenspringer aufgenommen, ausgewertet und verschiedene Daten als Grundlage für die Überarbeitung der Baunormen zusammengestellt. Gleichzeitig wurden auch mittlere und kurze Sprünge untersucht, um mit deren Ergebnissen die mögliche Kurvenschar darzustellen, die auf einer Schanze anzutreffen ist. Eine der Anforderungen, die ein Schanzenprofil mit erfüllen muss, ist die Gewährleistung sicherer Landungen auch bei kurzen Sprüngen. Es wird auf den ausführlichen Bericht des Instituts vom 19. Juli 2008 verwiesen.

3. Einfluss des Windes auf die Flugbahn.

In den Normen zum Bau von Schanzen kann auf allfällig herrschende Winde nicht Rücksicht genommen werden. Die Normen sollen daher klar von der Annahme "Windstille" ausgehen. Wird eine Flugbahn eines Springers ausgewertet, bei dem ein herrschender Aufwind oder Rückenwind oder lokale Böen aufgetreten sind, sind die errechneten k_{A} - und k_{W} -Werte verfälscht. Leider herrschte während der Wettkämpfe in Engelberg nicht Windstille. Es wurden Windgeschwindigkeiten bis zu 2.4 m/s während Sprüngen (Ammann, Küttel, Schlierenzauer) gemessen.

Das Institut für Biomechanik hat hiezu verschiedene Simulationen vorgenommen, die aufzeigen, dass lokale Windböen, wie sie während eines Sprunges auf einzelnen Bereichen der Flugbahn auftreten können, signifikante Auswirkung auf den Verlauf der Flugbahn und damit auf die erzielte Weite verursachen und zwar in einem Ausmass, das durchaus vergleichbar ist mit den beobachteten persönlichen Leistungsschwankungen eines Springers von Sprung zu Sprung. Lokale Windböen sind oft räumlich eng begrenzt und werden durch die Windmessanlagen nicht zuverlässig erfasst. Daraus folgt, dass die Luftkraftwerte, wenn sie nicht aus Sprüngen bei Windstille berechnet werden, nicht zu gleichzeitig aufgezeichneten Körper- und Skihaltungen zugeordnet werden können. Für die Verwendung zum Zweck der Optimierung des Aufsprungprofils, was ja hier alleinige Zielsetzung ist, sind sie aber dennoch brauchbar, wie im ETHZ-Bericht dargelegt wird.

4. Einschränkung der Gültigkeit der Ergebnisse.

Wie eingangs erwähnt, erlaubt die Kenntnis der Werte k_W und k_A und deren Änderung während eines Fluges auch die Simulation von Flugbahnen, die von den ausgewerteten Flugbahnen von Engelberg abweichen, d.h. von anderen Anfangsbedingungen ausgehen. Ein Nachweis, innerhalb welcher Grenzen die Ausmasse der Schanze liegen müssen, ist nicht möglich, da Vergleichsrechnungen fehlen. Wir schätzen, dass eine untere Grenze bei Schanzen mit Juryweiten (HS) von 85 Metern liegt. Dies schon deshalb, weil wir die Flugeigenschaften von Weltklassespringern zu Grunde gelegt haben, die auf mittleren und kleinen Schanzen gar nicht springen. Die Einschränkung nach oben

ist offener. Es soll aber wie bisher gelten, dass Flugschanzen, soweit es sich um geometrische Anweisungen für das Schanzenprofil handelt, nicht mehr von der Norm beschrieben werden. Für Studienzwecke kann die Flugbahn aber auch für Flugschanzen simuliert werden.

5. Bedingungen für die Gewährleistung einer gewünschten Genauigkeit der gewonnenen Luftkraftbeiwerte.

5.1 Die gewünschte Genauigkeit der Luftkraftbeiwerte.

Die k_{W} - und k_{A} -Werte bestimmen, wie oben beschrieben, die Beschleunigungen auf der Flugbahn. Ihre Berechnung aus vermessenen Flugbahnen bedingt eine zweimal hintereinander ausgeführte Differentiation einer Kurve, die durch ausgemessene Bahnkoordinaten gegeben ist. Letztere werden aus den Filmaufnahmen unter Näherungsermittlung des Schwerpunktes des Systems Springer/Ski ausgewertet. Sie sind mit Fehlern behaftet, die auf verschiedene Ursachen zurückzuführen sind und im Bericht der ETHZ quantifiziert werden.

