~FLINTEC

DAS 72.1 Mark III Wäge-Indikator

HANDBUCH

Firmware Version 72.181.v.4.28 oder höher

Hardware Version 72.101.5.v.3.0x

Document No G128 Rev6 DE

A ALLGEMEIN

A.1 EINFÜHRUNG & SPEZIFIKATIONEN

Der Wäge-Indikator DAS 72.1 Mark III ist ein sehr präziser Digitalverstärker für Wäge- Anwendungen mit DMS-Aufnehmern (u.a. Wägezellen) im industriellen Umfeld. Er ist sowohl über Fronttastatur wie auch serielle Schnittstelle steuerbar. Seine 3 logischen Ein- und Ausgänge lassen umfangreiche Steuerfunktionen zu. Die logischen Ausgänge sind zusätzlich auch von extern steuerbar.

Mit dem serienmäßigen Analogausgang 4...20 mA rundet der Wäge-Indikator DAS 72.1 die Wünsche industrieller Anforderungen ab. Bis zu 32 DMS-Verstärker der Typen DAS 72.1 oder LDU XX.X können gleichzeitig an einem RS485-Bus betrieben werden.

Der DAS 72.1 besitzt einen hochpräzisen 18 bit-Wandler. Mit seiner Messrate von 2400 M/s (intern) ist er hervorragend für dynamische Gewichtsmessungen wie z.B. bei Einsatz in Kontrollwaagen oder Abfüllaufgaben geeignet.

Linearität vom Nennwert	< 0.002 %
Wägezellenspeisung	5 V DC, DMS-Aufnehmer mit 80-2000 Ohm, 6-Leiter-Technik
Eingangssignalbereich	±3.2 mV/V
Eingangsempfindlichkeit	0.05 µV / d
Eingangspolarität	bipolar, für Wägeanwendungen, Kraft- und Drehmomentapplikationen
A/D-Auflösung	$\pm 260000 \text{ d}$, ± 18 -Bit-A/D-Wandler, Display max. \pm 99999
A/D-Geschwindigkeit	2400 Messungen/Sekunde intern, am seriellen Ausgang bis zu 600 Messungen/Sekunde
Digital-Filter	FIR Filter 2.5 bis 19.7 Hz oder IIR Filter 0.25 bis 18 Hz; je in 8 Stufen einstellbar
Kalibrierung	per Software über ASCII-Kommandos, sehr einfach durchführbar
Computer-Schnittstelle	RS485 oder RS422, full duplex, 9600 115200 Baud, busfähig bis zu 32 Einheiten
Schreib- und Lesemöglichkeit	Brutto, Tara, Netto, Filter, Kalibrieren, Tarieren, Nullsetzen, Auflösung usw.
Analogausgang	0/4 20 mA, 14-Bit Auflösung
Digitalanzeige	10.2 mm LED, grün, 5-stellig, 3 Status-LED für Netto/Motion/Vorzeichen, 6 Status-LED für Ein- und Ausgänge
Logik-Eingänge	3 optoisolierte Eingänge, 10 30 V DC, max. 3.5 mA, Status über Software abfragbar
Logik-Ausgänge	3 optoisolierte Ausgänge, < 45 V DC/AC, 1 A
Temperatur-Einfluss	Nullpunkt 5 ppm/°K typ.; max. < 10 ppm/°K Verstärkung 4 ppm/°K typ.; max. < 8 ppm/°K
Temperatur-Bereich	-10 °C bis +50 °C (Betrieb); -20 °C bis +60 °C (Lagerung)
Gehäuse	Platine mit Metallgehäuse, Schutzart IP 40, Zusatzgehäuse IP65 auf Anfrage
Abmessungen	135 x 66 x 19 mm, Gewicht ca. 180 g
Versorgungsspannung	11 25 V DC \pm 10 %, < 3 W, galvanisch getrennt
EMV/Bescheinigungen/Zulassungen	CE 73/23/EEC; 93/98/EEC und 89/336/EEC

Technische Daten des DAS 72.1 Mark III

Abmessungen in mm. Technische Änderungen vorbehalten.

~FLINTEC

A.2 TASTATURFUNKTIONEN UND ANSCHLUSSBILD

FLINTEC

B ALLGEMEIN / EINSTELLUNG ÜBER FRONTPANEL

А	ALLGEMEIN	2
A.1	EINFÜHRUNG & SPEZIFIKATIONEN	2
A.2	TASTATURFUNKTIONEN UND ANSCHLUSSBILD	3
В	ALLGEMEIN / EINSTELLUNG ÜBER FRONTPANEL	4
B.1	KURZANLEITUNG FRONTPANELBEDIENUNG	5
B.2	GRUNDEINSTELLUNGSTABELLE	6
B.3	FLOWCHART EINSTELLUNGEN	7
B.3.1	Nullpunkteinstellung, Menüpunkte 1.1 bis 1.4	7
B.3.2	Verstärkungseinstellung, Menüpunkte 2.1 bis 2.4	8
B.3.3	Auflösung, Dezimalpunkt, Menüpunkte 3.1 bis 3.4	9
B.3.4	Filtereinstellungen, Menüpunkte 4.1 bis 4.4	10
B.3.5	Stromausgang einstellen, Menüpunkte 5.1 bis 5.4	11
B.3.6	Logik-Eingänge einstellen, Menüpunkte 6.1.1 bis 6.3.4	12
B.3.7	Logik-Ausgänge einstellen, Menüpunkte 7.1 bis 7.3	14
B.3.8	Datenkommunikation Menüpunkte 8.1 bis 8.4	15
B.3.9	(Error-) Fehlermeldungen	16
B.4	ANWENDUNGS-BEISPIELE	17
B.4.1	Beispiel 1, Gravimetrische Kalibrierung (mit Gewichten)	17
B.4.2	Beispiel 2, Theoretische Kalibrierung mit mV/V-Werten und Nullpunktverschiebung	19
B.4.3	Beispiel 3, Theoretische Kalibrierung nur mit mV/V-Werten	21
D	CE KONFORMITÄTSERKLÄRUNG	57

	8. Data Com	Schnittstelle	1. Baud rate	2. 422/485	3. Address	4. Auto trnsm.	 Baudrate einstellen: 9600115,2 k Baud Schnittstellen-Art einstellen RS-422 full duplex RS-485 Netzwerk RS-485 Netzwerk Port-Adresse einstellen. Wählbar von 0255. Adresse muß über von 0255. Adresse muß über von 0255. Adresse muß über Autom. Dauerüber- tragung von Daten: open" angesprochen werden. Autom. Dauerüber- tragung von Daten: gross (Brutto) net (Netto) all (Datenstring) sap (A/D-Wert) pea (Peak-Wert) pea (Peak to Peak-Wert) off (ausgeschaltet)
al zu betätigen.	7. Output 1/2/3	Logik-Ausgänge	1. SPoint'n'	2. Hyst +/- 'n'	3. Base	4. Test	 Grenzwerte für Ausgänge 1/2/3 einstellen. L.2 Schaltlogik festlegen für: on off enstellen off Lusterese der Schaltausgänge einstellen Lysterese der Schaltausgänge einstellen Zuordnung der digitalen Ausgänge: o) gross (Brutto) netto) litaliae digitale litaliae litaliae litaliae litaliae
den Mikroschalter einm	6. Input 1/2/3	Logik-Eingänge	1. Assign key	2.	3.	4. Test	 externe Tasten- steuerung: (00) nicht benutzt (01) Zero (nullen) (02) tare (tarieren) (03) nach oben (04) nach unten (05) extern triggern (05) extern triggern (07) Peak anzeigen (08) Peak löschen (09) Hold anzeigen (10) Peak to Peak (11) Valley anzeigen (12) Tastensperre (13) Gewicht speichern (14) tarieren und löschen (14) tarieren und löschen anicht benutzt nicht benutzt nicht benutzt digtale Display zeigt den Signal- Status der Logik-Eingänge
zusätzlich erforderlich o	5. CL out	Analog Ausgang	1. 4 mA='n'	2. 20 mA='n'	3. Base	4. Test I mA	 Messwert eingeben für 4 mA am Ausgang Beispiel: 0,0 (g) a 4 mA Messwert eingeben für 20 mA am Ausgang Beispiel: 1000,0 (g) 20 mA 3. Zuordnung des Analogausganges Brutto-Wert Netto-Wert Netto-Wert Netto-Wert Netto-Wert Beispiel: Vert Netto-Wert Beispiel: 12,345 eingeben um einen Ausgangsstrom von 12,345 mA zu erzeugen
rdaten zu ändern ist es	4. Filter	Filterung	1. f-cut Hz	2. Algorithm	Update rates	4. Motion 'n'	 Filtergrenzfrequenz einstellen, von 1=18 Hz bis 8=0,25 Hz einstellbar; typische Einstellung "4"=3 Hz einstellung "4"=3 Hz schnelle Signaländerungen FIR-Filter für hohe Signaländerungen IIR-Filter für hohe Dämpfung Messrate einstellen. Dämpfung Messrate einstellen. Dämpfung Messrate einstellen. Dämpfung Messrate einstellen. Dämpfung Messrate einstellen. Vaagenstillstand- bereich einstellen und Zero Tracking sind nur erlaubt bei "Waage in Ruhe"
en drücken. Um Kalibrie	3. Display	Digitale Anzeige	1. o/u limits 'n'	2. Step*'n'	3. Dec.point	4. Logic stats	 Anzeigewerte bei denen die Anzeige einen unteren (u) Grenzwert signalisiert Ziffernsprung der Digitalanzeige als 1, 2, 5, 10, 20 etc. einstellen Position Positianzeige Position Position<
te länger als 3 Sekunde	2. Span	Verstärkung	1. Set cal."n"	2. Calibrate	3. Set mV/V	4. Disp. mV/V	 Kalibrier-Wert bei dem das aktuelle Messsignal nach 2.2 oder 2.3 simulierten bzw. eingegebenen Signale angezeigt werden soll Beispiel: 10 000 (g) Signalwert der Wägezelle(n) liegt an oder wird mit einer Kal-Box simuliert; das Signal wird dem Kalibrierwert unter 2.1 zugeordnet Signalwert in mV/V über die Tastatur als Messwert eingeben; das Signal wird dem Kalibrierwert unter 2.1 zugeordnet Anzeige aktueller Signalwert in mV/V für Test- und Prüfzwecke
Setup-Menü : Pfeil-Tas	1. ZERO	Nullpunkt	1.0/allow >0<	2. Calibrate	3. Set mV/V	4. Taraspeicher	 Zero Tracking bzw. Nullstellen freigeben / sperren Nullpunkt kalibrieren mit aktuellem oder extern simuliertem Eingangssignal Nullpunkt kalibrieren über manuelle Eingabe des mV/V Signals bei Displayanzeige "Null" 1.1 Tara-Speicherung: "off" = Tara-Wert bleibt bei Netz-Aus gespeichert "off" := Tara-Wert wird bei Netz-Aus gelöscht 2.2 EX-Modus "on" Betrieb nint Zenerbarrieren "off" Betrieb ohne

B.1 KURZANLEITUNG FRONTPANELBEDIENUNG

B.2 GRUNDEINSTELLUNGSTABELLE

Peochysihung	LED-Anzeige	Voreinstellung	Fallbeispiel: 3000kg-Waage		
Beschreibung	Menü-Punkt	Wert	Wert	Bedeutung	
Funktion NULL-Taste (an/aus)	< 1.1 >	0-oFF	0-oFF	Nullstellen nicht möglich	
Nullpunkt-Kalibrierung/Gewicht	< 1.2 >	0.000	0.000	kg	
Nullpulkt-Kallbrierugt/ Couviekt	< 1.3 >	0.000	0.400	IIIV/V	
End-Kalibrierwert/-Gewicht	< 2.1 >	20000	a)3000.0 00er	Kalibr mit 750 kg	
End-Kalibrierung mit Gewicht	< 2.2 >	0.000	0.9	mV/V	
End-Kalibrierung mit mV/V-Wert	< 2.3 >	2.000	2.000	mV/V	
Anzeige aktuelles mV/V-Signal	< 2.4 >				
Maximaler Anzeigen-Wert	< 3.1.0 >	99999	3100.0	kg	
Minimaler Anzeigen-Wert	< 3.1.u >	-9999	-200.0	kg	
Auflösung der Digitalanzeige	< 3.2 >	1	5	0,5 kg	
Dezimalpunkt-Position	< 3.3 >	0	0.0	1 Dezimalstelle	
Display Anzeige	< 3.4 >	1	1	Statusanz. 1 s	
Eingangsfilter Grenzfrequenz einstellen	< 4.1 >	33.3	3.0	Hz	
Filter-Typ	< 4.2 >	FIR	FIR	Schnelle	
Massungan(gafiltart) pro Sakunda	< 1.2 >	2	2	Messungen / s	
Messoerät-Stillstandsbereich (z. tarieren)	< 4.5 >	1 1	ა 1	incocungen, e	
Nullpunkt Analogausgang	< 5.1 >	00000	0.0	ka	
Fordwert Analogausgang	< 5.1 >	20000	3000 0	kg kg	
Analogausgang Zuordnung	< 5.2 >	aros	aros	hrutto	
Finstellbaren Analogwert simulieren	< 5.4 >	 	 		
Eingang 1 für externe Tastatursteuerung	< 611>				
Eingang 2 für externe Tastatursteuerung	< 6.2.1 >				
Eingang 3 für externe Tastatursteuerung	< 6.3.1 >				
Eingangsstatus auslesen	< 6.2 >				
Zuordnung der ditalen Eingänge	< 6.3 >				
Test der Logik-Eingänge	< 6.4 >				
Grenzwert Relaisausgang 1	< 7.1.1 >	99999	0000.0	kg	
Grenzwert Relaisausgang 2	< 7.2.1 >	00000	1000.0	kg	
Grenzwert Relaisausgang 3	< 7.3.1 >	oFF	3000.0	kg	
Hysterese u. Schaltlogik Grenzwert 1	< 7.1.2 >		0000.0	kg	
Hysterese u. Schaltlogik Grenzwert 2	< 7.2.2 >		0000.0	kg	
Hysterese u. Schaltlogik Grenzwert 3	< 7.3.2 >		0000.0	Kg	
Zuordnung Grenzwert 2	< 7.1.3 >		net	netto	
Zuordnung Grenzwert 2	< 7.2.3 >		net	netto	
Funktionstest Relaisausgang 1	< 7.1.4 >				
Funktionstest Relaisausgang 2	< 7.2.4 >				
Funktionstest Relaisausgang 3	< 7.3.4 >				
Baudrate RS-422/485 Schnittstelle	< 8.1 >	9600	9600	baud	
Schnittstellenart (422 oder 485)	< 8.2 >	422	422	422-Schnittstelle	
Geräte Kanal-Nr. für KommSchnittstelle	< 8.3 >	0	0	Kanal-Nr.	
Autom. Senden oder Abfrage m. Befehl	< 8.4 >	oFF	nEt	autom.	
				senden	

