FAD-40

A / D Converter

Technical Manual

TABLE OF CONTENTS:

1.	SAFETY INSTRUCTIONS	3
2. 2.1.	INTRODUCTION	4
2.2.	Key features and Specifications	
2.3.	Housing	
2.4. 2.4.1.	Accessories	
	••	
3.	INSTALLATION	
3.1. 3.1.1.	Recommendations	
3.1.1.	Control Cabinet DesignCabling	
3.1.3.	Mechanical Installation	
3.2.	Electrical Connections	
3.2.1. 3.2.2.	Power Supply and Grounding	
3.2.3.	Digital I/O Connection	
3.2.4.	Serial Interface RS232	10
3.2.5.	Communication Interface	
3.3.	Commissioning	11
4.	SETUP	
4.1.	Installation of the xFace Software	
4.2.	Connection to the xFace Software	
4.3. 4.3.1.	Setup and Calibration	
4.3.2.	RS-485 Serial Interface Setup	
4.3.3.	Scale Build and Calibration	
4.4.	A/D Status (Performance Test)	
4.5. 4.6.	Setup of Digital I/O Bus Interface Setup	
4.7.	Bus Addressing via Setup Switch	
4.8.	Back up Settings and Calibration Data	
5.	FAD-40 / FAD-40MB WITH RS-485 INTERFACE	21
5.1.	Front View of FAD-40 (MB)	
5.2.	Electrical Connections	
5.3.	RS-485- and Modbus-RTU-Interfacing	22
5.4.	Setup and Calibration	
5.5.	BSI Data Structure (for FAD-40 and FAD-40MB only)	
5.6. 5.7.	Modbus RTU (for FAD-40MB only)	
6.	FAD-40PB WITH PROFIBUS INTERFACE	
6.1. 6.2.	Front View of FAD-40PB Electrical Connections	
6.3.	Profibus and RS-232C Interfacing	
6.4.	Setup and Calibration	
6.5.	Profibus Setup	
6.6.	Profibus and Profinet Data Structure (for FAD-40Px only)	33
7.	FAD-40PN WITH PROFINET INTERFACE	37
7.1.	Front View of FAD-40PN	
7.2.	Electrical Connections	
7.3.	Profinet Interfacing	
7.4. 7.5.	Setup and Calibration	
7.5. 7.6.	Profibus and Profinet Data Structure (for FAD-40Px only)	
	•	
8.	FAD-40EN WITH ETHERNET INTERFACE	
8.1. 8.2.	Front View of FAD-40EN	
8.3.	Ethernet Interfacing	
8.4.	Setup and Calibration	

8.5.	Ethernet Setup	43
8.6.	Ethernet Setup	43
9.	FAD-40CO WITH CANOPEN INTERFACE	44
9.1.	Front View of FAD-40CO	44
9.2.	Electrical Connections	45
9.3.	CANopen Interfacing	46
9.4.	Setup and Calibration	46
9.5.	CANopen Setup	46
9.6.	CANopen Data Structure (for FAD-40CO only)	47
10.	ERROR TABLE	51
11.	DIAGNOSTICS	52
12.	INDEX	53

RIGHTS AND LIABILITIES

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise, without the prior written permission of Flintec GmbH

No patent liability is assumed with respect to the use of the information contained herein. While every precaution has been taken in the preparation of this book, FLINTEC assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained herein

The information herein is believed to be both accurate and reliable. FLINTEC, however, would be obliged to be informed if any errors occur. FLINTEC cannot accept any liability for direct or indirect damages resulting from the use of this manual.

FLINTEC reserves the right to revise this manual and alter its content without notification at any time.

Neither FLINTEC nor its affiliates shall be liable to the purchaser of this product or third parties for damages, losses, costs, or expenses incurred by purchaser or third parties as a result of: accident, misuse, or abuse of this product or unauthorized modifications, repairs, or alterations to this product, or failure to strictly comply with FLINTEC operating and maintenance instructions.

FLINTEC shall not be liable against any damages or problems arising from the use of any options or any consumable products other than those designated as Original FLINTEC Products.

NOTICE: The contents of this manual are subject to change without notice.

Copyright © 2010-2011 by Flintec GmbH, 74909 Meckesheim, Bemannsbruch 9, Germany

1. SAFETY INSTRUCTIONS

CAUTION READ this manual BEFORE operating or servicing this equipment. FOLLOW these instructions carefully. SAVE this manual for future reference. DO NOT allow untrained personnel to operate, clean, inspect, maintain, service, or tamper with this equipment. ALWAYS DISCONNECT this equipment from the power source before cleaning or performing maintenance. CALL FLINTEC ENGINEERING for parts, information, and service.

WARNING ONLY PERMIT QUALIFIED PERSONNEL TO SERVICE THIS EQUIPMENT. EXERCISE CARE WHEN MAKING CHECKS, TESTS AND ADJUSTMENTS THAT MUST BE MADE WITH POWER ON. FAILING TO OBSERVE THESE PRECAUTIONS CAN RESULT IN BODILY HARM.

WARNING FOR CONTINUED PROTECTION AGAINST SHOCK HAZARD CONNECT TO PROPERLY GROUNDED OUTLET ONLY. DO NOT REMOVE THE GROUND PRONG.

WARNING DISCONNECT ALL POWER TO THIS UNIT BEFORE REMOVING THE FUSE OR SERVICING.

WARNING BEFORE CONNECTING/DISCONNECTING ANY INTERNAL ELECTRONIC COMPONENTS OR INTERCONNECTING WIRING BETWEEN ELECTRONIC EQUIPMENT ALWAYS REMOVE POWER AND WAIT AT LEAST THIRTY (30) SECONDS BEFORE ANY CONNECTIONS OR DISCONNECTIONS ARE MADE. FAILURE TO OBSERVE THESE PRECAUTIONS COULD RESULT IN DAMAGE TO OR DESTRUCTION OF THE EQUIPMENT OR BODILY HARM.

CAUTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC SENSITIVE DEVICES.

2. Introduction

2.1. Overview

The type FAD-40 A/D Converter Series consists of powerful and economic state-of-the-art instruments for static and dynamic weighing applications plus force and torque measurements including digital I/O control. Each instrument of the series converts the analogue low level signal from a load cell or a strain gauge sensor to a digital high-resolution and high-accuracy signal and transmits the digital data to an external PLC or PC system. As a special feature the instruments can switch between unipolar and bipolar input range without affecting the external resolution. Digital I/O ports give further possibilities to extend the bus system with I/O control in the cabinet and fast response setpoint output from the weighing instrument.

The type FAD-40 A/D Converter Series comprises various instruments for different industrial bus systems:

FAD-40 A/D Converter only with RS485 interface

FAD-40PB A/D Converter with Profibus DP interface

FAD-40EN A/D Converter with Ethernet TCP/IP interface

FAD-40MB A/D Converter with Modbus RTU interface

FAD-40PN A/D Converter with Profinet interface

FAD-40CO A/D Converter with CANopen interface

Figure 3.1 - FAD-40 A/D Converter series instruments

2.2. Key features and Specifications

Key Features	FAD-40	FAD-40MB	FAD-40PB	FAD-40PN	FAD-40EN	FAD-40CO
Bipolar signal input in Force and Count modes	Yes	Yes	Yes	Yes	Yes	Yes
500 to 100 000 counts external resolution at calibrated data	Yes	Yes	Yes	Yes	Yes	Yes
Unipolar 1 million and bipolar 2 million counts is adjusted and filtered to external resolution in count mode	Yes	Yes	Yes	Yes	Yes	Yes
High internal resolution up to 8 million counts	Yes	Yes	Yes	Yes	Yes	Yes
Up to 800 conversions per second	Yes	Yes	Yes	Yes	Yes	Yes
2 digital inputs/outputs + 1 additional digital outp. (configurable)	Yes	Yes	Yes	Yes	Yes	Yes
Standard Serial interface RS-232C	No	No	Yes	Yes	Yes	Yes
Serial interface RS-485A	Yes	Yes	No	No	No	No
Modbus RTU interface	No	Yes	No	No	No	No
Profibus DP-V1 interface	No	No	Yes	No	No	No
Profinet interface		No	No	Yes	No	No
Ethernet (Modbus TCP/IP) interface		No	No	No	Yes	No
CANopen interface	No	No	No	No	No	Yes
BSI data interface	Yes	Yes	No	No	No	No
Bus address selection by setup switch (from 0 to 7)	Yes	Yes	Yes	No	No	Yes
Setup by Flintec xFace PC software	Yes	Yes	Yes	Yes	Yes	Yes
Auto-zero tracking and auto-zero at power-up	Yes	Yes	Yes	Yes	Yes	Yes
Motion detection	Yes	Yes	Yes	Yes	Yes	Yes
Zeroing and Taring by bus commands	Yes	Yes	Yes	Yes	Yes	Yes
Adaptive digital filter for fast and stable reading	Yes	Yes	Yes	Yes	Yes	Yes
Up to 6 load cells (350 Ω) or 18 load cells (1100 Ω)	Yes	Yes	Yes	Yes	Yes	Yes
Electronic calibration (eCal) without test weights	Yes	Yes	Yes	Yes	Yes	Yes
Zero and Span calibrations over bus interface	Yes	Yes	Yes	Yes	Yes	Yes
Zero adjustment	Yes	Yes	Yes	Yes	Yes	Yes
Span adjustment with test weights	Yes	Yes	Yes	Yes	Yes	Yes
Span adjustment with temporary zeroing for unloaded tanks	Yes	Yes	Yes	Yes	Yes	Yes
Power-on testing with setup switch	Yes	Yes	Yes	Yes	Yes	Yes
24 V DC power supply (11 to 28 V DC input voltage range)	Yes	Yes	Yes	Yes	Yes	Yes