Um eine zweifache Differentiation mit der Differenzenmethode durchführen zu können, sind mindestens drei benachbarte Bahnpunkt P_{n-1} , P_n , P_{n+1} mit vorzugsweise gleich grossen Zeitintervallen Δt erforderlich. Je näher diese beieinander liegen, um so grösser ist der Einfluss der Fehler an den Bahnkoordinaten. Es ist der erforderliche minimale Abstand der zu verwendenden Bahnpunkte abzuschätzen, der eine Bestimmung der k-Werte auf eine wünschbare Genauigkeit gewährleistet. Die k_W - und k_A -Werte liegen, wie frühere Untersuchungen gezeigt haben, zwischen 0.0025 m⁻¹ und 0.0060 m⁻¹. Wenn wir eine **Genauigkeitsforderung** von **0.0002 m⁻¹** stellen, was 3 bis 8 % der Werte bedeutet, erhalten wir gute Simulationen, weil diese ja wiederum glättend wirkende Integrationen sind.

5.2 Die näherungsweise Differentiation der Flugbahn mit der Kreisbogenmethode.

Es gibt verschiedene Modelle der Durchführung der Differentiationen. Ausgangspunkt ist die Wahl der Approximation der Flugbahn oder einzelner Bahnabschnitte. Man kann die gemessenen Bahnpunkte durch ein Polynom von t approximieren. Auf diese Weise können durch geeignete Wahl des Polynomgrades die Kurven geglättet werden. Aus den Polynomen erhält man analytisch die k-Werte als Funktionen von t. Diese Methode wendet die ETHZ in ihrem Bericht an.

Sehr gute Ergebnisse gewährleistet die Wahl eines Kreisbogens für die Approximation eines Bahnkurvenabschnittes. Diese Methode erlaubt zudem eine einfache Darstellung der Fortpflanzung von Fehlern an den Bahnkoordinaten auf die k-Werte. Sie soll daher nachfolgend aufgezeigt werden. Es empfiehlt sich hierzu die Einführung von Polarkoordinaten für die erste und zweite Ableitung der Flugbahnkoordinaten x und z mit v und φ , bzw. vound φ . (vo = dv/dt).

Es gilt die Vorzeichenkonvention: x positiv horizontal nach rechts, z positiv nach oben, v positiv in Flugrichtung und ϕ positiv im Uhrzeigersinn von der x-Achse gemessen.

Das System der vier Differentialgleichungen, die die Flugbahn beschreiben, lautet

$\dot{x} = v \cos \phi$	(φ in alter Teilung 360°)	(1)
$z = -v * \sin \phi$		(2)
$v = g \sin \phi - k_W v^2$		(3)
$\phi = (g^* \cos \phi - k_A^* v^2)^*$	*180/ π /v	
(4)		

Die dritte Gleichung ist die Gleichgewichtsformulierung der einwirkenden Kräfte in Richtung Bahntangente, dividiert durch die Masse von Springer und Ski. Die vierte Gleichung stellt das Gleichgewicht in radialer Richtung, dividiert durch Masse und Geschwindigkeit dar.