B.3 FLOWCHART EINSTELLUNGEN

B.3.1 Nullpunkteinstellung, Menüpunkte 1.1 bis 1.4

---- FLINTEC

B.3.2 Verstärkungseinstellung, Menüpunkte 2.1 bis 2.4

B.3.3 Auflösung, Dezimalpunkt, Menüpunkte 3.1 bis 3.4

~FLINTEC

B.3.4 Filtereinstellungen, Menüpunkte 4.1 bis 4.4

B.3.5 Stromausgang einstellen, Menüpunkte 5.1 bis 5.4

--- FLINTEC

B.3.6 Logik-Eingänge einstellen, Menüpunkte 6.1.1 bis 6.3.4

Logik-Eingänge einstellen, Menüpunkte 6.1.1 bis 6.3.4 (Fortsetzung)

FLINTEC

B.3.8 Datenkommunikation Menüpunkte 8.1 bis 8.4

~FLINTEC

B.3.9 (Error-) Fehlermeldungen

Anmerkung

Soll das DAS 72.1 Mark III auf Werkseinstellung zurückgesetzt werden den Freigabe-Schalter beim Einschalten des Gerätes gedrückt halten. Alle Einstellungen werden auf die Werkseinstellungen zurückgesetzt!

FLINTEC

B.4 ANWENDUNGS-BEISPIELE

B.4.1 Beispiel 1, Gravimetrische Kalibrierung (mit Gewichten)

Silo mit 3 Füßen auf 3 Wägezellen mit jeweils 1000 kg Nennlast und Nennkennwert 2 mV/V

Tara 600 kg, Netto 2000 kg Auflösung 0,5 kg-Schritte

Die 3 Wägezellen sind parallel an das DAS 72.1 angeschlossen und die Stromversorgung eingeschaltet. Der maximale und der minimale Anzeigewert, die Auflösung der Digitalanzeige und die Dezimalpunkt-Position sollten vor der Kalibrierung des Systems bereits im Menü 3 eingestellt werden. Für dieses Beispiel ist der max. Anzeigewert auf 3100,0 kg, der minimale Anzeigewert auf -200,0 kg und ein Dezimalpunkt an vorletzter Stelle eingestellt.

Bitte Beachten: Nur nach Drücken des

Freigabeschalters sind die Menüpunkte 1.1 bis 1.3, 2.1 bis 2.3 und 3.1 bis 3.4 verfügbar und einstellbar !

- a Zum Menüpunkt 1.2 gehen und mit den Abwärts-/Aufwärts-Tasten und der Ziffern-Auswahltaste den Wert 00000 einstellen. Ist sichergestellt das sich die Waage im gewünschten Nullpunktzustand befindet drückt man nun die ENTER-Taste. Damit ist der augenblickliche Waagenzustand als Nullpunkt kalibriert.
- **b** Anschließend in dem Menüpunkt 2.1 mit den Abwärts-/Aufwärts-Tasten und der Ziffern-Auswahltaste genau den Wert einstellen der dem aufgelegten Gewicht entspricht. Entspricht das aufgebrachte Gewicht bspw. 2000 kg dann muss hier 2000,0 eingegeben und dieser Wert durch Drücken der ENTER-Taste abgespeichert werden.
- c Um die Kalbrierung zu beenden zum Menüpunkt 2.2 gehen, im Display sehen Sie das aktuelle Eingangssignal in mV/V. Das oder die Gewichte auf die Waage aufbringen, welche natürlich dem in 2.1 eingegeben Gewichtswert entsprechen müssen. Durch Drücken der ENTER-Taste wird nun die Zuordnung von aufgebrachtem Gewicht und der Gewichtseingabe unter 2.1 abgespeichert, das System ist nun kalibriert. Das Display zeigt wieder 2.2. an, wird nun die Ziffern-Auswahlstaste zweimal gedrückt befindet sich das DAS wieder im normalen Wiegemodus.

Die Kalibrierung ist damit beendet.

Kalibrierroutine-Beispiel 1

Durch Drücken der AUFWÄRTS- oder ABWÄRTS- Tasten länger als 3 Sekunden gelangt man in das Einstell- und Kalibriermenü. Um Kalibrierdaten zu ändern ist es zusätzlich erforderlich den Mikroschalter einmal zu betätigen.

Dezimalpunkt-Position

Für eine Anzeige in kg mit einer Dezimalstelle wird der Dezimalpunkt an vorletzter Stelle festgelegt.

3.3 = 0,0 Dezimalpunkt-Position vorletzte Stelle

Auflösung der Digital-Anzeige

Unsere Silowaage soll 0,5 kg Auflösung anzeigen. Deshalb wählen wir hier die Einstellung = 5. 3.2 =5 = 0,5 kg Anzeigenauflösung

Maximaler Anzeigenwert des Messgerätes

Die 3000 kg-Waage soll ab 3100 kg eine Überlastung anzeigen, also Einstellung = 3100 kg.

3.1.0 = 3100,0 = Überlastanzeige bei 3100 kg

Minimaler Anzeigenwert des Messgerätes

Die 3000 kg-Waage soll unter -200 kg eine Unterlastung anzeigen, also Einstellung = -200 kg.

3.1.u = -200,0 = Unterlastanzeige bei -200 kg

Nullpunkt kalibrieren (Kalibrierpunkt 1)

Zuerst wird der Nullpunkt kalibriert. Der angezeigte Display-Wert in diesem Menüpunkt 1.2 ist das momentane mV/V-Eingangssignal. Jetzt sollte sich die Waage im Nullzustand befinden und frei von irgendwelchen Belastungen und Schwingungen sein. Durch Drücken der Enter-Taste wird dies nun als Waagen-Nullpunkt abgespeichert. **1.2 = Nullpunkt der Waage kalibrieren**

Kalibrier- bzw. Gewichtswert eingeben

Jetzt wird die Waage mit Präzisionsgewichten von 750 kg belastet. Der entsprechende Wert 750 kg über die Tastatureingegeben und durch Drücken der Enter-Taste abgespeichert.

2.1 = 750,0 Wert des aufgelegten Gewichts

Gewichtskalibrierung abspeichern/beenden

Die Kalibrierung wird nun durch Anwahl dieses Menüpunktes abgeschlossen.Im Display wird das aktuelle mV/V-Eingangssignal von 0,900 mV/V angezeigt (750 kg aufgelegtes Gewicht + 600 kg Tara = 1350 kg, entspricht 0,9 mV/V bei 2 mV/V Nennkennwert der Wägezellen). Hat man nach Auflegen des Gewichtes von 750 kg kurz die Beruhigung der Waage abgewartet, wird durch Drücken der "ENTER"-Taste diese Zuordnung von Gewichtsbelastung und Zahlenwert (in 2.1) im Messgerät abgespeichert. Die Kalibrierung der Waage ist hiermit abgeschlossen.

2.2 = Wert des aufgelegten Gewichts

B.4.2 Beispiel 2, Theoretische Kalibrierung mit mV/V-Werten und Nullpunktverschiebung

Silo mit 3 Füßen auf 3 Wägezellen mit jeweils 1000 kg Nennlast und Nennkennwert 2 mV/V

Tara 600 kg, Netto 2000 kg Auflösung 0,5 kg-Schritte

Die 3 Wägezellen sind parallel an das DAS72.1 angeschlossen und die Stromversorgung eingeschaltet. Der maximale und der minimale Anzeigewert, die Auflösung der Digitalanzeige und die Dezimalpunkt-Position sollten vor der Kalibrierung des Systems bereits im Menü 3 eingestellt werden. Für dieses Beispiel ist der max. Anzeigewert auf 3100,0 kg, der minimale Anzeigewert auf -200 kg und ein Dezimalpunkt an vorletzter Stelle eingestellt.

Bitte Beachten: Nur nach Drücken des Freigabeschalters sind die Menüpunkte 1.1 bis 1.3, 2.1 bis 2.3 und 3.1 bis 3.4 verfügbar und einstellbar !

- **a** Zum Menüpunkt 1.3 gehen und mit den Abwärts-/Aufwärts-Tasten und der Ziffern- Auswahltaste den Wert 00000 einstellen. Dies ist der theoretische Nullpunkt und entspricht 0 mV/V. Nun drückt man die ENTER-Taste.
- b Anschließend in dem Menüpunkt 2.1 mit den Abwärts-/Aufwärts-Tasten und der Ziffern- Auswahltaste die Nennlast der angeschlossenen Wägezelle(n) eingeben, bzw. den Gewichtswert der dem bekannten mV/V Signal, das dann unter 2.3 eingegeben wird, entspricht. Durch Drücken der ENTER-Taste wird der eingegebene Wert abgespeichert. In unserem Beispiel ist die Gesamtnennlast der Wägezellen 3 x 1000 kg = 3000 kg bei einem Nennkennwert der Wägezellen von 2 mV/V. Also muss hier der Wert 3000 eingegeben werden.
- c Um die Kalbrierung zu beenden zum Menüpunkt 2.3 gehen und den Nennkennwert der angeschlossenen Wägezellen, also das Signal der Wägezellen bei Nennlast, in mV/V eingeben. In unserem Beispiel ist der Nennkennwert der angeschlossenen Wägezellen 2,000 mV/V. Bei dem Einsatz meherer Wägezellen mit unterschiedlichen Nennkennwerten nimmt man das arithmetische Mittel der Nennkennwerte. Durch Drücken der ENTER-Taste wird dies nun abgespeichert und das System ist mit den theoretischen Werten kalibriert.
- d Das DAS zeigt nun im Wiegemodus das auf den Wägezellen lagernde Brutto-Gewicht an. In der Regel möchte man jedoch die Vorlast (Tara) nicht ständig mitanzeigen, also bspw. das Behälterleergewicht. Darum nutzt man nun den Menüpunkt 1.2 um den Nullpunkt zu verschieben. Dazu muss sich die Waage aber im gewünschten Nullpunktzustand befinden, also der Behälter leer sein. Geht man in das Menü 1.2 wird das aktuell anliegende mV/V-Signal angezeigt. Verlässt man den Menüpunkt nun durch Drücken der ENTER-Taste, so wir d dieser Zustand als neuer Nullpunkt festgelegt. Es findet eine Verschiebung des Nullpunktes statt und bei leerem Behälter wird nun 0 angezeigt und nicht die Vorlast wie in unserem Beispiel von 600 kg.

Die Kalibrierung ist damit beendet.

∽ FLINTEC

Kalibrierroutine-Beispiel 2

Durch Drücken der AUFWÄRTS- oder ABWÄRTS- Tasten länger als 3 Sekunden gelangt man in das Einstell- und Kalibriermenü. Um Kalibrierdaten zu ändern ist es zusätzlich erforderlich den Mikroschalter einmal zu betätigen.

Dezimalpunkt-Position

Für eine Anzeige in kg mit einer Dezimalstelle wird der Dezimalpunkt an vorletzter Stelle festgelegt. 3.3 = 0.0 Dezimalpunkt-Position vorletzte Stelle

Auflösung der Digital-Anzeige

Unsere Silowaage soll 0,5 kg Auflösung anzeigen. Deshalb wählen wir hier die Einstellung = 5. 3.2 = 5 = 0,5 kg Anzeigenauflösung

Maximaler Anzeigenwert des Messgerätes

Die 3000 kg-Waage soll ab 3100 kg eine Überlastung anzeigen, also Einstellung = 3100 kg. **3.1.0 = 3100,0 = Überlastanzeige bei 3100 kg**

Minimaler Anzeigenwert des Messgerätes Die 3000 kg-Waage soll unter -200 kg eine Unterlastung anzeigen,

also Einstellung = -200 kg.