Specifications

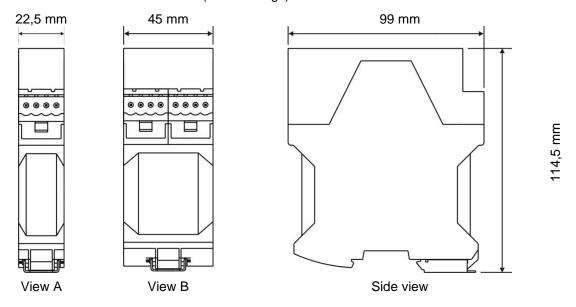
Specifications			
A/D Converter:			
A/D converter type:	24 bit Delta-Sigma radiometric with integral analog and digital filters		
Analog input range:	0 mV to +18 mV (unipolar); -18 mV to +18 mV (bipolar)		
Linearity:	< 0.0015 % FS		
Temperature coefficient:	< 2 ppm/°C		
Min. input per vsi	0.1 μV/d (non approved)		
Conversion rate:	Up to 800 measurement values per second		
Internal resolution:	Up to 8 million counts		
External resolution	Up to 100 000 counts (weight value, force, torque) respective 1 million raw counts (unipolar) respective 2 million counts (bipolar)		
Calibration and Weighing Fu	nctions:		
Calibration:	Electronic calibration without test weights (eCal) or calibration by test weights		
Digital filter:	10 step programmable adaptive filter		
Weighing functions:	Tare, zero, auto zero tracking, motion detection, auto-zero at power-up, save tare at power-off, increased resolution		
Load cells:			
Excitation:	5 V DC at 581200 Ω, max. 100 mA		
Number of load cells:	Up to 6 load cells à 350 Ω or 18 load cells à 1100 Ω in parallel		
Connection:	4- or 6-wire technique, cable length 250 m/mm² for 6-wire connection		

Communication and Setup:	
Serial interface	RS232C with 9600 baud (8,N,1); for FAD-40 and FAD-40MB: RS485 with up to 57600 baud (8N1, 7E1, 7O1)
Other interfaces	Depends on instrument type
Response time	< 4 ms (delay after each read or write command)
Setup and calibration	By PC software via RS232C respective RS485, backup data stored on PC
Digital Inputs + Outputs	
2x configurable I/O	Selectively configured as input (1026 V DC) or open collector output (24 V DC, max. 100 mA)
1x additional output	Open collector output (24 V DC, max. 100 mA)
Input functions	Zero, tare, clear tare or control input to communication interface
Output functions	Setpoint output with / without hysteresis, tolerance band output or control output from communication interface
Power supply:	
DC power supply	10 to 28 VDC, < 200 mA, not galvanically isolated
Environment and Enclosure:	
Operation temperature:	Between -10 °C and +40 °C at maximum 85% RH max, non-condensing
Enclosure and protection	Polyamide, for DIN-rail mounting, IP20

Instrument with RS485 interface: Type FAD-40			
Communication:			
Serial interface RS485	1200 to 57600 baud (8N1, 7E1, 7O1), bus capability up to 31 units		
Communication mode	Requested		
Dimensions & weight	99 x 22.5 x 114.5 mm (L x W x H), weighs appr. 110 g		

Instrument with Modbus RTU interface: Type FAD-40MB			
Communication:			
Serial interface RS485	1200 to 57600 baud (8N1, 7E1, 7O1), bus capability up to 31 units		
Communication mode	Requested or Modbus RTU		
Address range	131		
Dimensions & weight	99 x 22.5 x 114.5 mm (L x W x H), weighs appr. 110 g		

Instrument with Profibus DP interface: Type FAD-40PB			
Communication:			
Profibus DP-V0 + DP-V1	9,6 kbit/s to 12 Mbit/s (automatic), galvanically isolated interface		
Address range	1126		
Dimensions & weight	99 x 45 x 114.5 mm (L x W x H), weighs appr. 150 g		


Instrument with Profinet interface: Type FAD-40PN		
Communication:		
Profinet	100 Mbit/s (full duplex), galvanically isolated interface	
IP settings	DHCP or manual setup by PC software	
Dimensions & weight	99 x 45 x 114.5 mm (L x W x H), weighs appr. 150 g	

Instrument with Ethernet TCP/IP interface: Type FAD-40EN				
Communication:				
Ethernet TCP/IP	10 Mbit/s (full duplex), galvanically isolated interface			
IP settings	Manual setup by PC software			
Dimensions & weight	99 x 45 x 114.5 mm (L x W x H), weighs appr. 150 g			
Other	Web client interface			

Instrument with CANopen interface: Type FAD-40CO			
Communication:			
CANopen V.2.0	10 kbit/s1 Mbit/s (automatic), galvanically isolated interface		
Address range	1126		
Dimensions & weight	99 x 45 x 114.5 mm (L x W x H), weighs appr. 150 g		

2.3. Housing

FAD-40 instruments come within a polyamide housing sealed to IP20. They are prepared for mounting on NS 37/7 or NS 35/15 standard DIN rails (see drawings).

View A: FAD-40, FAD-40MB

View B: FAD-40PB, FAD-40PN, FAD-40EN, FAD-40CO

Figure 3.2 - Dimensions

2.4. Accessories

2.4.1. Accessories supplied with the instrument

The following accessories are supplied together with the instrument. If any part is missing, please contact your supplier.	FAD-40	FAD-40MB	FAD-40EN	FAD-40PB	FAD-40PN	FAD-40CO
4-pin and 5 mm pitch plug, light gray	1	1	2	2	2	2
7-pin and 3.81 mm pitch plug for load cell cable, black	1	1	1	1	1	1
6-pin and 3.81 mm pitch plug for Digital I/O and RS-485, black	1	1				
3-pin and 3.81 mm pitch plug for Digital I/O, green			1	1	1	1
Installation CD (xFace software, technical documentation)	1	1	1	1	1	1

Table 3.1 - Accessories supplied with instrument

3. Installation

PRECAUTION: Please read this manual carefully before you install the instrument. If you apply all recommendations in this chapter you will increase the reliability and long term performance of your system.

3.1. Recommendations

3.1.1. Control Cabinet Design

Warning: Please follow the following warnings for designing the control cabinet which will increase the reliability of your system.

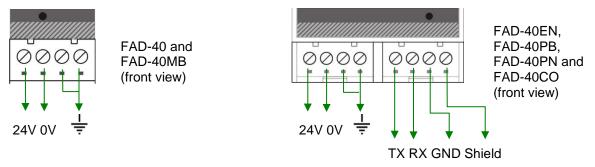
The control cabinet should be designed therefor the A/D converters can operate safely. The panel should be placed in a clean area, without getting direct sun light if possible, with a temperature between -10 °C and +40 °C, humidity not exceeding 85% non-condensing. All external cables should be installed safely to avoid mechanical damages.

FAD-40 instruments are very low level signal measuring instruments. To avoid electrical noise, the instruments should be separated from equipment that produces electrical noise. Preferably use a metal cabinet against radio frequency interference, to protect against electromagnetic disturbance the cabinet shall be connected to ground. Keep the load cell cable trays separated from others, if possible. If there is noise-generating equipment such as heavy load switches, motor control equipment, inductive loads etc., please be careful against the EMC interference in the cabinet. If possible protect FAD-40 instruments by a Faraday cage or install them in a separate section or install them far away from this kind of equipment. Install parallel reverse diodes to the DC inductive loads like relays, solenoids etc. to minimize voltage peaks on the DC power lines.

3.1.2. Cabling

All cables coming to the control cabinet shall be shielded. Please use separate cable trays for these low signal level cables. Distance from load cell cables, interface cables and DC power supply cables to power line cables shall be 50 cm at minimum.

3.1.3. Mechanical Installation


After designing the control panel and installing DIN rails according to the recommendation in this chapter, place the FAD-40 instruments on the DIN rail Be sure that the mechanical installation of the instruments is done properly.

3.2. Electrical Connections

Warning: Please always remember that FAD-40 instruments are very low voltage measuring instruments. Your control cabinet design and proper installation increases the reliability and the performance of the instrument. Please do not forget that the instrument must be powered off before inserting or removing any peripheral connector. All required electrical connections should be done as described below.

3.2.1. Power Supply and Grounding

The power supply voltage of the instrument shall be between 12 V DC and 28 V DC. The current consumption of the power supply will be calculated by multiplying 0.2 A and the quantity of instruments. The pin configuration of the 24 V DC power supply connector located at the bottom front of the instrument is shown below in figure 4.1.

Warning: Do not forget to connect the Shield pin to the reference ground.

Figure 4.1 - The pin layout of 24 V DC connectors

The quality of the instrument's ground will determine the accuracy and the safety of your measuring system. A proper ground connection is needed to minimize extraneous electrical noise effects on the measurement. A poor ground can result in an unsafe and unstable operation. It is important that the instrument should not share power lines with noise-generating equipment such as heavy load switching, motor control equipment, inductive loads, etc. If the condition of the power line in the plant is poor, prepare a special power line and grounding. Before interfering the instrument, turn off the power and wait at least for 30 seconds.

3.2.2. Load Cell Connection

To avoid damages, the load cell wiring should be made carefully before energizing the instrument. Load cell connection details are shown below in figure 4.2. In 4-wire installations the sense and excitation pins with the same polarity should be short circuited at the connector side. If you have a junction box in your system, use a 6 wire cable between FAD-40 and the junction box, and short circuit these pins at junction box for better performance.