Ersetzen wir den Flugbahnabschnitt zwischen den gemessenen Bahnpunkten n–1, n und n+1 mit einem Kreisabschnitt, so kann das Kreiszentrum und der Kreisradius berechnet werden. Die Bahnneigung φ_n im zu untersuchenden, mittleren Bahnpunkt P_n ist angenähert normal zur Verbindung Kreiszentrum mit P_n . Die Bogenlängen $P_{n-1} - P_n$ und $P_n - P_{n+1}$ können durch die Sehnenlängen ersetzt werden, da sie sich nur um Grössen zweiter Ordnung unterscheiden. Sie seien s_1 und s_2 . Die Geschwindigkeit und die Bahnbeschleunigung in P_n ist näherungsweise

$$v = (s_1 + s_2) / (2*\Delta t) \text{ und}$$

$$\omega = v/r * 180/\pi$$
(5)

$$\dot{\mathbf{v}} = (\mathbf{s}_2 - \mathbf{s}_1) / \Delta \mathbf{t}^2. \tag{7}$$

Erweiterung dieser Gleichungen für den Fall, wo die zwei Zeitintervalle nicht gleich gross sind:

$$\mathbf{v} = (\mathbf{s}_1 * \Delta t_2^2 + \mathbf{s}_2 * \Delta t_1^2) / \Delta t_1 / \Delta t_2 / (\Delta t_1 + \Delta t_2)$$
(8)

$$\varphi = \sqrt{1 + 180/\pi}$$

$$v = \frac{2}{(s_2 + \Delta t_1 - s_1 + \Delta t_2)} / \frac{\Delta t_1}{\Delta t_2} / \frac{\Delta t_1}{\Delta t_2}$$
(10)

Die gesuchten Werte k_W und k_A im Punkt P_n erhält man dank der Polarendarstellung direkt aus der dritten und vierten Differentialgleichung:

$$k_{\rm W} = (g^* \sin \phi - v^{\cdot})/v^2$$
(11)

$$k_{\rm A} = (g^* \cos \phi - v^2/r)/v^2$$
(12)

Es soll als Erstes geprüft werden, wie leistungsfähig die Approximation der Bahn mit einem Kreisbogen ist. Dazu berechnen wir Bahnpunkte theoretisch exakt im Fall eines reibungslosen Fluges (Parabel), um dann mit der Kreismethode zu prüfen, wie stark die k-Werte von Null (reibungsfrei) abweichen. Wir wählen dazu die Anfangsbedingungen, wie sie in der Grössenordnung einem Sprung auf der Titlisschanze in Engelberg entsprechen.

 $\begin{array}{ll} x(0) &= 0 \\ z(0) &= 0 \\ x) (0) &= 26 \text{ m/s} \\ z) (0) &= -2.5 \text{ m/s}. \end{array}$

Die Bahnpunktkoordinaten sind

 $\begin{array}{l} x(t) = 26^{*}t \\ z(t) = -2.5^{*}t \ -g^{*}t^{2}\!/\!2 \end{array}$

und die Ableitungen

$$\begin{split} v(t) &= (26^2 + (2.5 + g^* t)^2)^0.5 & v^{`:}(t) &= (2.5 + g^* t)^* g/v \\ \phi(t) &= \arctan((2.5 + g^* t)/26) & \phi^{`:}(t) &= v/r^* 180/\pi \\ r(t) &= v^2/g/cos\phi & \phi^{`:}(t) &= v/r^* 180/\pi \end{split}$$

Vergleichen wir diese exakte Beschreibung durch die Parabel mit der Näherung durch einen Kreisbogen. Wir wählen für P_i die Zeiten 0.6, 1.2 und 1.8 Sekunden. ($\Delta t = 0.6 \text{ s}$)

	Parabel (genaue Werte)	<u>Kreisbogen</u>	
P ₁	[15.600000 -3.2658]	[15.600000 -3.2658	[] genaue Übernahme
P ₂	[31.200000 -10.0632]	[31.200000 -10.0632	[] genaue Übernahme
P ₃	[46.800000 -20.3922]	[46.800000 -20.3922	[] genaue Übernahme
s ₁		17.0166	-
s ₂		18.7096	
Für	t = 1.2 Sekunden ist		Abweichung (%)
v	29.659	29.772	0.38
φ	28.763	28.290	1.67
v	4.7205	4.7027	0.38
φ	16.6125	16.5871	0.15
r	102.294	102.838	0.53
kw	0.0000000	-0.0000602	
k _A	0.0000000	0.0000218	

Die Abweichung der k-Werte als Folge des Ersatzes der wirklichen Bahnkurve durch Kreisbogenabschnitte sind somit selbst bei sehr grossen Bahnabschnitten vernachlässigbar.