3.1.u = -200,0 = Unterlastanzeige bei -200 kg

Nullpunkt kalibrieren mittels mV/V-Wert

Zuerst wird der Nullpunkt kalibriert. Das Nullpunktsignal der Wägezellen dem Kalibrierprotokoll entnehmen, in unserem Beispiel 0,000 mV/V, und dies hier eingeben. Durch Drücken der Enter-Taste wird dies nun als Waagen-Nullpunkt abgespeichert.

1.3 = Nullpunkt der Waage bei 0,000 mV/V

Gesamtnennlast der Wägzellen als Kalibrierwert eingeben

Die Gesamtnennlast unserer Waage beträgt 3 x 1000,0 kg = 3000,0 kg. Diesen Wert eingeben und abspeichern. 2.1 = 3000,0 Gesamtnennlast

Kalibrierung der Verstärkung mittels mV/V-Wert

In unserem Beispiel besitzen die angeschlossenen Wägezellen ein Signal von 2,000 mV/V bei 3000 kg.

Nach dem also im Menüpunkt 1.3 der Nullpunkt in mV/V und in 2.1 die Nennlast 3000 kg eingegeben wurde, wird in diesem Menüpunkt der Nennkennwert der Wägezellen von 2,000 mV/V eingetragen. Damit ist die Waage ohne die Verwendung von Gewichten kalibriert.

2.3 = 2,000 als Nennkennwert in mV/V

Nullpunkt verschieben

Damit die Tara, also das Behälterleergewicht, nun nicht mit angezeigt wird verschieben wir den Nullpunkt mittels Menüpunkt 1.2. Dazu muss sich die Waage aber im gewünschten Nullpunktzustand befinden, also der Behälter leer sein. Durch Drücken der ENTER-Taste wird dieser Zustand als neuer Nullpunkt festgelegt. Es findet eine Verschiebung des Nullpunktes statt und bei leerem Behälter wird nun 0,0 kg angezeigt und nicht die Vorlast wie in unserem Beispiel von 600,0 kg. Die Kalibrierung der Waage ist hiermit abgeschlossen.

~FLINTEC

B.4.3 Beispiel 3, Theoretische Kalibrierung nur mit mV/V-Werten

Silo mit 3 Füßen auf 3 Wägezellen mit jeweils 1000kg Nennlast und Nennkennwert 2 mV/V

Tara 600 kg, Netto 2000 kg Auflösung 0,5 kg-Schritte Das Silo ist bereits befüllt, also <u>nicht</u> im Nullpunktzustand

Die 3 Wägezellen sind parallel an das DAS72.1 angeschlossen und die Stromversorgung eingeschaltet. Der maximale und der minimale Anzeigewert, die Auflösung der Digitalanzeige und die Dezimalpunkt-Position sollten vor der Kalibrierung des Systems bereits im Menü 3 eingestellt werden. Für dieses Beispiel ist der max. Anzeigewert auf 3100,0 kg, der minimale Anzeigewert auf -200 kg und ein Dezimalpunkt an vorletzterStelle eingestellt.

Bitte Beachten: Nur nach Drücken des Freigabeschalters sind die Menüpunkte 1.1 bis 1.3, 2.1 bis 2.3 und 3.1 bis 3.4 verfügbar und einstellbar !

a Ist das Silo bereits befüllt, ist eine Nullpunktverschiebung mit dem Menüpunkt 1.2 <u>nicht</u> möglich. Ist aber das Siloleergewicht bekannt und der Nennkennwert der angeschlossenen Wägezellen, kann der Nullpunkt der Waage errechnet und im Menüpunkt 1.3 als mV/V-Wert eingegeben werden.

Beispiel: Das Silo wiegt im Leerzustand 600 kg (=Tara) und die angeschlossenen Wägezellen besitzen einen Nennkennwert von 2,000 mV/V bei 3000 kg Gesamtnennlast. Daraus erghibt sich ein Signal der Wägezellen von 0,400 mV/V bei 600 kg, also am gewünschten Nullpunkt der Waage. Diesen Wert von 0,400 mV/V gibt man einfach im Menüpunkt 1.3 als Nullpunkt ein und der richtige Nullpunkt der Waage ist damit eingestellt.

- **b** Nachdem der Nullpunkt kalibriert ist wird nun in den Menüpunkten 2.1 und 2.3 die Verstärkung durch die Eingabe von Gesamtnennlast und mV/V-Signal bei Nennlast (Nennkennwert der Wägezellen) kalibriert. Dazu wird zunächst im Menüpunkt 2.1 die Gesamtnennlast der angeschlossenen Wägezellen eingegeben, also 3 x 1000 kg = 3000,0 kg.
- **c** Anschliessend erfolgt im Menüpunkt 2.3 die Eingabe des Nennkennwertes der angeschlossenen Wägezellen, in unserem Beispiel 2.000 mV/V. Das mV/V-Signal einer Wägezelle ist immer auf dem zugehörigen Kalibrierzeugnis angegeben. Bei dem Einsatz mehrerer Wägezellen mit unterschiedlichen Nennkennwerten nimmt man das arithmetische Mittel der Nennkennwerte. Durch Drücken der ENTER-Taste wird dies nun abgespeichert und das System ist mit den theoretischen Werten kalibriert.

Die Kalibrierung ist damit beendet.

~FLINTEC

Kalibrierroutine-Beispiel 3

Durch Drücken der AUFWÄRTS- oder ABWÄRTS- Tasten länger als 3 Sekunden gelangt man in das Einstell- und Kalibriermenü. Um Kalibrierdaten zu ändern ist es zusätzlich erforderlich den Mikroschalter einmal zu betätigen.

Dezimalpunkt-Position

Für eine Anzeige in kg mit einer Dezimalstelle wird der Dezimalpunkt an vorletzter Stelle festgelegt.

3.3 = 0,0 Dezimalpunkt-Position vorletzte Stelle

Auflösung der Digital-Anzeige

Unsere Silowaage soll 0,5 kg Auflösung anzeigen. Deshalb wählen wir hier die Einstellung = 5. **3.2 = 5 = 0,5 kg Anzeigenauflösung**

Maximaler Anzeigenwert des Messgerätes

Die 3000 kg-Waage soll ab 3100 kg eine Überlastung anzeigen, also Einstellung = 3100 kg. 3.1.0 = 3100,0 =Überlastanzeige bei 3100 kg

Minimaler Anzeigenwert des Messgerätes

Die 3000 kg-Waage soll unter -200 kg eine Unterlastung anzeigen, also Einstellung = -200 kg.

3.1.u = -200,0 = Unterlastanzeige bei -200 kg

Nullpunkt kalibrieren mittels mV/V-Wert

Zuerst wird der Nullpunkt kalibriert. Auch bei bereits befülltem Silo ist eine Nullpunkt- Kalibrierung mit mV/V-Wert möglich, falls wie in unserem Beispiel das Siloleergewicht bekannt ist (= 600 kg). Das Nullpunkt-Signal am gewünschten Nullpunkt der Waage wird errechnet und hier als mV/V Wert eingegeben(= 0,400). Durch Drücken der Enter-Taste wird dies nun als Waagen-Nullpunkt abgespeichert. **1.3 = Nullpunkt der Waage bei 0,400 mV/V**

1.5 = Nullpulktuel waage bel0,400 mv/v

Gesamtnennlast der Wägezellen als Kalibrierwert eingeben

Die Gesamtnennlast unserer Waage beträgt 3 x 1000 kg = 3000 kg. Diesen Wert eingeben und abspeichern. 2.1 = 3000.0 Gesamtnennlast

Kalibrierung der Verstärkung mittels mV/V-Wert

In unserem Beispiel besitzen die angeschlossenen Wägezellen ein Signal von 2,000 mV/V bei 3000 kg. Nachdem also im Menüpunkt 1.3 der Nullpunkt in mV/V und in 2.1 die Nennlast 3000,0 kg eingegeben wurde, wird in diesem Menüpunkt der Nennkennwert der Wägezellen von 2,000 mV/V eingetragen. Damit ist die Waage ohne die Verwendung von Gewichten kalibriert.

2.3 = 2,000 als Nennkennwert in mV/V

C EINSTELLUNG ÜBER SERIELLE SCHNITTSTELLE

С	EINSTELLUNG ÜBER SERIELLE SCHNITTSTELLE	23
C.1	KOMMUNIKATION & INBETRIEBNAHME	24
C.1.1	Schnittstelle	24
C.1.2	Kommandosprache	24
C.1.3	Einstellungen Baudrate / Geräteadresse	25
C.1.4	Erste Schritte zur Inbetriebnahme	25
C.2	ANSCHLUSSBILD	26
C.3	KOMMANDO PROTOKOLL-BEFEHLSÜBERSICHT	27
C.4	KOMMANDO PROTOKOLL-BESCHREIBUNG	29
C.5	KALIBRIERUNG UND KALIBRIERROUTINE	54
C.6	EINSATZ IN EICHPFLICHTIGEN ANWENDUNGEN (Informativ)	55
C.7	SOFTWARE-DOWNLOAD	56

FLINTEC

C.1 KOMMUNIKATION & INBETRIEBNAHME

C.1.1 Schnittstelle

Zur Datenkommunikation verfügt DAS 72.1 Mark III über eine serielle RS422-/RS485-Schnittstelle. Das Datenformat hat die Struktur 8/N/1 (8 Datenbit, No Parity, 1 Stoppbit).

Zur seriellen Datenübertragung können folgende Baud-Raten eingestellt werden: 9.600, 19.200, 38.400, 57.600 oder 115.200 Baud.

RS422

- Anschluss in 4-Draht-Technik
- Sogenannte "Point to Point"-Verbindung, d.h. kein Busbetrieb möglich
- Halb-Duplex Betrieb (DX=0) einstellen

RS485

- Anschluss in 2- oder 4-Draht-Technik
- Busbetrieb möglich, max. 32 DAS 72.1
- Halb- oder Voll-Duplex Betrieb (DX=0 oder DX=1) möglich

(RS232)

• Optional bietet Flintec einen RS485/RS232-Konverter an.

C.1.2 Kommandosprache

Die Kommandosprache des DAS 72.1 benutzt ein sehr einfaches ASCII-Format (2 Großbuchstaben) zur Parametrierung und Abfrage von Messwerten oder Parametern.

Beispiel:

DAS 72.1 mit der Kanal-Nr. 1 ist über RS485-Schnittstelle in einem Bussystem eingebunden. Das Nettogewicht soll abgefragt werden.

In diesem Handbuch bedeuten: Leerzeichen "_" bzw. Eingabetaste (CR/LF) " ${\scriptstyle \leftarrow}{\scriptstyle \downarrow}$ "

Master (PC / SPS) sendet	Slave (DAS 72.1) antwortet	Status
0P_1.⊣		Datenkanal zu Gerät # 1 öffnen
	ОК	Gerät # 1 bereit
GN⊷	Anforderung Nettogew	
	N+123.45	Nettogewicht mit Vorzeichen/Komma

Mit dem Befehl OP_2 wird der Kommunikationskanal zu DAS 72.1 mit der Geräteadresse 2 (dezimal) geöffnet. Das Gerät #2 meldet seine Bereitschaft und reagiert anschließend auf alle Kommandos, die über den Bus gesendet werden. Der Kommunikationskanal zu Gerät #2 wird entweder mit einem neuen OP-Befehl (z.B. OP_5) für einen anderen Busteilnehmer oder mit dem Befehl CL_2 geschlossen.

DAS 72.1 arbeitet mit einer Neuerung im Kommunikationsprotokoll; jeder OP-Befehl impliziert einen CL-Befehl für alle nicht adressierten Geräte. Hierdurch werden Adressierungs-Strukturen vereinfacht und die Gesamtleistung im Bus verbessert.

~FLINTEC

C.1.3 Einstellungen Baudrate / Geräteadresse

Baudrate

Werkseinstellung: 9600 Baud.

Geräte-Adresse

Mit dem Befehl AD kann eine Geräteadresse im Bereich 1 bis 255 eingestellt werden. Mit AD_5 wird dem angesprochenen DAS die Adresse 5 zugeteilt.

Die Geräteadresse 0 bedeutet eine Daueraktivierung, d.h. alle Befehle auf dem Bus werden ausgeführt. Es ist hierzu kein spezielles OP-Kommando nötig.

Werkseinstellung: Adresse 0.

C.1.4 Erste Schritte zur Inbetriebnahme

Benötigt werden:

- PC / SPS mit RS422- oder RS485-Schnittstelle
- bei PC mit RS232-Schnittstelle wird ein Konverter RS485/RS232 benötigt
- · Schnittstellenkabel entsprechend der benutzten Schnittstelle
- Wägezelle / Waage mit Prüfgewicht oder ein Wägezellen-Simulator
- Spannungsversorgung 12 ... 24 V DC
- ein oder mehrere DAS 72.1
- · Eine geeignete ASCII-Kommunikations-Software*

Bitte das Anschlussbild auf Seite 26 beachten.

* Mit Programmen wie Procomm, Telemate, Kermit oder auch HyperTerminal (Bestandteil von Windows) kann sehr einfach und schnell die Kommunikation mit einem PC realisiert werden.

Zusätzlich ist kostenlos die Service-Software DOP 2.x.x mit grafischer Bedienoberfläche und Oszilloskop-Funktion, lauffähig unter Windows 2000/XP, erhältlich.