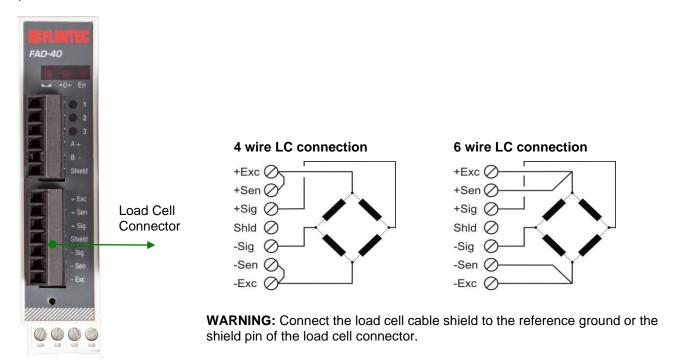


Figure 4.2 - Load cell connection

When you use a junction box and one or more load cells with 4 wires you have to short-circuit the excitation (Exc) and sense wires (Sen) the same polarity as show on the figure 4.21.

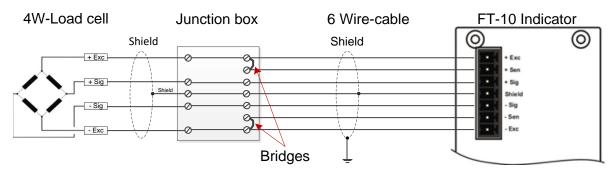


Figure 4.21 - 4 wires load cell connection via connection box

3.2.3. Digital I/O Connection

FAD-40 instruments have the digital I/O connectors on the instrument's front. I/O1 is always an output, I/O2 and I/O3 can be configured for input or output. The I/O connection diagram is shown in Figure 4.3

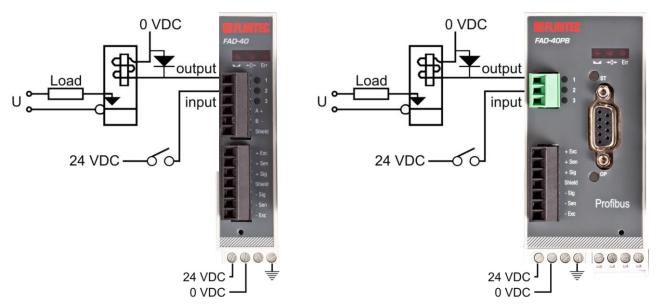


Figure 4.3 - Digital I/O connection

3.2.4. Serial Interface RS232

You can use the serial interface RS232 with the xFace software for configuration and adjustment.

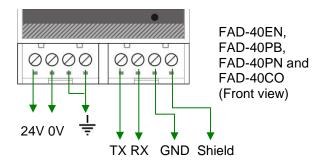


Figure 4.4 – The pin layout of RS232 connector

3.2.5. Communication Interface

Please refer to the corresponding chapter:

FAD-40 (RS485) see chapter 6.2
FAD-40MB (Modbus RTU) see chapter 6.2
FAD-40PB (Profibus) see chapter 7.2
FAD-40PN (Profinet) see chapter 8.2
FAD-40EN (Ethernet and Modbus TCP) see chapter 9.2
FAD-40CO (CANopen) see chapter 10.2

3.3. Commissioning

PRECAUTION: Please read this manual carefully before energizing the instrument. Perform the commissioning operation according the procedure given in this chapter. Only trained persons are allowed for cleaning, commissioning, checking and servicing of the instrument. The interference of untrained person may cause some unwanted damages or injuries.

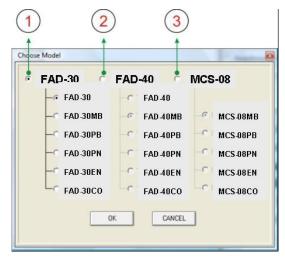
Before energizing the instrument, please make the required mechanical and electrical installations. After power on, you have to setup your FAD-40 instrument before you can start to use the bus interface.

Install the xFace software onto your PC as described in chapter 5 Setup. The xFace software is used for setup, calibration and testing of FAD-40 instruments.

After you have successfully checked the performance of the instrument with xFace, you can begin to use the instrument in your application.

4. SETUP

PRECAUTION: Please read this manual carefully before energizing the instrument. Perform the commissioning according the procedure given in chapter 4.3. Only trained person are allowed for commissioning, checking, cleaning and servicing of the instrument. The interference of untrained person may cause some unwanted damages or injures.


FAD-40 series instruments are setup and calibrated by the xFace software supplied with the instrument. The instruments shall be setup in the sequence described below before you can use the bus interface.

- Install the xFace software onto your PC
- Connect your PC with the instrument over the serial interface (RS232 respective RS485)
- Setup and calibrate the instrument
- Check the performance of the instrument

4.1. Installation of the xFace Software

Please follow following steps to install the xFace software:

- Close all applications on your PC
- Insert the CD that contains the xFace software into the CD-ROM drive
- Double click "Setup.exe" to start the installation. The setup Wizard is displayed.
- Follow the menus in the setup wizard step by step.
- After finishing the installation, the Setup Wizard will inform you about the success of the software installation. Click the OK button.
- After closing the Setup Wizard you can start to use the xFace software.


- 1 Typ FAD-30
- Typ FAD-40: Select one of the FAD-40 models and press OK button.
- Typ MCS-08

Figure 5.1 – xFace type selector window

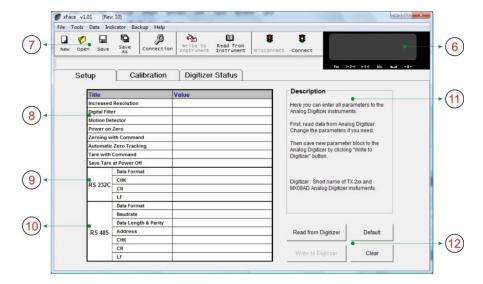
4.2. Connection to the xFace Software

The connection between FAD-40 and the xFace software is done via the RS485 serial port or the RS-232C service port for all models. Alternatively Ethernet (for FAD-40EN only) can be used for this connection. You can purchase a suitable PC connection cable as an accessory from Flintec (Refer to chapter 3.4.2).

After running the xFace software select the FAD-40 model you use (see figure 5.1.). Select the PC's communication port within the Connection settings menu in the tools tab (see figure 5.2) and click the connect icon. After the communication between FAD-40 and your PC has successfully started the traffic light of the connect icon turns from red to green.

Protocol: Select the setup port of the instrument. FAD-40 and FAD-40MB instruments can be setup over RS-485. Other models can be setup over RS-232C.

Com Port: Select the communication port of the PC


Address: Select the RS-485 address, if RS-485 is selected **Baud rate:** Select the RS-485 baud rate, if RS-485 is selected

Setting: Select the RS-485 communication port setting, if RS-485 is selected

Figure 5.2 – xFace Connection Settings

4.3. Setup and Calibration

WARNING: Read this manual carefully before you setup and calibrate the instrument. This will increase the performance of your weighing system by applying proper setup and calibration.

6	Visual Weight Display: Displays the weight, count or force value
7	Toolbox: Contains shortcuts of some special commands
8	A/D Converter Parameters: This block allows the user to setup the A/D Converter's parameter
0	related to the operation mode. Refer to chapter 5.3.1
9	RS-232C: RS-232C serial port communication settings (not for FAD-40 and FAD-40MB)
10	RS-485: RS-485 port communication settings. (FAD-40 and FAD-40MB only)
11	Description: This block provides some clear-text explanations
	Read from A/D Converter: Click this button to read the parameter settings from the instrument
12	Write to A/D Converter: Click this button to save the parameter settings to the instrument
(12)	Default: Click this button to load the factory default settings
	Clear: Empties the parameter settings

Figure 5.3 – FAD-40 Setup Parameters

For entering the parameter values enter the setup tab, adjust the parameter settings and then write this data to the A/D Converter. After changing parameter settings the instrument always requires a re-calibration.

4.3.1. Scale Parameters

In the setup menu the scale parameters of FAD-40 can be viewed, changed or saved to the instrument. These parameter settings are:

Increased External Resolution

For service purposes this parameter enables the 10 times higher resolution of the weight value than the defined interval in weighing and force mode. Increased resolution must be disabled for use in normal operation (Not available in Count Mode). Default setting: 'Disable'.

Digital Filter

Environmental noise like bounding forces, air flow, vibration, motor control instruments etc. may disturb the load cell signal. The selection of proper filter settings determines how quickly the system will react to the load cell signal.**Load cell signal digital filtering is done according to this parameter settings. The settings can be changed from 0 (fastest settling) to 9 (slowest settling). Default setting: '7'.

Setting	0	1	2	3	4	5	6	7	8	9
Values/s	1600	800	400	200	100	100	100	50	50	50
Settling time [ms]	80	140	250	180	300	420	380	620	720	1800

Motion Detection

This parameter defines the motion detection window which determines a stable weighing. If motion detection is not required, this parameter can be disabled. The available motion detection window values are:

Weighing and Force Mode:

Disable	± 0.3e	± 0.5e (default setting)	± 1e	± 2e	
Count Mode:	Count Mode:				
Disable	± 60	± 100 (default setting)	± 200	± 400	

Power On Zero

This parameter enables automatic zeroing after powering on the instrument. The automatic zeroing is only done if the total zero drift from the calibrated zero signal is in the defined zeroing window. This zeroing window will be defined in the percentage of the scale capacity.

Disable (default setting)	± 2%	± 10%

To avoid unwanted zeroing at power on this parameter should be disabled or carefully set up in applications like silo weighing, tank weighing and automatic weighing applications. If the weight is not within the power on zeroing range, the instrument is powered on without zeroing (Not available in Count Mode).