Für die Erreichung des Ziels, bei gegebener Standartabweichung der Koordinatenmessungen die k-Werte auf 0.0002 m⁻¹ berechnen zu können, ist der minimal zulässige Bahnpunkteabstand zu ermitteln.

Auf das System Skispringer/Ski wirken auf seiner Flugbahn, wie erwähnt, die Schwerkraft und die beiden Luftkräfte Widerstand und Auftrieb. Die Schwerkraft ist exakt bekannt und kann daher in der folgenden Analyse unterdrückt werden. Es ist nur zu untersuchen, in welcher Weise die Messungenauigkeit der drei beigezogenen Bahnpunkte die beiden k-Werte verändern.

Abb. 1

In Abbildung 1 sind die Flugbahnen ohne Einfluss der Schwerkraft - deshalb als gerade Linien - mit den in den vier möglichen, extremen Konfigurationen auftretenden Fehlern d an den drei Bahnpunkten dargestellt. Im Fall 1 täuschen die Fehler eine verzögerte Bewegung, im Fall 2 einen Auftrieb, im Fall 3 eine beschleunigte Bewegung und im Fall 4 einen Abtrieb vor.

Wir dürfen davon ausgehen, dass die Abweichungen der gemessenen Bahnpunktkomponenten in Flugrichtung und senkrecht dazu etwa einer Gauss'schen Verteilung entsprechen mit der Standartabweichung (mittlerer Fehler) m.

Wenn die Lage der drei Bahnpunkte mit den Vektoren S_1 , S_2 , und S_3 gegeben und diese je mit dem mittleren Fehler m an den Komponenten behaftet sind, so ist die Abweichung von einer gleichförmigen Bewegung (Beschleunigung oder Verzögerung)

 $a = (S_1 - 2*S_2 + S_3)/\Delta t^2$

und der mittlere Fehler von a ist nach dem Gauss'schen Fehlerfortpflanzungsgesetz

$$m_a = [m^2 + (2m)^2 + m^2]^{0.5/\Delta t^2} = \sqrt{6*m/\Delta t^2}.$$
 Er ist gleichzusetzen mit $m_{kw}*v^2$.

Im ETHZ-Bericht Seite 7 wird der durchschnittliche mittlere Fehler an den Bahnkoordinaten mit m = 0.026 [Meter] ausgewiesen. Daraus folgt der gesuchte Bahnpunktabstand

$$s = (\sqrt{6*m/m_{kw}})^{0.5} = (2.45*0.026/0.0002)^{0.5} = 18 m.$$

Bei der Verfälschung ,Auftrieb' durch Bahnkoordinatenfehler berechnen wir zunächst den mittleren Fehler der Bahnkrümmung. Letztere ist

$$1/r = 2 * f/s^2$$
, wobei der mittlere Fehler an der Pfeilhöhe f
m_f = [(0.5m)² + m² + (0.5m)2]^0.5 = $\sqrt{1.5*m}$ ist. Eingesetzt folgt

 $m_{1/r} = \sqrt{6*m/s^2}.$

Aus Gleichung 12 erhält man bei Ausserachtlassung der Schwerkraft (g = 0) $k_A = 1/r$. Damit ist $m_{ka} = m_{1/r}$ und

$$s = (\sqrt{6*m/m_{kA}})^{0.5} = 18 m,$$

also gleich wie für k_w . Wenn die mittleren Fehler der Bahnpunkte in Bewegungsrichtung und quer dazu gleich sind, so sind auch die mittleren Fehler an den beiden k-Werten gleich. Die Fälle 3 und 4 führen zum gleichen Ergebnis.

Um bei einer Grossschanze die k_W - und k_A -Werte auf $2*10^{-4}$ m⁻¹ genau aus Flugbahnvermessungen ermitteln zu können, müssen die drei beigezogenen, benachbarten Bahnpunke gegenseitige Abstände von mindestens 18 m haben.