FLINTEC

C.2 ANSCHLUSSBILD

Anmerkung:

Bei 4-Leiter-Technik müssen "Exc +" und "Sen +" sowie "Exc -" und "Sen -" gebrückt werden.

Flintec Wägezelle; 4-Leiter-Technik

Flintec Wägezelle; 6-Leiter-Technik

	:			
Betehl	Kurzbeschreibung	Beschreibung	Parameter-Werte	Typische Antwort
AA	Get/set analog action	Zuordnung Analogausgang	0 bis 8	A+00000/0K/ERR
AD	Network address	Netzwerkadresse abfragen / einstellen	0 bis 255	A:014/0K/ERR
AG	Absolute gain calibrate (TAC geschützt)	Verstärkung kalibrieren in mV/V	+/-32000; 0 bis 99999	G+2.0000/0K/ERR
АН	Get/set analog high	Kalibrierpunkt Analogausgang bei 20 mA	-99999 bis 9999	H+10000/0K/ERR
AIn	Action input n	Funktion von Logikeingang 1, 2 oder 3	0 bis 14	In:+00006
AL	Get/set analog low	Kalibrierpunkt Analogausgang bei 4 mA	-99999 bis 99999	L+00000/0K/ERR
An	Get/set setpoint n action	Zuordnung Grenzwertausgang	0 bis 8	An:+00000/0K/ERR
AS	Save analog output parameters	AL, AH, AA im EEPROM speichern	keine	OK/ERR
AZ	Absolute zero calibrate (TAC geschützt)	Nullpunkt kalibrieren in mV/V	-32000 bis 32000	Z+0.000/0K/ERR
BR	Baudrate	Baudrate abfragen / einstellen	9600 bis 115200	B 9600
U	Calibrate enable	Zugriffscode Kalibriererlaubnis lesen / senden	0 bis 65535	E+00001/0K/ERR
99	Calibrate gain (TAC geschützt)	Verstärkung kalibrieren	0 bis 99999	G+20000/0K/ERR
IJ	Calibrate min (TAC geschützt)	Minimalen Anzeigewert abfragen / einstellen	0 bis -99999	I+09000/0K/ERR
С	Close all connections	Alle Geräte schliessen (OPxxx beinhaltet CL)	keine	keine
CM	Calibrate max (TAC geschützt)	Maximalen Anzeigewert abfragen / einstellen	0 bis 99999	M+30000/0K/ERR
S	Calibrate save (TAC geschützt)	Kalibrierwerte CM, CZ, AZ, CG, AG, DS, DP, ZT im EEPROM speichern	keine	OK/ER
CZ	Calibrate zero (TAC geschützt)	Nullpunkt kalibrieren	keine	OK/ER
DP	Decimal point (TAC geschützt)	Dezimalpunkt abfragen / einstellen	0 bis 5	P+00005/0K/ERR
DS	Display step size (TAC geschützt)	Auflösung der Digitalanzeige einstellen	1, 2.5, 10, 20, 50, 100, 200, 500	S+00001/0K/ERR
DX	Duplex	Halb- oder Vollduplex einstellen	0 oder 1	X+000/0K/ERR
£	Factory default (TAC geschützt)	Einstellungen zurück auf Werkseinstellung	keine	OK/ER
Ľ	Filter setting	Filterfrequenz einstellen	0 bis 8	F+00008/0K/ERR
μ	Filter mode	Filtermodus einstellen	0 oder 1	M+00001/0K/ERR
GА	Get Average weight	Ergebnis der Kontrollwägung auslesen	keine	A+00000
99	Get gross value	Abfrage des Brutto-Gewichts (gefiltert)	keine	G+01100
HD	Get hold value	Abfrage des Hold-Wertes	keine	H+01000/0K/ERR
GM	Get maximum value (peak)	Abfrage des maximalen Wertes (Peak)	keine	M+00100
GN	Get net value	Abfrage des Netto-Gewichts (gefiltert)	keine	N+00000
60	Get peak to peak value	Abfrage des Peak to Peak-Wertes	keine	0+01000/0K/ERR
GS	Get sample	Abfrage des AD-Wandlers	keine	S+000000
GТ	Get tare value	Abfrage des Tara Gewichts	keine	T+00000
GV	Get valley value	Abfrage des Minimal-Wertes	keine	V+01000/0K/ERR
GW	Get long weight information	Abfrage Datenstrings (Netto, Brutto, Status, Checksumme)	keine	W+00100+01100010F
Ħ	Get/set setpoint n hysteresis	Hysterese für Grenzwertausgang 1, 2 or 3 einstellen	-99999 bis 99999	Hn:+00000/0K/ERR

C.3 KOMMANDO PROTOKOLL-BEFEHLSÜBERSICHT

Befehl	Kurzbeschreibung	Beschreibung	Parameter-Werte	Typische Antwort
Q	Inform. device ID	Abfrage der Geräteidentifikation	keine	D:7210
N	Read input status	Statusabfrage der Eingänge	keine	IN:0011
0	Read/Modify output status	Status der Ausgänge abfragen / eingeben	0000 bis 0111	10:0011
S	Inform. on device status	Statusabfrage der Waage	keine	S:00000
2	Inform. version number	Abfrage der Software Version	keine	V:0428
3	List settings	Abfrage / Auflistung aller Menüeinstellungen	keine	Liste der Einstellungen
MT	Measuring Time	Integrationszeit für Messwertbildung	0 bis 500 ms	M+00100/0K/ERR
NR	No-motion range	Stillstandbereich abfragen / einstellen	0 bis 65535	R+00010/0K/ERR
NT	No-motion time	Signalberuhigungszeit abfragen / einstellen	0 bis 65535	T+00500/0K/ERR
MO	Output mask	Freigabe externes Steuern der Ausgänge	0000 bis 0111	OM:0000/0K/ERR
OP	Open connection	Übertragung zu einem Messgerät öffnen	0 bis 255	0:002/0K
Pn	Get/set logic setpoint / hysteresis	Schaltlogik für Ausgang n einstellen	0 oder 1	Pn:+00000/0K/ERR
RM	Reset peak weight value	Maximal-Gewichtswert zurücksetzen	keine	OK/ERR
RT	Reset tare	Tarieren zurücksetzen	keine	OK/ERR
RZ	Reset system zero	Korigierten Waagennullpunkt zurücksetzen	keine	OK/ERR
SD	Start Delay	Startverzögerung einstellen	0 bis 500 ms	S+00100/0K/ERR
SG	Start auto-transmit gross	Dauerübertragung des Bruttogewichts	keine	G+01100/0K/ERR
HS	Auto-transmit hold value	Dauerübertragung des Hold-Wertes	keine	H+01000/0K/ERR
SM	Auto-transmit peak weight value	Dauerübertragung des Maximal-Wertes (peak)	keine	M+00100/0K/ERR
SN	Start auto-transmit net	Dauerübertragung des Nettogewichts	keine	N+00000/0K/ERR
SO	Auto-transmit peak to peak value	Dauerübertragung des Peak to Peak-Wertes	keine	0+01000/0K/ERR
Sn	Get/set setpoint n	Grenzwertausgang n einstellen	-99999 bis 99999	Sn:+00000/0K/ERR
SR	Software reset	Software Reset (Neustart des DAS)	keine	OK
SS	Save setpoint parameters	Grenzwertausgangsparameter speichern in EEPROM	keine	OK/ERR
ST	Set tare	Tarieren	keine	OK/ERR
SV	Auto-transmit valley value	Dauerübertragung des Minimal-Wertes	keine	V+01000/0K/ERR
SW	Start auto-transmit weight	Dauerübertragung Datenstring (Netto, Brutto, Status, Checksumme)	keine	W+0750+750061F4
SZ	Set system zero	Nullstellen	keine	OK/ERR
믭	Trigger Edge	Triggerflanke einstellen (steigend oder fallend)	0 oder 1	E:000/0K/ERR
Ħ	Software-Hold	Abspeichern des momentanen Messwertes	keine	OK/ERR
Ľ	Trigger Level	Triggerschwelle festlegen	0 bis 99999	T+00100/0K/ERR
TR	Trigger	Triggerung / Start einer Kontrollwägung auslösen	keine	OK/ERR
UR	Update rate	Messwertausgabe einstellen	0 bis 7	U+00000/0K/ERR
WP	Save set-up parameters	Parameter speichern	keine	OK/ERR
Z	Zerotrack (TAC geschützt)	Nullpunktkorrektur einstellen	0 bis 255	Z:001/0K/ERR

FLINTEC

FLINTEC

C.4 KOMMANDO PROTOKOLL-BESCHREIBUNG

Zur besseren Übersichtlichkeit sind die Kommandos in Gruppen unterteilt und werden nachfolgend ausführlich beschrieben.

C.4.1	Kommandos zur System-Diagnose – ID, IV, IS, SR	30
C.4.2	Kommandos zur Triggerung – SD, MT, GA, TE, TR, TL	31
C.4.3	Kommandos zur Kalibrierung – CE, CI, CM, DS, DP, CZ, CG, AZ, AG, ZT, FD, CS	33
C.4.4	Kommandos für den "Stillstandbereich" – NR, NT	37
C.4.5	Kommandos zur Filtereinstellung – FM, FL, UR	38
C.4.6	Kommandos Tarieren und Nullstellen – SZ, RZ, ST, RT	40
C.4.7	Kommandos Messwertabfrage – GG, GN, GT, GS, GM, RM, GH, GO, GV, GW	42
C.4.8	Kommandos Dauersenden der Messwerte – SG, SN, SW, SM, SH, SO, SV	44
C.4.9	Kommandos zur externen I/O-Steuerung – IN, IO, OM, AI	46
C.4.10	Kommandos zur Grenzwerteinstellung der Ausgänge - Sn, Hn, Pn, An	48
C.4.11	Kommandos zur Einstellung serielle Schnittstelle – AD, CL, BR, DX, OP, LI	50
C.4.12	Kommandos Analogausgang 4–20 mA - AL, AH, AA	52
C.4.13	Kommandos zur Speicherung der Einstellungen – CS, WP, SS, AS, TH	53

C.4.1 Kommandos zur System-Diagnose – ID, IV, IS, SR

Mit diesen Befehlen können von einem DAS 72.1 der Typ, Firmware-Version oder Geräte-Status abgefragt werden. Die Befehlseingabe erfolgt ohne Parameter.

ID Abfrage der Geräte-Identifizierung

Master (PC / SPS) sendet	DAS 72.1 antwortet	
ID₊J	D:7210	

Dieser Code informiert über den Typ des aktuell aufgerufenen Gerätes. Diese Identifizierung ist nützlich bei Betrieb mehrerer verschiedener Geräte an einem Bus.

IV Abfrage der Firmware-Version

Master (PC / SPS) sendet	DAS 72.1 antwortet	
IV₊J	V:0210	

Je nach Firmware-Version stehen zusätzliche Befehle zur Verfügung.

IS Abfrage des Geräte-Status

Master (PC / SPS) sendet	DAS 72.1 antwortet
IS₊J	S:067000

Die in den beiden dreistelligen Zahlenwerten (067 bzw. 000) als Zweierpotenzen verpackten Informationen können nach folgender Tabelle entschlüsselt werden:

Linker 3-digit Wert		Rechter 3-digit Wert	
1	Waage in Ruhe	1	(nicht benutzt)
2	Nullpunkt korrigiert	2	(nicht benutzt)
4	Tarierung aktiv	4	(nicht benutzt)
8	(nicht benutzt)	8	(nicht benutzt)
16	(nicht benutzt)	16	(nicht benutzt)
32	(Grenzwert-) Ausgang 1 aktiv	32	(nicht benutzt)
64	(Grenzwert-) Ausgang 2 aktiv	64	(nicht benutzt)
128	(Grenzwert-) Ausgang 3 aktiv	128	(nicht benutzt)

Am Beispiel dekodiert man die Rückmeldung S:067000 (Binär 01000011) zu:

- Waage in Ruhe (stabil) $[2^0 = 1, LSB]$
- Nullpunkt korrigiert [2¹ = 2]
- Grenzwert 2 aktiv $[2^6 = 64]$

Anmerkung: Nicht benutzte Bit sind bei DAS 72.1 auf 0 gesetzt.

SR Reset Firmware von DAS 72.1

Master (PC / SPS) sendet	DAS 72.1 antwortet
SR₊J	ОК

Die Antwort des DAS 72.1 erfolgt nach max. 400ms. Dieser Befehl hat prinzipiell die gleiche Wirkung wie Aus-/ Einschalten der Versorgungsspannung.

C.4.2 Kommandos zur Triggerung – SD, MT, GA, TE, TR, TL

Achtung: Alle nachfolgenden Einstellungen mit dem WP Befehl (Write Parameter) vor dem Ausschalten permanent speichern.

SD Start Delay 0 ... 500 ms

Mit diesem Befehl wird eine Zeitverzögerung ab dem Triggerzeitpunkt eingestellt; zulässige Werte liegen im Bereich 0 ... 500 ms.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
SD₊J	S+00100	Abfrage: SD=100 ms
SD_200₊J	ОК	Einstellung:SD=200 ms

Werkseinstellung: 0 = 0 ms

Zeitdiagramm einer Kontrollwiegung siehe Seite 32

MT Measuring Time 0 ... 500 ms (Integrationszeit)

Mit diesem Befehl wird die Integrationszeit für die Messwertbildung eingestellt; zulässige Werte liegen im Bereich 0 ... 500 ms.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
MT⊷	M+00100	Abfrage: MT=100 ms
MT_500₊	OK	Einstellung:MT=500 ms

Achtung: Einstellung MT=0 bedeutet, dass Triggerfunktion und Mittelwertbildung ausgeschaltet sind.