Zeroing by Key (Zeroing Range)

Zeroing of the scale is performed if the difference between load cell signal value and unloaded load cell signal value at the calibration is in the selected percentage of the scale capacity. Zeroing can be done by zeroing command when the scale is stable. Zeroing can be done by zeroing command when the scale is stable. The available zeroing ranges in the percentage of the scale capacity are:

Disable	± 2% (default setting)	± 20%	± 40%
	3,		

Auto Zero Tracking

AZT automatically re-adjusts the scale to zero for compensating defined small deviations around the center of zero. AZT only works within the defined zeroing range and stops working if this range is left. To avoid unwanted zeroing this parameter should be disabled or carefully set up in applications like silo weighing, tank weighing and automatic weighing applications (Not available in Count Mode). The available AZT window values are;

Disable (default setting) $ \pm 0.5e$ $ \pm 1e$ $ \pm 3e$

Tare

If this function is enabled, the weight is tared when the tare command is received. Additional conditions for taring are positive gross weight and no motion. Multi-taring is possible with FAD-40 series (Not available in Count Mode). Default setting: 'Enable'.

Save Tare at Power Off

If this function is enabled, the tare value is stored at power off and the instrument starts up in Net mode at power on (Not available in Count Mode). Default setting: 'Enable'.

4.3.2. RS-485 Serial Interface Setup

Data Format

This parameter defines the serial communication port data format for RS-485. The available data formats are:

Disable: Port will be disabled. Select "Disable" if this port is not used.

BSI Communicates in BSI data format as a slave.

(default setting for FAD40)): Refer to chapter 5.9 for details.

Modbus RTU Modbus RTU communication (for FAD-40MB only).

(default setting for FAD-40MB)): Refer to chapter 5.11 for details

NOTE: xFace automatically connects to the instrument whatever the data format is. After xFace is disconnected, the instrument returns to operate with the last saved data format.

WARNING: Disable this interface if it is not used to increase the interfacing performance.

Checksum

The checksum can be enabled or disabled within BSI data format. The checksum calculation can be found in the related data format description. Default setting: 'Enable'.

Carriage Return (CR)

Carriage Return can be enabled or disabled within Continuous output data format. Default setting: 'Enable'.

Line Feed (LF)

Line Feed can be enabled or disabled within Continuous output data format. Default setting: 'Enable'.

The RS-485 setup is done by the xFace software as described in this chapter. Select the Setup tab after xFace has established a connection with your instrument. The Setup tab (see figure 5.3) includes all RS-485 settings.

Baud Rate

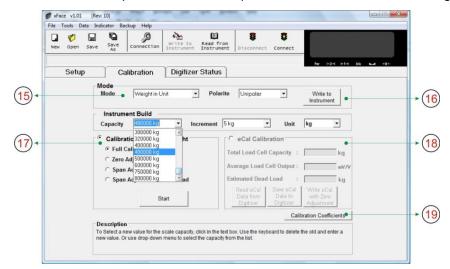
One of the following baudrate will be selected for the RS-485 communication port.

1200	2400	4800	9600 (default setting)
19200	38400	57600	

Data Length and Parity

The data length and parity can be selected as 8 None 1 (default), 7 Odd 1 or 7 Even 1.

Address of A/D Converter


The address range is 01 (default) to 31. If you enter 0, the instrument will operate without address data.

Modbus RTU Setup (for FAD-40MB only)

RS-485 Data Format: 'Modbus RTU', RS-485 Data Length & Parity: '8 none 1', RS-485 Address: '01' to '31'

4.3.3. Scale Build and Calibration

Scale build, operation mode selection and scale calibration is performed in the calibration tab of xFace as shown in figure 5.4. Please follow the procedure in the sequence as described in the following chapters.

15	Mode: Here the user selects the operation mode and the polarity.
16	Write to A/D Converter: Click this button to save the operation mode and polarity to A/D
10	Converter.
17	Calibration block: This block allows the user to calibrate with test weights.
18	eCal Calibration: This block allows the user to calibrate without test weights.
19	Calibration Coefficients: This function allows the user to restore a calibration if the calibration
19	coefficients have been noted before.

Figure 5.4 – Calibration

Mode Selection

FAD-40 instruments have three operation modes which are:

Count Mode: Filtered and normalized ADC count data will be transmitted in this mode. The

calibration is performed at the PLC, if any.

Weighing Mode: Unipolar weight data in calibrated weighing unit will be transmitted. This mode is

compatible to OIML R76 and EN 45501.

Force Mode: Bipolar or unipolar force measurement data in calibrated force unit will be transmitted.

Select the scale operation mode and the polarity. Then click the "Write to A/D Converter" button to save your mode selection. The default calibration of FAD-40 instruments is Count Mode and 10 mV unipolar input signal range. If you select the Count Mode, there is no scale build and instrument calibration. Each FAD-40 instrument is adjusted for high accuracy during the production. The FAD-40 input signal ranges and their external resolutions are shown in Table 5.1.

Input signal range	Input Signal level	Polarity	External resolution
0 to 5 mV	5 mV	Unipolar	1 million counts
-5 to 5 mV		Bipolar	2 million counts
0 to 10 mV	10 mV	Unipolar	1 million counts
-10 to 10 mV		Bipolar	2 million counts
0 to 15 mV	15 mV	Unipolar	1 million counts
-15 to 15 mV		Bipolar	2 million counts
0 to 18 mV	18 mV	Unipolar	1 million counts
-18 to 18 mV		Bipolar	2 million counts

Table 5.1 - Count Mode, Input Signal Ranges and External Resolution

Select the input signal level and polarity for high external resolution. Write your mode selection to the instrument by clicking "Write to A/D Converter" button. Jump to the chapter 5.4.

Scale Build

The scale capacity, the increment and the unit have to be introduced to the FAD-40 instrument before you can perform a calibration in Weighing or Force mode.

Capacity: To select a new value for the scale capacity, click in the text box.

Use the keyboard to enter a new value, or use the drop-down menu.

Increment: Use the drop-down menu to select the increment.

Unit: Select the unit

The scale calibration can be performed by using test weights or by electronic calibration (eCal).

Calibration by Test Weights

This calibration method performs zero and span calibrations using test weights. For accurate calibration the test weight value should not be less than 1/10 of the scale capacity.

Figure 5.5 - Calibration by test weights

Please note that the scale build values should be entered before you start the calibration.

Select "Full Calibration" for performing a complete scale calibration. Click the "Start" button. Unload the scale for performing the zero calibration and click the "Yes" button. The virtual display will show the [WAIT] message during the zero calibration. During the zero calibration the scale must be stable. Approximately 5 seconds later the span calibration window will be displayed. Load the scale and enter the loaded test weight value, then click the "OK" button. The scale must be stable during the span calibration. Approximately 5 seconds later the new calibration settings are saved automatically.

If any error occurs during the calibration an error message warns you. Click the "Yes" button to reload the previous values or click the "No" button to use the new settings.

You can adjust the zero or the span of your scale without performing a full calibration. Additionally the "span calibration to the unloaded scale" feature is another tool of FAD-40 instruments for after-sale services.

Zero Adjustment

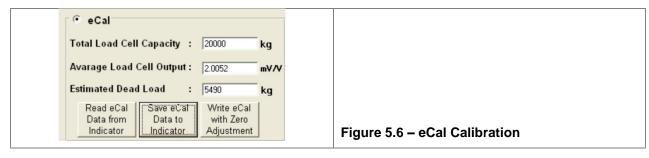
If your scale has a residual zero drift you may perform a zero adjustment only. Select "Zero Adjustment" and press the "Start" button. Then the zero calibration window will be displayed. Unload the scale and click the "OK" button. The [WAIT] message appears on the virtual display during the zero adjustment. Approximately 5 seconds later the zero adjustment will be finalized.

Note: Zero adjustment is also performed over the bus interface. Refer to the data structure of the related bus interface.

Span Adjustment

If your scale has a span drift, you may perform a span adjustment only. After selecting "Span Adjustment" and pressing the "Start" button, enter the test weight value; place the test weights on the scale and press the "Yes" button. The [WAIT] message appears on the virtual display approximately for 5 seconds while the span calibration is being performed. After finalizing the span adjustment, the instrument will save the span coefficients automatically.

Note: Span adjustment is also performed over the bus interface. Refer to data structure of the related bus interface.


Span Adjustment under Load

This feature is being used to perform a span adjustment without unloading the scale. This operation is especially used for the span adjustment for non-empty tanks to make a span adjustment without emptying the tank. After selecting "Span Adjustment under Load" press the "Start" button. The temporary zeroing message appears on the monitor. This means the instrument will determine the existing load as the temporary zero. If the scale is stable press the "Yes" button. The [WAIT] message appears on the virtual display approximately for 5 seconds to determine the temporary zero. Then the span calibration window will be displayed. Load the scale and enter the loaded test weight value, then click the "OK" button. The scale must be stable in this period. Approximately 5 seconds later, the new calibration settings are saved automatically.

Please refer to the chapter 5.4 A/D Converter Performance Test).

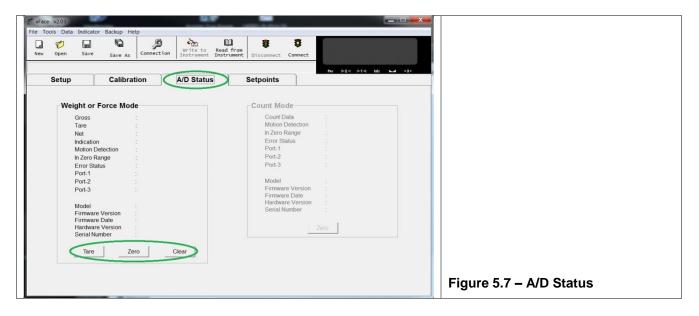
Electronic Calibration (eCal)

eCal allows to perform a calibration without using test weights. FAD-40 is adjusted during production for increased eCal accuracy. The calibration will be done based on the scale capacity, the total load cell capacity, the load cell output and the estimated dead load. If the conditions are convenient for zero calibration, you may perform automatic zero adjustment instead of entering an estimated dead load.