18 m Punktabstand erscheint auf den ersten Blick gross. Analysen schneller Bewegungen, wie etwa die Abläufe beim Absprung vom Schanzentisch oder bei der Landung könnten mit dieser Methode keinesfalls analysiert werden. Die Flugbahn selbst wird durch ausgesprochen monotone Beschleunigungsveränderungen beschrieben. Es ist daher absolut ausreichend, wenn die Werte k_W und k_A im Abstand von etwa 18 m verteilt auf die ganze Flugbahnlänge bekannt sind. Zwischenwerte können linear interpoliert werden.

Noch nicht gelöst ist die Ermittlung dieser Werte zur Zeit t = 0, denn hier beginnt erst die Flugbahn; ein Bahnpunkt vor dem Absprung steht nicht zur Verfügung. Die Verkleinerung der Schrittweite in den Randbereichen löst das Problem nicht, weil dabei die formulierte Minimalforderung der Bogenlänge unterschritten und damit die geforderte Genauigkeit nicht mehr erreicht wird. Für die auf der Titlisschanze in Engelberg vorgenommenen Messungen kennen wir aus der Analyse des Absprunges die Anfangsbedingung v(0) sehr genau. Etwas weniger genau lässt sich der Winkel der Anfangstangente der Flugbahn ermitteln, da im Zeitpunkt t = 0 durch die dort wegfallende Bodenreaktion eine für die z-Komponente der Bewegung massgebende Unstetigkeit auftritt.

Wir übernehmen versuchsweise die gemessenen Werte als Anfangswerte und integrieren das Differentialgleichungssystem in der ersten Schrittweite $\Delta t = 0.6$ s, wobei wir für die noch unbekannten k-Werte zur Zeit t = 0 die Werte 0 einsetzen. Wir verfehlen dabei die gemessenen Bahnkoordinaten x und z zur Zeit t = 0.6 um Δx und Δz . Die gesuchten k-Werte erhalten wir in erster Näherung aus dem Gleichungssystem

$$\frac{\partial \mathbf{x}}{\partial \mathbf{k}_{\mathrm{W}} * \Delta \mathbf{k}_{\mathrm{W}}} + \frac{\partial \mathbf{x}}{\partial \mathbf{k}_{\mathrm{A}} * \Delta \mathbf{k}_{\mathrm{A}}} = -\Delta \mathbf{x} \\ \frac{\partial \mathbf{z}}{\partial \mathbf{k}_{\mathrm{W}} * \Delta \mathbf{k}_{\mathrm{W}}} + \frac{\partial \mathbf{z}}{\partial \mathbf{z}}/\frac{\partial \mathbf{k}_{\mathrm{A}} * \Delta \mathbf{k}_{\mathrm{A}}} = -\Delta \mathbf{z},$$

wobei die partiellen Differentialquotienten mit den bekannten Methoden der angewandten Mathematik erhalten werden. Mit Δk_W und Δk_A hat man eine erste Näherung. Durch iteratives Wiederholen der Prozedur gelangt man zu den gesuchten k-Werten, wobei die Iteration sehr gut konvergiert.