Werkseinstellung: 0 [keine Triggerfunktion]

Zeitdiagramm einer Kontrollwiegung siehe Seite 32

GA Get Average

Mit diesem Befehl wird das Ergebnis einer Kontrollwägung ausgelesen; der Messwert wurde gemäß der MT-Einstellung gebildet.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
GA⊷	A+01.100	Ergebnis: GA=1.100 g

Achtung: Beim Start einer neuen Kontrollwägung hat das GA-Register den Wert 99999 gespeichert, um Fehler beim Auslesen der Daten zu vermeiden. Erst nach Ablauf der eingestellten Integrationzeit MT steht das Ergebnis so lange im GA-Register, bis eine neue Kontrollwägung gestartet wird.

TE Trigger Edge (Triggerflanke)

Mit diesem Befehl wird die Triggerflanke eingestellt; zulässige Werte sind 0 für fallend und 1 für steigend.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
TE⊷	E+001	Abfrage: TE=1
TE_0,J	ОК	Einstellung:TE=0

Werkseinstellung: 0 [= fallende Flanke]

Zeitdiagramm einer Kontrollwiegung siehe Seite 32

TR Trigger

Mit diesem Befehl wird eine Triggerung (= Start einer Kontrollwägung) ausgelöst. Dieser Befehl arbeitet vglb. wie ein Hardware-Startimpuls.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
TRĻ	OK	Triggerung ausgelöst

TL Trigger Level (Trigger-Pegel)

Mit diesem Befehl wird der Triggerpegel eingestellt; zulässige Werte liegen im Bereich 0...99999.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
TL₊J	T+99999	Abfrage: TL=99999
TL_1000₊J	ОК	Einstellung:TL=1000

Unter Berücksichtigung der anderen Trigger-Befehle (SD, TR, TE, TL) würde eine Kontrollwägung automatisch bei Über-/Unterschreiten von 1.000 d (Incrementen) (z.B. 100,0 g) gestartet.

Werkseinstellung: 99999 [=nicht aktiv]

C.4.3 Kommandos zur Kalibrierung – CE, CI, CM, DS, DP, CZ, CG, AZ, AG, ZT, FD, CS

Anmerkung: TAC steht nachfolgend für Traceable Access Code (=Eichzähler).

CE TAC-Zählerstand

Mit diesem Befehl wird der TAC-Zähler abgefragt bzw. eine Kalibriersequenz geöffnet.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
CE₊J	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17,⊣	ОК	Kalibriersequenz geöffnet

Dieses Kommando muss vor jeder Verwendung der Kalibrier-Befehle CZ, CG, CS, CM, DS oder DP korrekt erteilt werden. Für eichamtliche Anwendungen dient der Eichzähler zur Überwachung von Manipulation der Waage. Nach jeder Kalibrier-Änderung wird der TAC-Zähler um 1 erhöht.

CI Minimalen Anzeigewert festlegen

Mit diesem Befehl wird der min. Anzeigewert eingestellt; zulässige Werte liegen im Bereich 0...-999999.

Master (PC / SPS) sendet	LDU XX.X antwortet	Bedeutung
CI⊷	I-00300	Abfrage: $CI = -300$
CE₊J	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17,⊣	ОК	Kalibriersequenz geöffnet
CI05000₊J	ОК	Einstellung: CI = 50000

Cl ist maßgebend dafür, ab welchem Wert die Messwert-Ausgabe zu "uuuuu" (under range) wechselt, um damit eine Bereichsunterschreitung anzuzeigen.

Werkseinstellung: -9000

CM Maximalen Anzeigewert festlegen

Mit diesem Befehl wird der max. Anzeigewert eingestellt; zulässige Werte liegen im Bereich 1... 99999.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
CM₊	M+30000	Abfrage: CM = 30000
CE₊J	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17, J	OK	Kalibriersequenz geöffnet
CM_50000₊	ОК	Einstellung: CM = 50000

CM ist maßgebend dafür, ab welchem Wert die Messwert-Ausgabe zu "ooooo" (overflow) wechselt, um damit eine Bereichsüberschreitung anzuzeigen.

Hinweis: Der Bereich, in dem die Waage "nullgestellt" (SZ=Set Zero) werden kann oder in dem die automatische Nullpunktkorrektur (ZT=Zero Tracking) aktiv ist, beträgt ± 2 % des CM-Wertes.

Werkseinstellung: CM = 99999.

DS Ziffernsprung einstellen

Mit diesem Befehl wird der Ziffernsprung des Anzeigewertes eingestellt; zulässige Werte sind 1, 2, 5, 10, 20, 50, 100 und 200.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
DS₊J	S+00002	Ziffernsprung 2
CE₊J	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17,⊣	ОК	Kalibriersequenz geöffnet
DS_50.⊣	ОК	Ziffernsprung 50 eingestellt

Eichfähige Anwendungen erlauben 3000 bzw. 5000 Ziffern-Schritte; der Ziffernsprung ist hier auch zu berücksichtigen.

DP Kommaposition einstellen

Mit diesem Befehl wird die Kommaposition des Anzeigewertes eingestellt; zulässige Positionen sind 0, 1, 2, 3, 4 und 5. Position 0 bedeutet keine Nachkommastelle.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
DP₊J	P+00002	Abfrage: Nachkommastelle
CE⊷	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17.⊣	ОК	Kalibriersequenz geöffnet
DP_0,⊣	ОК	keine Nachkommastelle

CZ Nullpunkt kalibrieren

Mit diesem Befehl wird der Referenz-Nullpunkt für alle Messungen eingestellt.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
CE⊷	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17.⊣	ОК	Kalibriersequenz geöffnet
CZ⊷	ОК	Nullpunkt übernommen

Werkseinstellung: ca. 0 mV/V Eingangssignal.

CG Verstärkung (bzw. Bereichs-Endwert) kalibrieren

Mit diesem Befehl wird Verstärkung bzw. Messbereich für alle Messungen eingestellt; zulässige Werte liegen im Bereich 1 ... 99999.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
CG₊J	G+10000	Abfrage: Messber. 10000 d
CE₊J	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17.⊣	ОК	Kalibriersequenz geöffnet
CG_15000⊷	OK	neu: Messbereich 15000 d

Zur Kalibrierung liefert ein Messsignal entsprechend dem Messbereichs-Enwert die beste Systemgenauigkeit. Idealerweise entspricht es dem max. Anzeigewert (CM). Empfohlen wird min. 20% Auslastung (\approx 0,4 mV/V) der Nennlast Wägezelle(n).

Werkseinstellung: 20000 = 2,000 mV/V Eingangssignal.

AZ Nullpunkt direkt in mV/V kalibrieren

Mit diesem Befehl wird der absolute Nullpunkt für alle Messungen in mV/V eingestellt; zulässige Werte liegen im Bereich \pm 32000 (= \pm 3,2000 mV/V).

Master (PC / SPS) sendet	LDU XX.X antwortet	Bedeutung
AZ⊷	Z+0.0005	Abfrage: Nullpunkt @ 0.0005 mV/V
CE⊷	E+00017 (Beispiel)	Abfrage:TAC-Zähler CE17
CE_17.⊣	ОК	Kalibriersequenz geöffnet
AZ_00500₊J	ОК	neu: Nullpunkt @ 0.0500 mV/V

Werkseinstellung: 00000 @ 0,0000 mV/V Eingangssignal.

AG Verstärkung (bzw. Bereichs-Endwert) direkt in mV/V kalibrieren

Mit diesem Befehl wird die absolute Verstärkung bzw. Messbereich für alle Messungen in mV/V eingestellt; zulässige Werte liegen im Bereich \pm 32000 (= \pm 3,2000 mV/V).

Master (PC / SPS) sendet	LDU XX.X antwortet	Bedeutung
AG₊	G+2.0000	Abfrage: Messber. 2.000mV/V
CE₊J	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17,⊣	ОК	Kalibriersequenz geöffnet
AG_17500_10000⊷	01/	neuer Messbereich
	UK	1.750mV/V @ 10000 d

Zur Kalibrierung liefert ein Messsignal entsprechend dem Messbereichs-Enwert die beste Systemgenauigkeit. Idealerweise entspricht es dem max. Anzeigewert (CM). Empfohlen wird min. 20% Auslastung (» 0,4 mV/V) der Nennlast Wägezelle(n).

Werkseinstellung: 10000 @ 2,0000 mV/V Eingangssignal.

ZT Automatische Nullpunktkorrektur (Zero Tracking)

Mit diesem Befehl wird die Automatik zur Nullpunktkorrektur ein-/ausgeschaltet; zulässige Werte sind 0 [= AUS] und 1 [= EIN].

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
ZT⊷	Z: 001	Abfrage: ZT-Status
CE⊷	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17.⊣	ОК	Kalibriersequenz geöffnet
ZT 0.⊣	ОК	Einstellung: ZT = AUS

Das Zero Tracking arbeitet mit weniger als \pm 0,5 d bei 0,4 d/s [d=Ziffernsprung DS]. Der Regelbereich beträgt \pm 2% des maximalen Anzeigewertes CM.

Werkseinstellung: ZT=0 [AUS]

FD Einstellungen zurück auf Werkseinstellung

Mit diesem Befehl werden alle Geräteeinstellungen wieder auf die Werkseinstellungen zurückgesetzt.

Achtung: Alle Einstellungen <u>und die Kalibrierung</u> werden bei Ausführung dieses Befehls mit den Werkseinstellungen überschrieben!

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
CE₊J	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17,⊣	ОК	Kalibriersequenz geöffnet
FD⊷	ОК	Werkseinstellung

CS Kalibrierwerte sichern

Mit diesem Befehl werden alle Kalibrierdaten netzausfallsicher im EEPROM gespeichert und der TAC-Zählerstand um 1 erhöht.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
CE₊J	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17,₋J	ОК	Kalibriersequenz geöffnet
CS.J	ОК	Kalibrierdaten gesichert

CS sichert alle Parameter, die mit den Befehlen CZ, CG, CM, DS, DP und ZT eingestellt wurden. Der Befehl wird mit ERR quittiert, wenn zuvor nicht die Kalibriersequenz mit CE_XXXXX geöffnet wurde.

C.4.4 Kommandos für den "Stillstandbereich" – NR, NT

Über den Geräte-Stillstand lassen sich bestimmte Funktionen in Phasen der Instabilität des Sensorsignals sperren. Das Messsignal gilt als "stabil" (d.h. "Waage in Ruhe"), wenn sich während der Zeit NT das Messsignal innerhalb des Stillstandbereiches NR befindet.

Diese "Waage in Ruhe"-Situation aktiviert das entsprechende Bit im Geräte-Status (Befehl IS). Ist das System <u>nicht</u> im Zustand "Waage in Ruhe", dann sind Funktionen wie "Null-Setzen" [SZ], "Tarieren" [ST], "Nullpunkt-Kalibrierung" [CZ] und "Verstärkung-Kalibrierung" [CG] blockiert. Das System meldet als Antwort auf den/die Befehl(e) ERR (Error=Fehler).

NR Messgerät-Stillstandbereich

Mit diesem Befehl wird der Stillstandbereich definiert; zulässige Werte liegen im Bereich 1...65000.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
NR⊷	R+00010	Abfrage: $NR = 10 d$
NR_2,J	ОК	Einstellung: NR = 2 d
WP₊J	ОК	Einstellung gespeichert

Im Beispiel NR = 2 darf sich der Messwert innerhalb der Zeitdauer NT um max. \pm 2d bewegen, dann gilt für das System "Waage in Ruhe".

Werkseinstellung: NR = 1 [= $\pm 1d$].

NT Zeitdauer Stillstand ("Waage in Ruhe")

Mit diesem Befehl wird die Zeit für den Stillstand definiert; zulässige Werte liegen im Bereich 1...65535.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
NT⊷	T+01000	Abfrage: NT = 1000 ms
NT_500₊J	ОК	Einstellung: NT = 500 ms
WP₊	ОК	Einstellung gespeichert

Bei NT = 500 darf sich der Messwert über 500 ms max. um den eingestellten NR-Wert (z.B. \pm 2d) bewegen, dann gilt für das System "Waage in Ruhe".

Werkseinstellung: NT = 1000 [=1000 ms].

C.4.5 Kommandos zur Filtereinstellung – FM, FL, UR

Diese Befehle stellen die digitalen Filter über die Befehlsparameter FM und FL ein. Digitale Signalfilter dienen dazu, elektrische oder mechanische Störungen in industrieller Umgebung zu reduzieren. Bitte beachten, dass diese Filter direkt nach dem Analog- Digital-Wandler aktiv sind und somit eine Wirkung auf alle Einstellungen des Wägebetriebes haben.