After selecting eCal calibration enter the following values as:

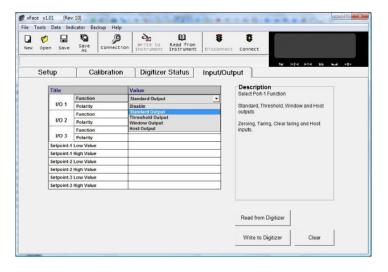
Total Load Cell Capacity: Enter the total load cell capacity in kg as shown in the example below. Example: If the weighing system has 4 pcs 1000 kg load cells, then enter 4000 kg.

Average Load Cell Output: Enter the load cell output in mV/V. If the weighing system has more than one load cell, calculate the mean value of the load cells output as indicated in the certificates of the individual load cells.


Example: If the load cell outputs are LC1: 2.0010, LC2: 1.9998, LC3:1.9986 and LC4:2.0002, the mean value will be LC output = $(2.0010 + 1.9998 + 1.9986 + 2.0002) \div 4 = 1.9999 \text{ mV/V}$.

Estimated Dead Load: Enter the estimated dead load value of the weighing system in kg. You may perform a zero adjustment in convenient time for exact dead load compensation. After pressing "Save eCal Data to Converter" these data will be transferred to the instrument and eCal will be finalized.

If the scale is empty and you want to make an automatic zero adjustment instead of entering an estimated dead load, then press the "eCal with Zero Adjustment" button for starting the zero calibration. The display will show the [WAIT] message during the zero adjustment for approximately 5 seconds. In this period the scale must be unloaded and stable. The eCal calibration coefficients are saved automatically.


4.4. A/D Status (Performance Test)

The scale performance test should be performed before you install the bus connection. The tests are linearity, repeatability and eccentricity. You can follow the test at the virtual display and/or status tab which show the measurement data, the instrument data and the software version. For convenience keys for Taring, Zeroing and Clear are located in this tab.

4.5. Setup of Digital I/O

FAD-40 instruments have 3 digital I/O channels. I/O1 is always an output, I/O2 and I/O3 can be configured for input or output. The I/O connection diagram is shown in Figure 4.3

I/O1: Select function and polarity

for I/O1 (output only)

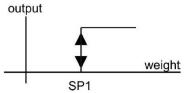
I/O2: Select function and polarity

for I/O2

I/O3: Select function and polarity

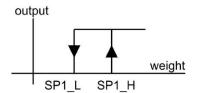
for I/O3

Setpoint entries: Enter setpoints. Setpoint 1 for I/O1, setpoint 2 for I/O2 and setpoint 3 for I/O3.


Figure 5.7 - Digital I/O Setup

Setup of Digital Output Function

I/O1, I/O2 and I/O3 can be set up with the output functions described below.


Standard output (Setpoint without hysteresis):

Only one value is entered. The output state is forced active (active high or active low, selectable) when the weight is higher than the setpoint SP1, else the output is passive.

Setpoint with hysteresis:

2 values are entered. The output state is forced active when the weight gets higher than the higher setpoint value SP1_H. The output state drops to passive state when the weight gets lower than the smaller setpoint value SP1_L.

Tolerance band:

2 setpoint values are entered. The output is active when the weight is between these two setpoints (SP1_L and SP1_H).

Host Output: Output controlled over field bus commands. Refer to related field bus data structure.

Disable: The ouput will be disabled.

I/O Polarity: The output polarity can be defined for active high (default) or active low (inverses the output).

Enter the setpoint values for the selected output function. Host output needs no setpoint value. Click "Write to Converter" to save the changes.

Setup of Digital Input Function

I/O2 and I/O3 can be set up with the input functions described below:

Zeroing The input zeros the scale. Taring The input tares the scale.

Clear Tare The input clears the tare memory.

Host Input Input controlled over field bus commands. Refer to related field bus data structure.

Disable The input will be disabled.

I/O Polarity The input polarity can be defined for active high (default setup) or active low (inverses the input).

4.6. Bus Interface Setup

FAD-40 instruments have a bus interface and these parameters have to be setup before the bus will be connected. Bus communication settings are done in the Gateway tab.

Bus communication parameters and their descriptions can be found in the related instrument chapters.

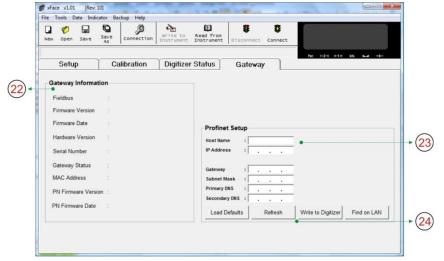


Figure 5.8 - Bus Interface Setup

Gateway Information:
Gives the user info about the bus interface

Communication setup:
Network parameters

Load Defaults: Loads the default values

Refresh: Reads the settings from the instrument and updates the window

Write to Converter: Saves and activates the settings to

the instrument

Find on Network: Search for the instrument on the

network

4.7. Bus Addressing via Setup Switch

The bus addressing of FAD-40 instruments is done by the xFace software (Refer to chapter 5.3.1). The alternative way for addressing is the setup switch on the front panel for addresses between 0 and 7 for RS-485, Modbus RTU, Profibus and CANopen interfaces. This feature gives you the practical advantage for addressing the instrument up to address 7 without requiring a PC connection.

For addressing via the setup switch, press this switch for 5 seconds. Then the status LEDs indicate the bus address as shown in the table below. If the address is higher than 7 all LEDs are flashing. The address can be changed by pressing the setup switch sequentially. To save and exit, press the setup switch for 5 seconds. To return to normal operation without saving, wait 15 seconds without pressing the switch.

1	→0 ←	Err	Address Number
0	0	0	0 (No address)
0	0	•	1
0	•	0	2
0	•	•	3
•	0	0	4
•	0	•	5
•	•	0	6
•	•	•	7
*	*	*	Higher than 7
0 0	ff 🜑 O	n 🌣	Flash

Table 5.2 –
Bus Addressing via
Setup Switch

4.8. Back up Settings and Calibration Data

The parameter settings and the calibration coefficients can be saved to a backup file after reading these data from the FAD-40 instrument. This backup file can be re-written to FAD-40 after opening it by xFace. The backup feature gives a service advantage to FAD-40 instruments. We propose to burn these files to CD / DVD and save this backup CD / DVD in the control cabinet additionally to a backup file on your PC.

Important note: The previous parameter settings and calibration coefficients in FAD-40 will get lost after loading a backup to the instrument.

5. FAD-40 / FAD-40MB WITH RS-485 INTERFACE

FAD-40 and FAD-40MB instruments are state-of-the-art strain gauge load cell signal digitizers with RS-485 interface. These instruments are used for any type of process weighing and force measurement including tank and silo weighing, dynamic weighing, check weighing, filling, tension /compression force measurement etc.

5.1. Front View of FAD-40 (MB)

There are 3 status LEDs on the front panel which indicate the operational instrument status (Refer to table 6.1). The setup switch on front panel of the instrument is used for RS-485 addressing without PC (Refer to chapter 5.6) and for diagnostics (Refer to chapter 12).

When the error LED is ON, the other two LED indicate the error type (Refer to chapter 11 for details). Load cell connection, power supply and serial interface terminals are located at the front of the DIN rail mount instrument (See figure 6.1).

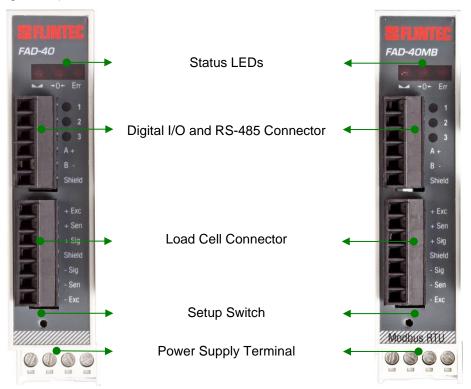


Figure 6.1 - Front view

The meanings of these LEDs in operation are described below.

LED		Operational Mode			
Symbol	Name	Weight / Force	Count		
	Stable	Stable Unstable	Off for 0.3 seconds in 2 seconds period (No stable indication)		
→0 ←	Centre of Zero	in the center of zero range (-0.25 e < w < 0.25 e) Out of center of zero range	Always off (No center of zero indication)		
Err	Error (*)	ADC conversion errorDigital processing errorNo error	ADC conversion error Digital processing error No error		

Off On Flashing Off for 0.3 seconds

(*): Refer to the error table in chapter 11

Table 6.1 - Status LEDs

5.2. Electrical Connections

RS-485 connection is shown in figure 6.2.

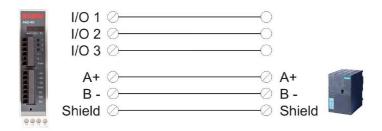


Figure 6.2 - FAD-40 / FAD-40MB serial interface connection

RS-485 Serial Interface

Use	Interfacing with PC or PLC, setup via xFace
Data format	BSI (default for FAD-40), Modbus RTU (for FAD-40MB only, default)
Baud rate	1200 / 2400 / 4800 / 9600 (Default) / 19200 / 38400 / 57600 bps
Length and parity	8 None 1 (default), 7 odd 1, 7 even 1
Start / Stop bits	1 start bit and 1 stop bit

WARNING: Connect the shield to the reference ground.