Damit haben wir alle Daten, die für die mathematische Simulation der Flugbahnen der in Engelberg ausgemessenen Sprünge erforderlich sind. Es stellt sich die Frage, wie die Funktion der k-Werte aussehen müssen, um Flugbahnen mit andern, diesmal vorgegebenen Anfangsbedingungen zu simulieren. Kleinere Geschwindigkeiten führen zu zeitlich und weitenmässig kürzeren Sprüngen. Die Zeit als Argument für die k-Werte ist daher nicht geeignet. Die Werte sind Funktionen der räumlichen Gestalt des Systems Springer-Ski, der Anströmfläche und der Anströmrichtung der Luft. Am Treffendsten ist die Einführung der Anströmrichtung als Argument. Sie ist bei Windstille gleich der Bahnneigung, korrigiert um die Neigung der Linie Kopf-Fuss des Springers zur Horizontalen. Letztere bewegt sich um den Wert Null und ist erfahrungsgemäss bei allen Springern innerhalb der zu beobachtenden Genauigkeit ähnlich in dem Sinne, als sie als charakteristische Funktion von der Bahnneigung φ auftritt. Die k-Werte, die zu den kleinsten Winkeln gehören, beschreiben die erste Flugphase, jene bei grossen Winkeln die Phase mit der quasistationären Flughaltung Damit kann man auf eine Korrektor des Argumentes φ verzichten. Da im Unterschied zu den Aufnahmen von 1994 in Oberstdorf die erst Phase nun viel detaillierter aufgenommen und ausgewertet wurde, kann auf ein Korrekturglied in der Form einer zeitabhängigen k-Wertefunktion verzichtet werden.

5.3 Veranschaulichung an einem Beispiel

Es wird eine Flugbahn auf der Basis mathematisch frei festgelegter, einfacher Funktionen von k_{W} - und k_{A} -Werten berechnet, die der Grössenordnung nach jener von Engelberg entsprechen. Die errechneten Koordinaten der Bahnpunkte werden als Ergebnis einer Flugbahnvermessung interpretiert. Aus ihnen sind die aufgetretenen Luftkräfte mit dem aufgezeigten Verfahren rückwärts zu ermitteln. Die Koordinaten werden dazu unverfälscht übernommen, um Genauigkeitskontrollen an den Ergebnissen durchführen zu können.

Es sei $v_0 = 26 \text{ m/s}$ $\phi_0 = 5.5^\circ$

$k_{\rm W} = (2+3t+0.5t^2)10^{-3}$	(frei gewählte, einfache Funktion)
$k_{\rm A} = (2+t)10^{-3}$	(frei gewählte, einfache Funktion)

Die Schrittweite bei der Integration soll wieder 0.6 Sekunden sein. Die Integration nach Runge-Kutta ergibt folgende Bahnkoordinaten und –geschwindigkeiten als Funktion der Zeit

t	Х	Z	V	φ°
0	0.0	0.0	26.0000	5.5000
0.6	15.2645	-2.9462	25.9669	16.1911
1.2	29.8719	-8.5663	26.3246	25.6278
1.8	43.7366	-16.4701	26.9555	33.4253
2.4	56.8951	-26.2460	27.7360	39.4751
3.0	69.4837	-37.5058	28.5943	43.8534
3.6	81.7177	-49.9172	29.5249	46.7111
4.2	93.8761	-63.2179	30.5794	48.1951
4.8	106.2995	-77.2132	31.8558	48.4025
Taba	110.1			

Tabelle 1

Bei Verwendung einer Schrittweite von $\Delta t = 0.1$ s wären die Koordinatendifferenzen bei t = 4.8 s oder einer Fluglänge von rund 130 m in der Grössenordnung von nur 10 mm. Es kann daher in der weiteren Rechnung stets mit $\Delta t = 0.6$ s gerechnet werden.

In Anwendung der Formeln (5), (6), (7), (11) und (12) werden mit den Bahnkoordinaten von Tabelle 1 die Werte von Tabelle 2 berechnet und mit den genauen Werten verglichen, die die Runge-Kutta-Integration ergeben hat.

t	k _w	k _{W exakt}	$\Delta\%$	k _A	k _{A exakt}	$\Delta\%$	V	φ°	v.	φ.
0.6	0.003561	0.00362	1.6	0.002646	0.0026	1.8	25.998	15.967	0.2917	16.845
1.2	0.004813	0.00488	1.4	0.003245	0.0032	1.4	26.342	25.323	0.8558	14.387
1.8	0.005716	0.00578	1.1	0.003840	0.0038	1.1	26.960	33.102	1.2031	11.534
2.4	0.006260	0.00632	1.0	0.004434	0.0044	0.8	27.735	39.172	1.3809	8.663
3.0	0.006443	0.00650	0.9	0.005026	0.0050	0.5	28.597	43.583	1.4938	5.999
3.6	0.006263	0.00632	0.9	0.005619	0.0056	0.3	29.540	46.473	1.6473	3.592
4.2	0.005721	0.00578	1.0	0.006213	0.0062	0.2	30.612	47.979	1.9267	1.392
Tał	pelle 2									

Die Abweichungen der k-Werte erfüllen die gewünschte Genauigkeit.