FM Filtermodus FIR / IIR

Mit diesem Befehl wird der Filtermodus eingestellt; zulässige Werte sind 0 für IIR-Filter und 1 für FIR-Filter.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
FM⊷	F+00001	Abfrage: $FM = 1$ (FIR)
FM_0⊷	ОК	Einstellung: $FM = 0$ (IIR)
WP₊	ОК	Einstellung gespeichert

Das digitale IIR-Filter arbeitet als Tiefpassfilter 2. Ordnung mit Gauß-Charakteristik, die Dämpfung beträgt 40 dB/Dekade; vgl. Tabelle Mode 0.

Der digitale FIR-Filter arbeitet als Tiefpass-Filter, Dämpfung siehe Tabelle Mode 1.

Werkseinstellung: 0

FL Filtergrenzfrequenz einstellen

Mit diesem Befehl wird die Filtergrenzfrequenz eingestellt; zulässige Werte sind 0...8.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
FL	F+00003	Abfrage: $FL = 3$
FL_1.J	ОК	Einstellung: FL = 1
WPĻ	ОК	Einstellung gespeichert

Die einstellbaren Werte sind 0 bis 8, vgl. Tabellen unten.

Der Wert 0 sperrt die Filter im Modus 0 oder 1 (Befehl FM).

Werkseinstellung: 3

Mode 0 Charakteristik (IIR-Filter)

FL	Settling time to 0.1% (ms)	3dB Cut-off frequency (Hz)	Damping @300Hz (dB)	max. Output-rate* (samples/s)
0	no filtering	**		600
1	55	18	57	600
2	122	8	78	600
3	242	4	96	600
4	322	3	104	600
5	482	2	114	600
6	963	1	132	600
7	1923	0.5	149	600
8	3847	0.25	164	600

* Output-rate = $600/2^{UR}$ samples/s

** Antialiasing filter 17 Hz @ 60 dB/dec

Mode 1 Charakteristik (FIR-Filter)

FL	Settling time to 0.1% (ms)	3 dB Cut-off (Hz)	20 dB damping (Hz)	40 dB damping (Hz)	Damping in the stopband (dB)	Stopband (Hz)	max.Output rate (samples/s)
0	no filtering	**					600
1	47	19.7	48	64	>90	>80	600
2	93	9.8	24	32	>90	>40	300
3	140	6.5	16	21	>90	>26	200
4	187	4.9	12	16	>90	>20	150
5	233	3.9	10	13	>90	>16	120
6	280	3.2	8	11	>90	>13	100
7	327	2.8	7	9	>90	>11	85.7
8	373	2.5	6	8	>90	>10	75

** Antialiasing filter 17 Hz @ 60 dB/dec

Achtung: Je nach gewählter Filterstufe im Mode 1 wird die Output-Rate UR vom System automatisch angepasst.

UR Einstellung der Mittelwertbildung

Mit diesem Befehl wird in Abhänigkeit des gewählten Filtermodus eingestellt, über wie viele Messwerte ein Mittelwert gebildet wird. Zulässige Werte liegen im Bereich 0...7, siehe nachfolgende Tabelle. Der Mittelwert wird über 2^{UR} Messwerte gebildet.

Folgende Mittelwertbildung ist bei DAS 72.1 einstellbar:

UR	0	1	2	3	4	5	6	7
Anzahl der Messwerte	1	2	4	8	16	32	64	128

Überprüfung / Einstellung der Mittelwertbildung:

Master (PC / SPS) sendet	LDU XX.X antwortet	Bedeutung
UR₊	U+0001	Abfrage: Mittelwert über 2 Messwerte
UR_4₊J	ОК	Einstellung: Mittelwert über 16 Messwerte

Werkseinstellung: 0 [keine Mittelwertbildung, = 600 Messwerte/s]

Anmerkung zu Mode 1

Zusammenhang Output Rate - Mittelwertbildung UR - Filter FL

UR				Outpu	t Rate Messw	verte/s			
	FL 0	FL 1 19.7 Hz	FL 2 9.8 Hz	FL 3 6.5 Hz	FL 4 4.9 Hz	FL 5 3.9 Hz	FL 6 3.2 Hz	FL 7 2.8 Hz	FL 8 2.5 Hz
0	600	600	300	200	150	120	100	85.7	75
1	300	300	150	100	75	60	50	42.85	37.5
2	150	150	75	50	37,5	30	25	21.42	18.75
3	75	75	37.5	25	18.75	15	12.5	10.71	9.38
4	37.5	37.5	18.75	12.5	9.38	7.5	6.25	5.36	4.69
5	18.75	18.75	9.38	6.25	4.69	3.75	3.13	2.68	2.34
6	9.38	9.38	4.69	3.13	2.34	1.88	1.56	1.34	1.17
7	4.69	4.69	2.34	1.56	1.17	0.94	0.78	0.67	0.59

~FLINTEC

C.4.6 Kommandos Tarieren und Nullstellen – SZ, RZ, ST, RT

Diese Befehle erlauben die Funktionen Nullstellen oder Tarieren sowie deren Zurücknahme.

Der Netto-Messwert z.B. ist hiervon direkt abhängig. Der beim Kalibrieren eingestellte Nullpunkt [CZ] bleibt stets der phsysikalische Nullpunkt des Systems. Der durch Nullstellen oder Tarierung "aktuell wirksame" Nullpunkt ist die Basis für den ausgegebenen Netto-Messwert.

Der "aktuell wirksame" Nullpunkt wird ggf. bei aktivem Zero Tracking [ZT] ständig beeinflusst. Eine wichtige Gerätefunktion ist die Nicht-Annahme der Befehle Nullstellen und Tarieren, solange das Signal nicht stabil ("Waage in Ruhe") steht.

Ein Nullstellen mit dem Befehl SZ wird nicht ausgeführt, wenn sich der aktuelle Messwert um mehr als ±2% des max. Anzeigewertes [CM] vom kalibrierten Nullpunkt [CZ] befindet. Vgl. Kapitel 8 "Eichpflichtige Anwendungen".

SZ Nullstellen

Mit diesem Befehl wird der aktuelle Nullpunkt als Basis für die Wägeoperationen festgelegt; der zulässige Nullstell-Bereich hängt u.a. vom eingestellten CM-Wert ab.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
SZ.⊣	ОК	Nullstellen ausgeführt

Wird der Befehl vom DAS mit OK quittiert, ist das Status-Bit "Nullstellen" (Abfrage IS) gesetzt ("1"). Ein erneuter SZ-Befehl oder der Rücksetz-Befehl [RZ] ändern den aktuellen Nullpunkt.

Der Befehl wird nicht ausgeführt, wenn sich der aktuelle Messwert um mehr als $\pm 2\%$ des max. Anzeigewertes [CM] vom kalibrierten Nullpunkt [CZ] befindet. Das DAS antwortet mit ERR (Error).

RZ Nullstellen deaktivieren

Mit diesem Befehl wird die Nullstell-Funktion deaktiviert; der Nullpunkt entspricht jetzt wieder dem physikalischen Nullpunkt [CZ] des Systems.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
RZ₊J	ОК	Nullpunkt CZ aktiv

Das DAS antwortet auf diesen Befehl mit OK oder ERR. Wurde OK quittiert, ist das Status-Bit (Abfrage IS) zurückgesetzt ("0").

ST Tarieren

Mit diesem Befehl wird das System tariert, d.h. die Netto-Messwerterfassung ist aktiv. Eine Vorlast (Tara) wird beim Nettowert berücksichtigt.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
ST₊J	ОК	Tarierung ausgeführt

Wird der Befehl vom DAS mit OK quittiert, ist das Status-Bit "Tarierung aktiv" (Abfrage IS) gesetzt ("1"). Mit dem Befehl RT kann die Tara deaktiviert werden.

Der Befehl wird nur bei System-Status "Waage in Ruhe" ausgeführt. Andernfalls antwortet das DAS mit ERR (Error).

RT Tarierung deaktivieren

Mit diesem Befehl wird die Tarier-Funktion deaktiviert, d.h. es wird auf Brutto- Messwertausgabe zurückgestellt.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
RT₊J	ОК	Tarierung deaktiviert

Das DAS antwortet auf diesen Befehl mit OK oder ERR. Wurde OK quittiert, ist das Status-Bit (Abfrage IS) zurückgesetzt ("0").

~FLINTEC

C.4.7 Kommandos Messwertabfrage – GG, GN, GT, GS, GM, RM, GH, GO, GV, GW

Die hier beschriebene Gruppe von Befehlen dient dazu, Messwerte unterschiedlicher Art anzufordern. Die Kommandos beginnen jeweils mit dem Buchstaben "G" (für "get").

GG Brutto-Wert abfragen

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
GG₊⊣	G+01.100	Brutto 1.100 d

GN Netto-Wert abfragen

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
GN⊷	N+01.000	Netto 1.000 d

GT Tara-Wert abfragen

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
GT⊷	T+000.100	Tara 100 d

GS AD-Wandler-Wert abfragen

Dieser Befehl fragt den gerade aktuellen AD-Wandler-Wert ab.

Master (PC / SPS) sendet	Master (PC / SPS) sendet DAS 72.1 antwortet Bedeutur	
GS.⊣	S+125785	AD-Wert =125.785 d

Diese Möglichkeit bietet Vorteile bei Inbetriebnahme oder Fehlerdiagnose, weil direkt der gewandelte "rohe" Messwert zur Verfügung steht. Somit kann die Funktion des Systems einfach analysiert werden. Hilfreich für Servicefälle ist, wenn die GS-Werte für Nullpunkt und Verstärkung notiert sind.

GM Spitzenwert abfragen

Dieser Befehl fragt den Spitzenwert ab, sofern diese Funktion im Menü 6.x.1 bzw. mit dem Befehl Alx aktiviert ist.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
GM⊷	M+01.100	Spitzenwert 1.100 d

Anmerkung

Das Ergebnis Spitzenwert ist anhängig von den gewählten Einstellungen Filter FL, Filtermode FM und Update-Rate UR (average building).

RM Der Befehl RM löscht den Spitzenwertspeicher

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
RM⊷	ОК	Spitzenwertspeicher gelöscht

GH Hold-Wert (Momentan-Wert) abfragen

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
GH₊J	H+01.000	Hold-Wert 1.000 d

GO Peak to Peak-Wert abfragen

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
GO,⊣	0+01.000	Peak to Peak-Wert 1.000 d

GV Minimal-Wert abfragen

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
GV₊⊣	V+01.000	Minimal-Wert =1.000 d

GW Ausgabe Datenstring mit Netto, Brutto, Status und Checksumme

Dieser Befehl veranlasst die Ausgabe von Nettowert, Bruttowert, Status und Checksumme. Dezimalpunkte werden in diesem Datenstring <u>nicht</u> angezeigt.

Master (PC / SPS) sendet LDU XX.X antwortet		Bedeutung
GW₊J	W+00100+011005109	Erläuterung s. unten

Die Ausgabe erfolgt im Format W+00100+011005109. Die ersten beiden Blöcke geben die Netto-/Bruttowerte wieder, dann geben 2 Hex-Zeichen den Waagenstatus an. Die letzten beiden Hex-Zeichen enthalten die Checksumme des Datenstrings (ohne die Zeichen der Checksumme).

W	+00100	+01100	8	1	06
Startzeichen kennzeichnet die GW-Antwort	Nettogewicht ohne Dezimalpunkt	Bruttogewicht ohne Dezimalpunkt	1. Status-Bit	2. Status-Bit	Check-Summe

Die Status-Bit bedeuten:

1. Wert	Beschreibung	2. Wert	Beschreibung
1	nicht benutzt	1 Waage in Ruhe	
2	Grenzwert 0 aktiv	2	Nulleinstellung abgeschlossen
4	Grenzwert 1 aktiv	4	Tara aktiv
8	Grenzwert 2 aktiv	8	nicht benutzt

Berechnung der Check-Summe:

- 1. Addition aller ASCII-Zeichen des Datenstring (ohne Checksumme selber)
- 2. Konvertierung der Summe in einen Hexadezimalwert; ergibt als Summe 2F9 (hex)
- 3. Entfernen des MSB (Most significant Bit) vom errechneten hex-Wert, ergibt F9 (hex)
- 4. Invertierung des Hexadezimalwertes, ergibt 06 (hex)
- 5. Umwandlung des Hexadezimalwertes in einen ASCII-Wert ergibt "0" "6"

~FLINTEC

C.4.8 Kommandos Dauersenden der Messwerte – SG, SN, SW, SM, SH, SO, SV

Die hier beschriebene Befehlsgruppe bietet die Möglichkeit der kontinuierlichen Datenausgabe. Sobald der entsprechende Befehl ausgegeben wurde, startet die permanente Datenausgabe. Die Datenausgabe-Rate hängt dabei von der Baud-Rate ab; mit z.B. 9600 Baud kann man ca. 100 Messwerte pro Sekunde übertragen.

Achtung: Diese Befehle stehen nur in Voll-Duplex-Betrieb zur Verfügung [DX=1].

Die kontinuierliche Datenausgabe kann mit jedem anderen Befehl gestoppt werden.

SG Dauersenden Bruttowert

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
SG₊⊣	G+01.100	Bruttowert 1.100 d

SN Dauersenden Nettowert

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
SN₊J	N+01.000	Nettowert 1.000 d

SW Ausgabe Datenstring mit Netto, Brutto, Status und Checksumme

Dieser Befehl veranlasst die Ausgabe von Nettowert, Bruttowert, Status und Checksumme. Dezimalpunkte werden in diesem Datenstring <u>nicht</u> angezeigt.