WARNING: Disconnect xFace PC software for Modbus-RTU interfacing

5.3. RS-485- and Modbus-RTU-Interfacing

FAD-40 and FAD-40MB instruments have one serial interface connector on the front of the instrument: RS-485. The table below describes the data format for interfacing the peripherals and their application:

Data Format	Description	Application	Hardware
BSI	Demand interface on BSI Serial Interface format. Refer to chapter 5.10	Master – Slave data interfacing with PLC or PC.	RS-485
Modbus RTU (FAD-40MB only)	Modbus RTU interfacing. Refer to chapter 5.11	Interfacing with PLC.	RS-485

Table 6.1 - Data output interfacing

Attention: Please disable the interface if not used to increase the performance of the instrument.

5.4. Setup and Calibration

FAD-40 and FAD-40MB instruments are set up and calibrated by xFace. The A/D Converter settings are very important for a good weighing performance. Please refer to chapter 5.3.

5.5. BSI Data Structure (for FAD-40 and FAD-40MB only)

Depending on their functionality all new generation Flintec instruments launched on the market support the standardized command set with BSI data structure. This easy data format gives a reliable and fast interface for communicating with PLC or PC for process control or transactional applications. You can expand your system with additional scales from Flintec without having to change your application program base.

General Rules:

- Commands are only in CAPITAL letters
- 2. CHK (2 ASCII char) can be enabled or disabled from both command and response.
- 3. Weight data is 8-byte with dot and non-significant zeros on the left.
- 4. Address (2 ASCII char) will be located in the structure if not 00.

Command format:

A general description of the command is the following: [ADR][COMMAND][CHK][CR][LF]

Response format with weight / force or count data
A general description of the response is the following:
[ADR][COMMAND][STATUS][SIGN][WEIGHT/FORCE/COUNT][CHK][CR][LF]

Response format without weight / force or count data [ADR][COMMAND][STATUS][CHK][CR][LF]

BSI Command Table:

Α	Read all weight data immediately
В	Read Gross weight value immediately
С	Clear the tare memory
D	Read Count value immediately
	Read current (indicated) weight value immediately
Р	Print: Read the current stable weight value
Q	Load Setpoints
R	Read Setpoints
S	Read Status
T	Tare
U	Read digital inputs
V	Read digital outputs
W	Set/reset digital outputs
X	Read current weight value in increased resolution immediately
Z	Zero

BSI Status Table:

Α	Acknowledged, the command is operated successfully
D	Unstable weight
E	Errors except of H, L, O, +, -
Н	High voltage detected
I	The weight is in range
L	Low voltage detected
N	Not acknowledged, the command couldn't be operated
0	ADC out
S	Stable weight
Χ	Syntax error (received command not recognized)
+	Overload
_	Underload

Note: CHK, CR and LF will not be shown in the below data format descriptions in this chapter.

BSI Commands and Responses

A Read all weight data

Command: [ADR][A]

Response: [ADR][A][STATUS][SIGN][NET W][SIGN][TARE W][SIGN][GROSS W]

Example:

Command: 10A

Response: 01AS+000123.4+000111.1+000234.5

01AD+000123.4+000111.1+000234.5 01AO (ADC out error)

Comments: The response is net, tare and gross weight values or error status. All weight data will be

transmitted immediately after receiving the command.

B Read Gross weight

Command: [ADR][B]

Response: [ADR][B][STATUS][SIGN][WEIGHT VALUE]

Example:

Command: 01B

Response: 01BS+000123.4 (gross weight is stable and 123.4)

01BD+000123.4 (gross weight is unstable and 123.4)

01B- (under load)

Comments: The response is the gross weight value (stable or unstable) or error status. Gross weight data

will be transmitted immediately after receiving command.

C Clear the tare memory

Command: [ADR][C]

Response: [ADR][C][A] (Cleared and the scale is in gross mode)

[ADR][C][X] (Clear command is unavailable in count mode)

Comments: The response status is always Ack in weighing or force mode and always X in count mode.

D Read Count value immediately

Command: [ADR][D]

Response: [ADR][D][STATUS][SIGN][COUNT VALUE]

Example:

Command: 01D

Response: 01DD+00123400

01DO (ADC out error) 01DX (Not in count mode)

Comments: Count value will be sent immediately.

I Read indicated weight

Command: [ADR][]]

Response: [ADR][I][STATUS][SIGN][WEIGHT VALUE]

Example:

Command: 011

Response: 01IS+000123.4 (weight is stable and 123.4)

01ID+000123.4 (weight is unstable and 123.4)

01I+ (overload)

Comments: The response is the indicated weight value (stable or unstable). It will be transmitted

immediately after receiving the command. The weight value may be in gross or net.

P Print :Read the stable weight

Command: [ADR][P]

Response: [ADR][P][STATUS][SIGN][WEIGHT VALUE]

Example:

Command: 01P

Response: 01PS+000123.4 (weight is stable and 123.4) or

01PN (could not print)

Comments: Checks status and it must be stable. Else Nack status will be sent. There is no time period for

stability checking. Status can be Stable or Nack.

Q Load setpoints

Command: [ADR][Q][SP NUMBER][SP TYPE][SIGN][SP VALUE]

Response: [ADR][Q][A]

Example:

Command: 01Q01L+000123.4

Response: 01QA (123.4 loaded to SP1 L)

01QN (could not load)

01QU (Mismatch of decimal point of SP VALUE)

Comments: SP No is 2 byte ASCII char. Use 01 for SP1, 02 for SP2 and 03 for SP3.

SP Type is 1 byte ASCII char. Use "L" for SPx_L and use "H" for SPx_H.

SP VALUE data is 8-byte ASCII char with dot and non-significant zeros on the left.

R Read setpoints

Command: [ADR][R][SP NUMBER][SP TYPE] Response: [ADR][R][A][SIGN][SP VALUE]

Example:

Command: 01R01L

Response: 01RA+000123.4 (SP1_L is 123.4) 01RN (could not read)

Comments: SP No is 2 byte ASCII char. Use 01 for SP1, 02 for SP2 and 03 for SP3.

SP Type is 1 byte ASCII char. Use "L" for SPx L and use "H" for SPx H.

SP VALUE data is 8-byte ASCII char with dot and non-significant zeros on the left.

S Read Status

Command: [ADR][S]

Response: [ADR][S][STATUS-1][STATUS-2][STATUS-3]

Example:

Command: 01S

Response: 01SSGI (Stable, Gross, In Range)

01SDGL (Unstable, Gross, Low voltage error)

Comments: The response includes 3 status information.

STATUS-1 can be Stable or Unstable. STATUS-2 can be Gross or Net.

STATUS-3 can be 'in range', 'out of range', 'low voltage' or 'high voltage'.

T Tare

Command: [ADR][T]

Response: [ADR][T][A] (Taring is done successfully and scale is in net)

[ADR][T][N] (Taring could not be executed)

[ADR][T][X] (Taring is disabled or instrument is in count mode)

Comments: The tare value will be overwritten by the new tare weight value. The status must be stable

within 2 seconds delay time. If so, Ack will be sent. Otherwise Nack will be sent.

U Read digital inputs

Command: [ADR][U]

Response: [ADR][U][A][INPUTS]

Example:

Command: 01U

Response: 01UA6 (Input 2 and input 3 are active)

01UN (could not read inputs)

Comments:

Inputs	IN-3	IN-2	IN-1
Bitwise	1	1	0
ASCII	6		

V Read digital outputs

Command: [ADR][V]

Response: [ADR][V][A][OUTPUTS]

Example:

Command: 01V

Response: 01VA3 (Output 1 and output 2 are active)

01VN (could not read outputs)

Comments:

Outputs	OUT-3	OUT-2	OUT-1
Bitwise	0	1	1
ASCII	3	•	•

W Set/reset digital outputs

Command: [ADR][W][OUTPUTS]

Response: [ADR][W][A]

Example:

Command: 01W03

Response: 01WA3 (Output 1 and output 2 will be set active)

01WN (could not set/reset outputs)

Comments:

 Outputs
 OUT-3
 OUT-2
 OUT-1

 Bitwise
 0
 1
 1

 ASCII
 03

X Read weight value in increased resolution

Command: [ADR][X]

Response: [ADR][X][STATUS][SIGN][WEIGHT VALUE]

Example:

Command: 01X

Response: 01XS+00123.41 (weight is stable and 123.41) or

01XD+00123.41 (weight is unstable and 123.41) or

01XE (Error)

Comments: The response includes the weight data with the increment divided by 10.

Z Zero

Command: [ADR][Z]

Response: [ADR][Z][A] (Zeroed)

[ADR][Z][N] (Zeroing could not be operated)

[ADR][Z][X] (Zeroing is disabled)

Comments: The Zero command does not work in net weighing mode. The Weight or Count must be within

the zeroing range for all operating modes. The status must be stable within 2 seconds delay

time. If so. Ack will be sent. Otherwise Nack will be sent.