Nach der Vorgabe in Abschnitt 3 sind die noch fehlenden k-Werte für t = 0 wie folgt zu berechnen. Mit den Anfangswerten

 $x = 0; z = 0; v = 26; \phi = 5.5^{\circ}$

und den ermittelten k-Werten (Spalte 2 und 5, Tabelle 2) wird die Flugbahn für die erste Schrittweite von 0.6 s durchgerechnet, wobei für die noch unbekannten k-Werte Null gesetzt wird. Der erste Bahnpunkt wird um

verfehlt. Die vier partiellen Ableitungen der zwei Bahnkoordinaten nach den zwei k-Werten sind

Daraus liefert das Gleichungssystem die ersten Näherungen

$$\label{eq:kw} \begin{split} k_W &= 0.002064 \\ k_A &= 0.001942. \end{split}$$

Die zweite Iteration ergibt

 $k_W = 0.002077$ $k_A = 0.001981$

und die dritte Iteration ergäbe Korrekturen im Bereich 10^{-9} . Die Werte sind auf wenig Prozente genau die vorgegebenen $k_W = 0.002$ und $k_A = 0.002$ zur Zeit t = 0. Diese Rechnung muss selbstverständlich für jede Flugbahnauswertung gesondert angestellt werden.

Es soll die Übereinstimmung der ganzen, simulierten Flugbahn mit der exakten Flugbahn verglichen werden. Für t = 4.2 s ergeben sich die Abweichungen

 $\Delta x(4.2) = 0.386 \text{ m}$ $\Delta z(4.2) = 0.050 \text{ m}$ $\Delta v(4.2) = 0.102 \text{ m/s}$ $\Delta \phi(4.2) = 0.271^{\circ}$

In Anbetracht der Bahnlänge von 114 m und im Vergleich zur erreichbaren Genauigkeit der Lage der Aufsprungfläche in der Wirklichkeit ist das Ergebnis sehr gut.

Es soll noch die Umwandlung der k-Werte von Funktionen der Zeit in Funktionen der Bahnneigung durchgeführt werden. Aus Tabelle 2 und der Ergänzung der Werte für t = 0 erhält man Tabelle 3

φ°	$\mathbf{k}_{\mathbf{w}}$	k _a
5.500	0.002077	0.001942
15.967	0.003561	0.002646
25.323	0.004813	0.003245
33.102	0.005716	0.003840
39.172	0.006260	0.004434
43.583	0.006443	0.005026
46.473	0.006263	0.005619
47.979	0.005721	0.006213
Tabelle	3	

Man kann für die beiden k-Werte Polynome in φ ermitteln, um Zwischenwerte zu interpolieren. Es zeigt sich aber, dass lineare Interpolationen zwischen den einzelnen k-Werten die gestellten Genauigkeitsansprüche erfüllen. Die Neuberechnung der Flugbahn ergibt nämlich Abweichungen von den exakten Werten

 $\begin{array}{lll} \Delta x(4.2) = & 0.354 \mbox{ m} \\ \Delta z(4.2) = & 0.174 \mbox{ m} \\ \Delta v(4.2) = & 0.092 \mbox{ m/s} \\ \Delta \phi(4.2) = & 0.417^{\circ} \end{array}$

Also von gleicher Grössenordnung wie bei der Berechnung mit den k-Werten als Zeitfunktionen.