Master (PC / SPS) sendet	LDU XX.X antwortet	Bedeutung
SW₊J	W+01000+011005109	Erläuterung s. unten

Die Ausgabe erfolgt im Format W+00100+011005109.

Weitere Beschreibung siehe Befehl GW, Seite 42)

SM Dauersenden des Spitzenwertes (Peak)

Dieser Befehl fragt den Spitzenwert ab, sofern diese Funktion im Menü 6.x.1 bzw. mit dem Befehl Alx aktiviert ist.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
SM₊⊣	M+01.100	Spitzenwert 1.100 d

Anmerkung

Das Ergebnis Spitzenwert ist anhängig von den gewählten Einstellungen Filter FL, Filtermode FM und Mittelwertbildung UR.

SH Dauersenden des Hold-Wertes

Dieser Befehl fragt den Hold-Wert ab, sofern diese Funktion im Menü 6.x.1 bzw. mit dem Befehl Alx aktiviert ist.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
SH₊J	H+01.100	Spitzenwert 1.100 d

SO Dauersenden des Peak/Peak-Wertes

Dieser Befehl fragt den Peak/Peak-Wert ab, sofern diese Funktion im Menü 6.x.1 bzw. mit dem Befehl Alx aktiviert ist.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
SM₊	M+01.100	Spitzenwert 1.100 d

SV Dauersenden des Minimalwertes

Dieser Befehl fragt den Minimalwert ab, sofern diese Funktion im Menü 6.x.1 bzw. mit dem Befehl Alx aktiviert ist.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
SM₊J	M+01.100	Spitzenwert 1.100 d

~ FLINTEC

C.4.9 Kommandos zur externen I/O-Steuerung – IN, IO, OM, AI

Das DAS 72.1 besitzt serienmässig je 3 unabhängige digitale Logikein- und ausgänge. Die Einstellungen der Grenzwerte werden im nachfolgenden Abschnitt 4.10 erklärt.

PC / SPS können den Status der Ein- und Ausgänge abgefragen. Die Logikeingänge erlauben damit die Status-Überwachung anderer Geräte bzw. Zustände. Die Ausgänge lassen sich entweder der internen Grenzwertüberwachung oder externen Steuerung zuordnen.

IN Status Eingang abfragen

Dieser Befehl liefert den Status der drei Logik-Eingänge.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
IN⊷	IN:0001	Eingang 1 aktiv
IN⊷	IN:0010	Eingang 2 aktiv
IN⊷	IN:0011	Eingang 1+2 aktiv
IN↓	IN:0100	Eingang 3 aktiv

Die Eingänge sind bei "0" low bei "1" high, also aktiv. Eingang 2 wird durch das höhere Digit angezeigt.

IO Status Logikausgang abfragen/einstellen

Mit diesem Befehl kann der Status der beiden Logik-Ausgänge abgefragt bzw. eingestellt werden.

Abfrage

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
IO ~	10:0001	Ausgang 1 aktiv
IO J	10:0010	Ausgang 2 aktiv
I0. ⊣	IO:0011	Ausgang 1+2 aktiv
IO. –	10:0100	Ausgang 3 aktiv

Die Ausgänge sind bei "0" low, bei "1" high, also aktiv (als OC-Kontakt nach Masse geschaltet). Ausgang 1 wird durch das niedrigste Bit (LSB) angezeigt.

Mit diesem Befehl kann zusätzlich der Status der beiden Logik-Ausgänge eingestellt werden, unabhängig vom Status des jeweiligen Ausganges gemäss der Grenzwert-Einstellung. Vgl. Kapitel 4.10.

Zur externen Status-Einstellung (PC/SPS) der Ausgänge muss für jeden Ausgang eine Freigabe erteilt werden; dazu muss vorher der Befehl "IM" ausgeführt werden, wie nachfolgend beschrieben.

Liegt eine OM-Freigabe vor, kann von Extern der Ausgang mit dem IO-Befehl über ein 4-digit Bitmap eingestellt werden.

Einstellung

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
I0_0001⊷	ОК	Ausgang 1 aktiv
I0_0010₊J	ОК	Ausgang 2 aktiv
I0_0011₊J	ОК	Ausgang 1+2 aktiv
I0_0100⊷	ОК	Ausgang 3 aktiv

Werkseinstellung: IO=0000

OM Freigabe externes Steuern der Ausgänge 1 / 2 / 3 abfragen bzw. eingeben

Mit diesem Befehl wird die Freigabe externes Steuern der Logik-Ausgänge abgefragt bzw. eingestellt.

Abfrage

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
0M ⊷	OM:0001	Freigabe Ausgang 1
0M ⊷	OM:0010	Freigabe Ausgang 2
0M ⊷	OM:0011	Freigabe Ausgang 1+2
0 M⊷	OM:0100	Freigabe Ausgang 3

In dem 4-digit Bitmap bedeutet "0" keine Freigabe und "1" Freigabe für den jeweiligen Ausgang. Bei Freigabe ist mit dem Befehl "IO" der betreffende Ausgang von Extern steuerbar. Der Ausgang 1 wird durch das niedrigste Bit (LSB) angezeigt.

Einstelllung

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
OM_0001⊷	ОК	Freigabe Ausgang 1
OM_0010⊷	ОК	Freigabe Ausgang 2
OM_0011₊J	ОК	Freigabe Ausgang 1+2
OM_0100.⊣	ОК	Freigabe Ausgang 3

Achtung: Nach Freigabe der externen Steuerung wird der Status der Ausgänge nicht mehr durch die (Grenzwert-)Einstellungen der Ausgänge bestimmt. Nach Ausführung von OM_0000 ist die Freigabe erloschen.

Werkseinstellung: OM=0000

AI Funktion Logic Input 1, 2 oder 3

DAS 72.1 hat 3 unabhängige logische Eingänge. Diese Eingänge können wie folgt konfiguriert werden:

- 00: keine Funktion
- 01: funktioniert wie die Null-Taste
- 02: funktioniert wie die Tara-Taste
- 03: funktioniert wie die "Nach oben"-Taste
- 04: funktioniert wie die "Nach unten"-Taste
- 05: startet die Triggerfunktion GA
- 06: zeigt den GA-Wert an
- 07: zeigt den GM-Wert an (Spitzenwert)

- 08: löscht den GM-Wert
- 09: zeigt den Mittelwert an
- 10: zeigt den Peak to Peak-Wert ant
- 11: zeigt den Min-Wert an
- 12: sperrt die Tastatur
- 13: speichert den momentanen Gewichtswert
- 14: Tariert die Anzeige und löscht alle Werte wie unter 08

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
AI_1.⊣	l1:+00000	keine Funktion
AI_1_6₊J	ОК	Einstellung GA-Wert anzeigen
AI_1,J	l1:+00006	zeigt den GA-Wert an

Vergleichbar werden die logischen Eingänge 2 oder 3 mit Al_2 oder Al_3 anstelle von Al_1 eingestellt.

Werkseinstellung: 0

~FLINTEC

C.4.10 Kommandos zur Grenzwerteinstellung der Ausgänge - Sn, Hn, Pn, An

Die DAS 72.1-Baureihe besitzt serienmässig 3 Grenzwert-Ausgänge zur Überwachung des Messsignales. Jedem Ausgang kann dabei ein beliebiger Schaltpunkt zugeordnet werden. Die Einstellungen Sn (Schaltpunkt), Hn (Hysterese), Pn (Schaltlogik) und An (Brutto-/ Nettowert) werden nachfolgend erläutert.

Sn Schaltpunkt / Grenzwert für Ausgang 1, 2 oder 3 abfragen / eingeben

Abfrage / Einstellung

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
S1.⊣	S1:+01500	Schaltpunkt S1 = 1.500 d
S1_03000₊J	ОК	Schaltpunkt S1=3.000 d

Analog wird mit Ausgang 2 oder 3 verfahren, hier heisst der Befehl "S2" oder "S3".

Hn Hysterese für Ausgang 1, 2 oder 3 abfragen/eingeben

Mit dem Befehl H1 wird die Hysterese des Grenzwertes S1 eingestellt bzw. abgefragt. Zulässige Werte sind 1 als untere und 9999 als obere Grenze.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
H1.J	S1:+00100	Hysterese H1 = 100 d
H1_03000₊	OK	Hysterese H1 = 300 d

Pn Schaltlogik für Ausgang 1, 2 oder 3 abfragen/eingeben

Mit dem Befehl P1 wird festgelegt, ob der Relaisausgang von Grenzwert S1 als Öffner oder Schließer arbeitet. Zulässige Werte sind 0 oder 1.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
P1,J	P1:+00000	Schaltlogik P1 = 0
P1_00001₊J	OK	Schaltlogik P1 = 1

Beispiel

Grenzwert	Hysterese	Schaltlogik	Last	Ausgang offen	Ausgang geschlossen
S1 = 2000kg	H1 = 100kg	P1 = 1	steigend	\geq 2.101 kg	0 2.100 kg
S1 = 2000kg	H1 = 100kg	P1 = 1	fallend	\geq 2.000 kg	1.999 0 kg
S1 = 2000kg	H1 = 100kg	P1 = 0	steigend	0 1.999 kg	\geq 2.000 kg
S1 = 2000kg	H1 = 100kg	P1 = 0	fallend	1.900 0 kg	≥ 1.901 kg

Beispiel Schaltlogik P1=1 für Grenzwert 2.000kg (Zeile 1 + 2 der Tabelle):

Bei einem von 0 kg ansteigenden Gewicht ist der Ausgang des DAS 72.1 bis 2.100kg geschlossen (d.h. durchgeschaltet) und ab 2101kg geöffnet. Der Ausgang schließt erst wieder bei Unterschreitung von 2.000 kg.

Beispiel Schaltlogik P1=0 für Grenzwert 2.000 kg (Zeile 3 + 4 der Tabelle):

Bei einem von 0 kg ansteigenden Gewicht ist der Ausgang des DAS 72.1 bis 1.999 kg geöffnet und ab 2.000 kg geschlossen. Der Ausgang öffnet erst wieder bei Unterschreitung von 1.900 kg.

An Zuordnung Brutto-/Nettowert für Ausgang 1, 2 oder 3 abfragen/eingeben

Mögliche Zuordnungen Brutto / Netto / Peak für Ausgang 1 sind:

A1 = 0	ungefiltertes Bruttogewicht
A1 = 1	ungefiltertes Nettogewicht
A1 = 2	Spitzenwert
A1 = 3	Mittelwert
A1 = 4	Hold-Wert
A1 = 5	Peak to Peak-Wert
A1 = 6	Minimalwert
A1 = 7	Fehlermeldung bei ERROR 4/5
A1 = 8	Ausgang nicht aktiv

Abfrage / Einstellung Ausgang 1

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
A1,⊣	A1+0000	Zuordnung Brutto
A1_1.⊣	ОК	Zuordnung Netto

Analog wird mit Ausgang 2 oder 3 verfahren, hier heisst der Befehl "A2" oder "A3".

ACHTUNG: Alle Einstellungen für die Grenzwertausgänge müssen duch das Kommando "SS" netzausfallsicher im EEPROM gespeichert werden, vgl. Abschnitt 4.12.

~ FLINTEC

C.4.11 Kommandos zur Einstellung serielle Schnittstelle – AD, CL, BR, DX, OP, LI

AD Geräte-Adresse einstellen / abfragen

Abfrage / Einstellung Geräte-Adresse

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
AD₊J	A:000	Abfrage: Adresse 0
AD_49,₋	ОК	Einstellung: Adresse 49

Bei Adresse "0" ist das Gerät an der Schnittstelle immer aktiv ohne das ein "OP"-Befehl erfolgen muss.

Werkseinstellung: Adresse 0

CL Gerät Adresse n schliessen

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
CL_3,⊣	ОК	Gerät 3 schliessen

BR Abfrage / Einstellung der Baudrate

Mit diesem Befehl können folgende Baudraten eingestellt werden: 9600, 19200, 38400, 57600 und 115200 Baud.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
BR⊷	B 9600	Abfrage: 9600 Baud
BR_115200,⊣	ОК	Einstellung: 115200 Baud

Werkseinstellung: 9600 Baud

DX Halb- oder Vollduplex einstellen

Mit diesem Befehl kann Halb- oder Vollduplex-Betrieb eingestellt werden; zulässige Werte sind 0 für Halb- und 1 für Vollduplex.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
DX⊷	X:0000	Abfrage: DX=0 Halbduplex
DX_1.⊣	OK	Einstellung: DX=1 Vollduplex

Halbduplex-Kommunikation wählt man bei Nutzung der 2-Leiter RS485-Schnittstelle.

Hinweis: Permanente Messwertausgabe mit den Befehlen "SN" und "SG" ist nur im Vollduplex-Modus möglich.

Werkseinstellung: DX=0 (Halbduplex)

OP Geräte-Kommunikation öffnen / abfragen

Abfrage / Öffnen Geräte-Kommunikation

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
0P	0:003	Abfrage: Gerät 3 offen
0P_14,J	OK	Einstellung: Gerät 14 öffnen

Das aufgeforderte Gerät meldet seine Bereitschaft und reagiert anschließend auf alle Befehle, die über den Bus gesendet werden, bis ein weiterer OP-Befehl mit anderer Adresse oder das Kommando CL empfangen wird.