CHK will be transmitted as two ASCII characters calculated with the checksum formula:

Checksum = 0 - (SUM of all response data before CHK)

Example: Read stable current weight data

BSI Examples: (CHK is enabled and instrument address is 01)

Command: 01P[CHK][CR][LF]

Checksum = 0 - (0x30 + 0x31 + 0x50) = 0 - 0XB1 = 0x4F

CHK = Char '4' and 'F'

Response: 01PS+000123.4[CHK][CR][LF]

Checksum = 0 - (0x30 + 0x31 + 0x50 + 0x53 + 0x2B + 0x30 + 0x30 + 0x30 + 0x31 + 0x32 + 0x33 + 0x2E + 0x30 + 0x30

0x34) = 0 - 0x02B7 = 0x49: CHK = Char '4' and Char '9'

5.6. Modbus RTU (for FAD-40MB only)

If the FAD-40MB instrument is setup for Modbus, it can be used as a Modbus RTU slave in a RS-485 communication network. Function codes '0x03' and '0x10' are supported. For RS-485 setup please refer to chapter 5.3.2, for the Modbus data structure please refer to chapter 5.11.

5.7. Modbus Data Structure (for FAD-40MB and FAD-40EN only)

Address	R/W	Word	Command	mmand Definition					
40001	R	2	Weight / Force / C	Count Da	ta				
				D0	0 –	Syst	em Ready	1 -	- System Busy
				D1	0 –	Erro	r	1 -	– Data ok
				D2	0 –	Wei	ght Stable	1 -	– Weight unstable
				D3	0 –	Gros	ss Mode	1 -	– Net mode
				D4				No	ot Used
				D5	0 –	Wei	ght / Force	1 -	- Count Mode
				D6D1	11			No	ot used
40003	R	1	Status	D12	0 –	Out	of zero range	1 -	 Weight is in zero range
								0	No Errors
								1	ADC out of range
				D13				2	ADC over range
				D14	Err	or Co	ode	3	ADC under range
				D15				4	System error
								5	In setup mode
								6	Low/High voltage det.
40004	R	2	Tare weight						
40006	R	2	Gross weight						
40008	R	1	Status	Motion,	Net n	node	, Data ok, (imag	ge c	of register 40003)
				0	None				
40009	R/W	1	Control	1	Zero		ero		
40003	1 1 7 7 7	'	Control	2	Tare				
				3	Clea				
				0	None				
40010	R/W	1	Calibration	188					
	10,00	-		Adjust Span Calibration (First load calibration weight					
10011	5.44		0 0 111 11		on so	cale a	and load 40011	wit	h span test weight value)
40011	R/W	2	Span Calibration			1.	ID 1 (1)		
				D0 D7		1	Ready for cali		
				Calibrat		3	Zero calibratio		
				Process Status	5	4	Span calibrati Error (Refer to		
				Status		9	Calibration Tir		
						1	- Restart calib		
							ADC Error	nau	011
						2	- Re-energize	the	e instrument
						_			hange the board.
						3			ot be calibrated
40013	R	1	Calibration				- Check load	cell	cable
			Status	D8D1	15		- Re-energize	the	e instrument
				Calibrat	tion	34	Instrument ca	nnot be calibrated	
				Errors		34	- Load cell sig	nal is very low or too high	
							Calibration Er	ror	
						35	- Calibration to	est	weight is not enough
						33			ition weight value (40011)
							- Check load		connections
							Scale unstable		
						37			become stable
							- Check groun		g wiring
40014	R/W	1	Operation Mode	0		Cou	ınt Mode Unipo	lar	
40014	IT/ VV	1	Selector	1		Cou	ınt Mode Bipola	ar	
		1	1	1					

		2	Force Mode Unipolar
		3	Force Mode Bipolar
		4	Weight Mode Unipolar

Address	R/W	Word	Command	Definition				
				0	5 mV			
4004 <i>E</i>	R/W	4	mV operation	1	10 mV			
40015	R/VV	1	in Count Mode	2	15 mV			
				3	18 mV			
				0	Fast			
				1				
				2				
				3				
				4				
40016	R/W	1	Digital filters	5	Medium			
				6	iviodidiii			
				7	Default			
				0	Delault			
				8	Class			
40047		1	NI. (I	9	Slow			
40017		1	Not used	TD0	1	22		
				D0	Input of I/O			
				D1	Input of I/O)2		
				D2	1			
				D3				
			Status of	D4				
40018	R/W	1	Digital I/O	D5				
			Digital I/O	D6				
				D7				
				D8	Output of I/O1			
				D9	Output of	I/O2		
				D10	Output of	I/O3		
					0000000	Disable		
					0000001	Standard setpoint	I/O1 output function	
				D0D6	0000010	Setpoint without hyster.		
					0000011	Window		
					0000100	Host output		
					0	Active Low	I/O1	
				D7	1	Active High	polarity	
					0000000	Disable	polarity	
			Setup for I/O1		0000001	Standard setpoint	=	
40019	R/W	1			0000001	Setpoint without hyster.	I/O2 output	
				and I/O2				function
				D0 D44	0000011	Window	4	
				D8D14	0000100	Host output	1	
					0000101	Zeroing	1,000	
					0000110	Taring	I/O2 input	
					0000111 Clearing tare		functions	
					0001000	Host input	1	
				D15	0	Active Low	I/O2	
				2.0	1	Active High	polarity	
					0000000	Disable	_	
					0000001	Standard setpoint	I/O3 output	
					0000010	Setpoint without hyster.		
					0000011	Window	function	
				D0D6	0000100	Host output		
40020	R/W	1	Setup for I/O3		0000101	Zeroing		
			0000110	Taring	I/O3 input			
					0000111	Clearing tare	function	
				0001111	Host input	1		
					0	Active Low	I/O3	
				D7	1	Active Low Active High	polarity	
	I	1				Luctive Liigh	μυιαιτιγ	

Address	R/W	Word	Command	mmand Description		
40021	R/W	2	Setpoint 1 Low for I/O1			
40023	R/W	2	Setpoint 1 High for I/O1			
40025	R/W	2	Setpoint 2 Low for I/O2			
40027	R/W	2	Setpoint 2 High for I/O2			
40029	R/W	2	Setpoint 3 Low for	Setpoint 3 Low for I/O3		
40031	R/W	2	Setpoint 3 High fo	Setpoint 3 High for I/O3		
40033	R/W	1	Save I/O settings	23205 (Dec)	Load 23205 to save and activate I/O settings and setpoints	

Note: Standard setpoint output function uses only setpoint low.

EXPLANATION

ATTENTION: For hardware connection details, please refer to the related hardware descriptions in this manual.

In the two word registers the data is stored to the registers in big-endian format. The least significant word is stored to the highest register address; and the most significant word is stored to the lowest register address. Please find Modbus information in the web site of http://www.modbus.org

Exception codes

1: Function code is not supported.

2: Out of address range

3: Invalid value or wrong byte number

4: Operation error

Examples:

Performing Read and Write operations according to hex system with the instrument set to address "0x01".

Request weight data: 01,03,00,00,00,02,C4,0B Answer of requested weight: 01,03,04,00,01,86,A0,38,4A

Weight is 100000

Request status data: 01,03,00,02,00,01,25,CA

Taring: 01,10,00,08,00,01,02,00,02,26,D9

Request tare data: 01,03,00,03,00,02,34,0B Answer of requested tare: 01,03,04,00,00,27,10,E0,0F

Tare is 10000

 Weight Mode Selection:
 01,10,00,0D,00,01,02,00,04,A6,8E

 Count in Unipolar Mode Selection:
 01,10,00,0D,00,01,02,00,00,A7,4D

 5 mV Input signal range selection:
 01,10,00,0E,00,01,02,00,00,A7,7E

 Load Medium (5) to Digital filter:
 01,10,00,0F,00,01,02,00,05,66,AC

Request Calibration Status: 01,03,00,0C,00,01,44,09 Answer of requested Calibration Status: 01,03,02,00,01,79,84

Instrument is ready for calibration

Zero Calibration Command: 01,10,00,08,00,01,02,00,01,66,D8

Span Calibration with Span Value 50000: 01,10,00,09,00,03,06,00,DC,00,00,C3,50,B7,B0

Read digital I/Os: 01,03,00,11,00,01,D4,0F Response of digital I/Os: 01,03,02,01,02,38,15

Output 1 and Output 2 is active.

Setup I/Os for Output: 01,10,00,12,00,02,04,82,81,00,83,4A,8B

I/O 1 = Standard, Active High;

I/O 2 = Setpoint with hysteresis, Active High; I/O 3 = Tolerance window, Active High.

Setup I/Os for Input: 01,10,00,12,00,02,04,05,84,00,06,B3,9D

I/O 1 = Host Output, Active High
I/O 2 = Zeroing Input, Active Low
I/O 3 = Taring Input, Active Low

Load Setpoint 1 Low = 5000 and Set point 1 High = 6000:

01,10,00,14,00,04,08,00,00,13,88,00,00,17,70,6A,E2

Request Setpoint 1 Low and Setpoint 1 High values: 01,03,00,14,00,04,04,0D

Response of Setpoint 1 request: 01,03,08,00,00,17,70,00,00,1B,58,DC,31

Setpoint 1 Low = 6000 and Setpoint 1 High = 7000.

Save and activate I/O settings and Set points: 01,10,00,20,00,01,02,5A,A5,5B,EB

6. FAD-40PB WITH PROFIBUS INTERFACE

FAD-40PB instruments are state-of-the-art strain gauge load cell signal digitizers with Profibus DP interface. These instruments are used for any type of process weighing and force measurement including tank and silo weighing, dynamic weighing, check weighing, filling, tension /compression force measurement etc. The GSD file is available on a CD which is supplied together with the instrument and unter www.flintec.com.

6.1. Front View of FAD-40PB

There are 5 status LEDs on the front panel which indicate the operational instrument status (Refer to table 7.1). and the Profibus status. The setup switch on front panel of the instrument is used for Profibus addressing without PC (Refer to chapter 5.6) and for diagnostics (Refer to chapter 12).

When the error LED is ON, the other two LED indicate the error type (Refer to chapter 11 for details). Load cell connection, Profibus connection, power supply and serial interface terminals are located at the front of the DIN rail mount instrument (See figure 7.1).