Abschliessend soll die Fehlerfortpflanzung durch die Integration des Differentialgleichungssystems veranschaulicht werden. An den exakt ermittelten Koordinaten in Tabelle 1 soll allein z(2.4) um 20 cm erhöht werden. Dieses Mass ist wesentlich über einem zu erwartenden Fehler. An der Stelle t = 2.4 ist die Bahneigung 39°. Der Bahnpunkt ist somit um 13 cm vorverschoben und 15 cm über die Bahn gelegt.

In der nachfolgenden Tabelle 4 sind die k-Werte, umgerechnet in Funktion von φ dargestellt. Die Spalten 2 und 3 enthalten zum Vergleich die Werte ohne die Verfälschung, wie sie zu Tabelle 3 gehören. Spalten 4 und 5 enthalten die Werte mit der Verfälschung. Die Abweichungen überschreiten z.T. 20 %.

φ	k _W	k _A	k _W	k _A
5.0	0.00201	0.00191	(mit künstl	ich einge-
7.5	0.00236	0.00208	führtem Fe	hler)
10.0	0.00272	0.00225		
12.5	0.00307	0.00241		
15.0	0.00342	0.00258		
17.5	0.00377	0.00275		
20.0	0.00410	0.00290		
22.5	0.00444	0.00306		
25.0	0.00477	0.00322		
27.5	0.00507	0.00341	0.00520	0.00362
30.0	0.00536	0.00360	0.00565	0.00405
32.5	0.00565	0.00379	0.00610	0.00448
35.0	0.00589	0.00403	0.00588	0.00412
37.5	0.00611	0.00427	0.00555	0.00363
40.0	0.00629	0.00455	0.00563	0.00372
42.5	0.00640	0.00488	0.00644	0.00484
45.0	0.00635	0.00532	0.00661	0.00552
47.5	0.00588	0.00604		
50.0	0.00495	0.00706		

Tabelle 4

Integriert man mit diesen k-Werten, weicht die gewonnene Flugbahn von der als Grundlage dienenden, verfälschten Bahn wie folgt ab

t [s]	x [m]	z [m]
0.6	0.00	0.00
1.2	0.00	0.00
1.8	0.03	0.06
2.4	0.07	-0.03
3.0	0.14	0.13
3.6	0.23	0.13
4.2	0.35	0.17

Tabelle 5

Die berechnete Bahn verfehlt den verfälschten Punkt nur um 2.3 cm nach immerhin 63 m (!) Flugbahn, und nach 4.2 s ist die Abweichung genau gleich gross, wie bei der Rechnung mit dem unverfälschten Bahnpunkt. Daraus ist der Schluss zu ziehen, dass Fehler an den Bahnkoordinaten die k-Werte zwar stark verändern und damit auch verfälschen, aber mit der Eigenschaft, dass der Fehler sich nicht auf die übrige Flugbahn ausbreitet, sondern dafür sorgt, dass der Flug alle Punkte, fehlerhaft oder nicht, möglichst berührt. Diese Feststellung ist wichtig, denn als Schanzenbauer sind wir an einer wirklichkeitsnahen Simulation von Flugbahnen (Ermittlung von Landepunkt und

Landedruck) interessiert. Diese Auskünfte erhalten wir mit einer Genauigkeit, die der Grössenordnung anderer Unsicherheiten (Geometie der Landefläche, Störungen durch Windverhältnisse etc.) entspricht. Was wir nicht erreichen, sind präzise Aussagen über die wirklich aufgetretenen Auftriebs- und Widerstandskräfte. Auftriebs- und Widerstandskräfte interessieren aber nicht den Schanzenbauer, sondern höchstens die Trainer und die Springer. Das soll selbstverständlich nicht davon dispensieren, eine höchstmögliche Genauigkeit bei der Berechnung der Schwerpunktkoordinaten anzustreben, denn die Tugend des wieder Zurückfindens auf den wahren Weg trifft natürlich nur zu bei der Integration mit Anfangsbedingungen, wie sie bei der Messkampagne geherrscht haben. Wir brauchen aber die k-Werte just für die Profiloptimierung anderer Typen und Grössen von Schanzen.

Lungern, im Februar 2008

Dr. sc. techn. Hans-Heini Gasser