FLINTEC

LI Auflistung aller Einstellungen

Nach Ausführen des Befehls LI antwort des DAS 72.1 Mark III mit folgendem Datenstring:

TAC : +00005 1.1:0N 1.2, 1.3:+01.531 2.1:+05000 2.2, 2.3:+02.239 2.4 : +00001 3.1.0 : +20000 3.1.U : -10000 3.2:+00001 3.3:+00001 4.1:+00003 4.2 : IIR 4.3:+00002 4.4.1 : +00002 4.4.2 : +01000 5.1:+00000 5.2:+10000 5.3 : NET 6.1.1:+00001 6.1.2:+00000 6.1.3:+00000 7.1.1.1 : +01000 7.1.1.2 : Off 7.1.2 : +00100 7.1.3 : GROSS 7.2.1.1 : +04000 7.2.1.2 : Off 7.2.2 : +00100 7.2.3 : GROSS 7.3.1.1 : +00999 7.3.1.2 : On 7.3.2 : +00000 7.3.3 : GROSS 8.1:9600 8.2 : RS422 8.3:+00000 8.4 : OFF \$

FLINTEC

C.4.12 Kommandos Analogausgang 4 – 20 mA - AL, AH, AA

Mit diesen Befehlen wird der Analogausgang des DAS 72.1 eingestellt.

Die nachfolgenden Befehle müssen alle mit dem Befehl AS netzausfallsicher im EEPROM gespeichert werden.

AA Zuordnung Analogausgang abfragen / einstellen

Mögliche Zuordnungen des Analogausganges sind:

AA = 0	Bruttogewicht
AA = 1	Nettogewicht
AA = 2	Analogausgang abgeschaltet
AA = 3	Mittelwert
AA = 4	Speicherwert
AA = 5	MaxMinWert
AA = 6	Minimales Gewicht
AA = 7	Hold-Wert
AA = 8	Analogausgang nicht aktiv

Abfrage / Einstellung Analogausgang:

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
AA .⊣	A+00001	Zuordnung Netto
AA_0⊷	ОК	Zuordnung Brutto

Werkseinstellung: 3 [= Analogausgang abgeschaltet]

AH Endwert Analogausgang abfragen / einstellen

Abfrage / Einstellung Endwert Analogausgang für 20 mA:

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
AH⊷	H+10000	Abfrage: 10000 d @ 20 mA
AH_5000,⊣	ОК	Einstellung: 5000 d @ 20 mA

Werkseinstellung: 10000 [10000 d = 20 mA]

AL Nullwert Analogausgang abfragen / einstellen

Abfrage / Einstellung Nullwert Analogausgang für 4 mA:

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
AL₊J	L+00000	Abfrage: 00000 d @ 4 mA
AL_00500₊J	ОК	Einstellung: 500 d @ 4 mA

Werkseinstellung: 00000 [0 d = 4 mA]

C.4.13 Kommandos zur Speicherung der Einstellungen – CS, WP, SS, AS, TH

Die Konfigurations-Parameter können in 4 Gruppen unterteilt werden:

- Kalibrier-Parameter: CZ, CG, CM, CI, DS, DP, ZT, Sicherung durch "CS"
- Einstell-Parameter: FL, FM, NR, NT, BR, AD, DX, u.A. Sicherung durch "WP"
- Grenzwert-Parameter: Sn, Hn, Pn, An, Sicherung durch "SS"
- Analogausgang-Parameter: AA, AH, AL, Sicherung durch "AS"
- Momentaner Messwert Speicherung durch "TH"

Mit diesen Befehlen werden die Parameter netzausfallsicher im EEPROM gespeichert.

CS Kalibrier-Parameter speichern

Kalibrier-Parameter können immer nur in Verbindung mit den TAC-Zähler eingestellt werden. Vgl. hierzu die Befehle "CE" und "CS" Seite 33.

WP Einstell-Parameter speichern

Mit diesem Befehl werden die Einstellungen digitale Filterung (FL, FM), Messgerät- Stillstandbereich (NR, NT) und die Kommunikationseinstellungen (BR, AD, DX) gespeichert.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
WP₊	ОК	Parameter gespeichert
WP₊	ERR	Fehler

SS Einstellungen für die Grenzwertausgänge speichern.

Mit diesem Befehl werden die Einstellungen der Schaltpunkte (S0, S1), der Schaltpunkt-Hysterese (H0, H1) und der Schaltpunkt-Zuordnungen (A0, A1) gespeichert.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
SS⊷	ОК	Parameter gespeichert
SS.⊣	ERR	Fehler

AS Einstellungen für den Analogausgang speichern.

Mit diesem Befehl werden die Einstellungen AA, AH und AL netzausfallsicher gespeichert.

Master (PC / SPS) sendet	LDU XX.X antwortet	Bedeutung
AS₊J	ОК	Parameter gespeichert
AS₊J	ERR	Fehler

TH Speicherung des momentanen Messwertes (Hold-Wert).

Mit diesem Befehl wird der momentanen Messwert netzausfallsicher gespeichert.

Master (PC / SPS) sendet	LDU XX.X antwortet	Bedeutung
TH⊷	ОК	Parameter gespeichert
TH.J	ERR	Fehler

FLINTEC

C.5 KALIBRIERUNG UND KALIBRIERROUTINE

Die Neu-Kalibrierung oder Änderung einer bestehenden Kalibrierung eines DAS 72.1 ist nur nach Öffnung der Kalibriersequenz möglich, vgl. Abschnitt 5.3, Seite 33 ff.

- CE : TAC-Zähler abfragen / Kalibriersequenz öffnen
- CZ : Nullpunkt kalibrieren Systemnullpunkt wird gespeichert
- CG : Messbereich kalibrieren Systemverstärkung wird gespeichert
- CM : Maximalen Anzeigewert einstellen / abfragen
- Cl Minimalen Anzeigewert einstellen / abfragen
- DS : Ziffernsprung einstellen / abfragen
- DP : Nachkommastellen einstellen / abfragen
- ZT : Automatische Nullpunktkorrektur ein- oder ausschalten
- FD : DAS 72.1 auf Werkseinstellung zurücksetzen
- CS : Kalibrierdaten im EEPROM sichern

Beispiel: Einstellung von Nullpunkt, Verstärkung und Kommaposition

Das ausgesuchte Testgewicht hat den angenommenen Wert 5000 (Incremente). Das könnten 500 g, 5 kg oder auch 5000 kg sein. Wir kalibrieren mit 500 g. Die Kommastelle wird mit dem Befehl "DP" eingestellt, hier 1 Nachkommastelle. Ein Messergebnis 500 g wird als 500,0 ausgegeben.

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
CE₊J	E+00017	Abfrage: TAC-Zähler CE = 17
CE_17,⊣	ОК	Kalibriersequenz geöffnet
Waage / Sensor ohne Last !		
CZ.J	ОК	System-Nullpunkt übernehmen
CE_17,⊣	ОК	Kalibriersequenz geöffnet
Eichgewicht 500 g auflegen !		
CG_5000₊⊣	ОК	System-Verstärkung übernehmen
CG₊∣	G+05000	Abfrage: Verstärkung 5000
CE_17.J	ОК	Kalibriersequenz geöffnet
DP_1₊	ОК	1 Nachkommastelle übernehmen
CE_17,⊣	ОК	Kalibriersequenz geöffnet
CS.⊣	ОК	Kaldaten im EEPROM speichern

Nullpunkt, Verstärkung und Nachkommastelle wurden aktualisiert und netzausfallsicher ins EEPROM geschrieben; der Eichzähler (TAC) wird dabei automatisch um 1 erhöht.

FLINTEC

C.6 EINSATZ IN EICHPFLICHTIGEN ANWENDUNGEN (Informativ)

Die Bezeichnung "Eichpflichtige Anwendung" trifft stets dann zu, wenn eine Wäge-Anwendung gesetzlichen Vorgaben genügen muss. Heute unterliegen nach der EU-Richtlinie 90/384/EWG Waagen und bestimmte Zusatzeinrichtungen der Eichpflicht, wenn sie wie folgt verwendet oder zur Verwendung bereitgehalten werden:

- im geschäftlichen Verkehr, wenn der Preis einer Ware durch Wägung bestimmt wird oder
- im amtlichen Verkehr, wie bei der Ermittlung von Gebühren, Zöllen und Strafen, ferner bei Sachverständigen-Gutachten für Gerichte, oder
- im Bereich der Heilkunde oder bei der Herstellung und Prüfung von Arzneimitteln oder
- bei der Herstellung von Fertigpackungen.

Derartige Anwendungen unterliegen global den jeweils gültigen staatlichen Eich-Vorschriften. Die meisten Länder akzeptieren die geltenden Euro-Normen (EN) oder Empfehlungen der Internationalen Organisation für staatliche Vorschriften im Mess-Wesen (OIML).

Das LDU 78.1 ist z.B. eine zugelassene Komponente für Wäge-Systeme gemäß OIML R76 und entspricht den Leistungsanforderungen der Klasse III mit 5000 Teilen (e).

Die Zulassungsnummer lautet DK0199-R76-02.02 Rev. 1 vom 30.07.2003.

Beschränkungen beim Einsatz in eichpflichtigen-Anwendungen

Zum Erhalt eines Eich-Zertifikates ist es notwendig, bestimmte Funktionen wie "Nullpunkt-Korrektur" und "Automatische Nullpunkt-Überwachung" in ihrer Wirkungsweise zu beschränken. In eichpflichtigen Anwendungen muss die Anwendungs-Software sicherstellen, dass der Nullpunkt um nicht mehr als ± 2 % (des CM-Wertes) vom kalibrierten Wert zu verschieben ist. Außerdem darf die Tarier-Funktion nur bei positiven Signalen (Gewichtswerten) arbeiten. Die Anzeige-Teilung ist z.B. auf 3000 d (oder 5000 d) zu begrenzen. Hier sind Anwendungsbereich bzw. Eingangsempfindlichkeit mit 0,7 µV/e zu beachten.

Nach der Installation benötigen die Geräte ein Siegel des Prüf-Beamten der zuständigen Eich-Behörde. Damit wird bestätigt, dass ein System den geltenden Eich-Bestimmungen entspricht.

Der Zugriffs-Registrierungs-Code (TAC)Die Anwender-Software muss für einen Schutz gegen die unzulässige Anwendung von Kalibrier-Kommandos sorgen. Die Geräte der DAS-Baureihe bieten zu diesem Zweck den "Zugriffs-Registrierungs-Code (TAC)", mit dem ein Zugriff auf die Kalibrier-Kommandos abgesichert wird. Diese Kodierung wird im Gerät selber verwaltet und automatisch jeweils dann um 1 erhöht, wenn auf das System mit einem wirksamen Kalibrier-Befehl zugegriffen wird. Im Verlauf des Zertifizierungs-Tests wird der Prüf-Beamte der Eich-Behörde den TAC-Zählerstand notieren und darauf hinweisen, dass dem Anwender bei Veränderung dieses Codes vor einer fälligen Nach-Inspektion der Eich-Behörde eine strafrechtliche Untersuchung droht.

C.7 SOFTWARE-DOWNLOAD

Um ein Software-Update des DAS 72.1 Mark II durchzuführen, muss das Gerät mit einem Windows-PC über die 4-Leiter-RS485/RS422-Schnittstelle (ggf. RS-485 / RS-232-Konverter verwenden) verbunden werden. Die Lötbrücke auf der Rückseite (siehe Darstellung unten) des DAS 72.1 muss vor dem Einschalten geschlossen sein. Nach dem Download ist die Lötbrücke wieder zu öffnen.

Ein Download wird mit Hilfe unseres Programms PROG78 durchgeführt.

C.7.1 Firmware-Update für DAS 72.1 Mark III

Zunächst alle benötigten Files (LduDownload.exe, prog78.a20, das72mll.a20) in einer Directory speichern. Die Firmware für DAS 72.1 ist im File "das72mll.a20" gespeichert.

- Lötbrücke auf der Rückseite des DAS 72.1 schließen.
- DAS 72.1 einschalten.
- Programm "LduDownload" starten.
- · Load file: "das72mll.a20".
- "Program"-Button anklicken.
- Erscheint die Meldung "Reset DAS 72.1 before proceeding" zuerst das DAS aus- und wieder einschalten und dann den "OK"-Button anklicken.
- Download läuft. Das Ende wird angezeigt mit "Programming OK" –
- DAS 72.1 Mark II ausschalten.
- Zum Ende Lötbrücke wieder öffnen.
- Mit Befehl FD (Werkseinstellung) jetzt ein Reset des DAS 72.1 ausführen.

FD Einstellungen zurück auf Werkseinstellung

Mit diesem Befehl werden alle Geräteeinstellungen wieder auf die Werkseinstellungen zurückgesetzt.

Achtung: Alle Einstellungen <u>und die Kalibrierung</u> werden bei Ausführung dieses Befehls mit den Werkseinstellungen überschrieben!

Master (PC / SPS) sendet	DAS 72.1 antwortet	Bedeutung
CE₊J	E+00017 (Beispiel)	Abfrage: TAC-Zähler CE17
CE_17,⊣	ОК	Kalibriersequenz geöffnet
FD₊J	ОК	Werkseinstellung

Anmerkung

Für DAS 72.1 Mark III können wir auf Nachfrage eine Download-Software mit kurzer Anleitung bereitstellen.