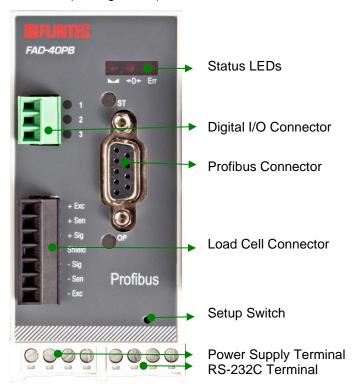


Figure 7.1 - Front view

The meanings of these LEDs in operation are described below.

LED		Operational Mode				
Symbol	Name	Weight / Force	Count			
	Stable	Stable Unstable	Off for 0.3 seconds in 2 seconds period (No stable indication)			
→0 ←	Centre of Zero	in the center of zero range (-0.25 e < w < 0.25 e) Out of center of zero range	Always off (No center of zero indication)			
Err	Error (*)	ADC conversion error Digital processing error No error	ADC conversion error Digital processing error No error			

(*): Refer to the error table in chapter 11.

Table 7.1 - Status LEDs

ST Status LED

State	Indication	Comment
Off	No power or not initialized	No power or profibus module is in initializing
Green	Initialized	
Flashing Green	Initialized, diagnostic event(s) present	Diagnostic is active
Red	Exception error	There is an exception error

OP Operation Mode LED

State	Indication	Comment
Off	Not on-line / No power	Check power and cable
Green	On-line, data exchange	-
Flashing Green	On-line, clear	-
Flashing Red (2x)	PROFIBUS configuration error	Check GSD file configuration.

6.2. Electrical Connections

Profibus and RS-232C connections are shown in figure 7.2.PROFIBUS Connector (DB9F)

i tolibus allu ito	2020 conficctions are shown	Till ligate 7.2.1 Not iboo conficctor (bbs)	
Pin	Signal	Description	
1	-	-	
2	-	-	
3	B Line	Positive RxD / TxD, RS-485 level	
4	RTS	Request to send	
5	GND Bus	Ground (isolated)	
6	+5V Bus output	+5V termination power (isolated)	
7	-	-	
8	A Line	Negative RxD / TxD, RS-485 level	
9	-	-	
Housing	Cable shield	Ground	

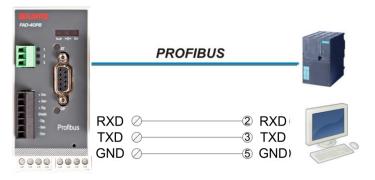


Figure 7.2 - FAD-40PB interface connections

RS-232C Serial Interface

Use	Setup via xFace
Baud rate	9600 bps
Length and parity	8 bit no parity
Start / Stop bits	1 start bit and 1stop bit

Profibus-DP Interface

Use	Interfacing with PC or PLC
Data format	Profibus
Baud rate	Automatically detected and supported baud rates are 9.6 kbps, 19.2 kbps, 45.45 kbps, 93.75 kbps, 187.5 kbps, 500 kbps, 1.5Mbps, 3 Mbps, 6 Mbps and 12 Mbps. No 'baud rate' instance exists.

WARNING: Connect the shield to the reference ground or shield pin of the power connector.

WARNING: Disconnect xFace PC software for Profibus interfacing.

6.3. Profibus and RS-232C Interfacing

FAD-40PB instruments have two interface connectors on the front of the instrument: Profibus and RS-232C. The table below describes the data formats for interfacing the peripherals and their application.

rdware
ofibus-DP-V1
ÌΪ

Table 7.2 - Data output interfacing

Attention: Please disable the interface you will not use to increase the performance of the instrument.

6.4. Setup and Calibration

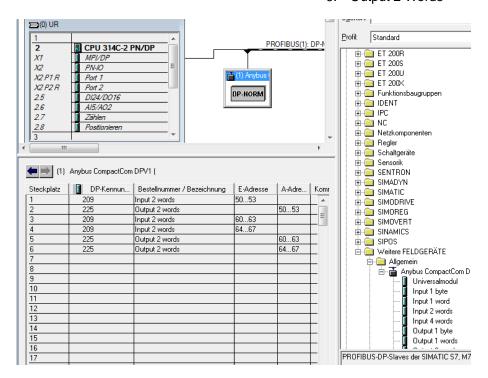
FAD-40PB instruments are set up and calibrated by xFace. The A/D Converter settings are very important for a good weighing performance. Please refer to chapter 5.3.

6.5. Profibus Setup

The Profibus setup is done by xFace software as described in this chapter. Select the Gateway tab after connecting xFace to the instrument. You will see the Profibus parameters in this tab.

Profibus Setup

There is only one setup parameter for Profibus network.


Profibus Rack Address	The address range is 1 (default setting) to 126
	3,

6.6. Profibus and Profinet Data Structure (for FAD-40Px only)

Hardware Configuration Hint

To install the FAD-40PB or FAD-40PN into the PLC Hardware Configuration use the GSD (GSDML) file, which is on Product DVD or under www.flintec.com to create **exactly** the following memory structure:

- 1. Input 2 Words
- 2. Output 2 Words
- 3. Input 2 Words
- 4. Input 2 Words
- 5. Output 2 Words
- 6. Output 2 Words

FAD-40Px Output to PLC Input

Dword	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
Dword	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1st Dword		Reserved														
2nd	W31 MSB	W30	W29	W28	W27	W26	W25	W24	W23	W22	W21	W20	W19	W18	W17	W16
Dword	W15	W14	W13	W12	W11	W10	W9	W8	W7	W6	W5	W4	W3	W2	W1	W0 LSB
						lot in u	50					I/O2	I/O3	I/O3	I/O2	I/O1
3rd		Not in use								in	in	out	out	out		
Dword	Error	Error codes of converter Not in use Op. mode range Net ND Read command response									se	Cmd Flag				

FAD-40Px Output to PLC Input 2nd Dword

The 2nd Dword contains the weight value respective the calibration information according to the "read command response" (Refer to PLC Output to FAD-40Px Input 3rd Dword).

Calibration Status

	ond D										
Bit no.			ead command is 'Calibration Status'.								
		tput to FAD-40	Px Input 3 rd Dword								
D31D16	Not in use	Not in use									
		0000 0001	Calibration timeout: - Restart calibration								
		0000 0010	ADC error: - Re-energize the instrument								
		0000 0011	Instrument cannot be calibrated								
		0000 0011	- Check load cell cable; - Re-energize the instrument								
	Calibration error	0010 0010	Instrument cannot be calibrated								
		0010 0010	- Load cell signal is very low or too high								
D15D8			Calibration Error								
			- Calibration test weight is too small; Increase calibration weight								
		0010 0011	value (Write test weight value from PLC Output to FAD-30Px								
			Input 2 nd Dword then restart the calibration)								
			- Check load cell connections								
		0010 0101	Scale unstable: - Wait until scale becomes stable								
		0010 0101	- Check ground wiring								
	Calibration	0000 0001	System ready for calibration								
D7D0		0000 0011	Zero calibration in process								
0700	process	0000 0100	Span calibration in process								
	Status	0000 1001	Error (Calibration error)								

FAD-40Px Output to PLC Input 3rd Dword

Bit no.	3 rd Dword Description									
D31D21	Not in use									
D20	Input for I/O2									
D19	Input for I/O3									
D18	Output for I/O3									
D17	Output for I/O2									
D16	Output for I/O1									
		0000	No error found							
		0001	ADC out							
		0010	ADC over							
D15D12	Error codes of	0011	ADC under							
טוסטוב	converter	0100	System error							
		0101	In setup mode							
		0110	Low/High voltage error							
		0111	Instrument not found							
D11D10	Not in use									
D9	Operation made	0	Weight & Force Mode							
פּט	Operation mode	1	Count Mode							
D8	Zero rango	0	Weight is out of zero range							
Do	Zero range	1	Weight is in of zero range							
D7	Indication	0	Gross							
DI		1	Net							
D6	MD –	0	Stable							
Do	Motion detection	1	Unstable							
		00000	Indicated weight							
D5		00001	Gross weight							
D4	Read command	00010	Tare weight							
D3	response	00011	Indicated weight (floating point type)							
D2	response	00100	Gross weight (floating point type)							
D1		00101	Tare weight (floating point type)							
		10000	Calibration Status (Refer to table 8.2)							
D0	CMD flag	A change	of Flag indicates: The command is applied successfully							

PLC Output to FAD-40Px Input

Dword	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
DWolu	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
1 st Dword		Reserved														
2 nd	W31 MSB	W30	W29	W28	W27	W26	W25	W24	W23	W22	W21	W20	W19	W18	W17	W16
Dword	W15	W14	W13	W12	W11	W10	W9	W8	W7	W6	W5	W4	W3	W2	W1	W0 LSB
3 rd Dword		Not in use I/O3 I/O2 out out							I/O1 out							
	Not in use					Command List					Data Selection					New CMD

PLC Output to FAD-40Px Input 2nd Dword

The 2nd Dword contains the setting / parameter value (Refer to "Adjust span calibration" and "I/O configuration" in "Command List", see PLC Output to FAD-40Px Input 3rd Dword).

I/O Configuration

Bit no.	2 nd Dword descriptio	n	
	•	0000000	Disable
		0000001	Standard setpoint
D0D6	I/O1 output function	0000010	Setpoint without hysteresis
		0000011	Window (Checkweigher)
		0000100	Host output
D7	I/O1 polarity	0	Active Low
D7	I/O1 polarity	1	Active High
		0000000	Disable
		0000001	Standard setpoint
	I/O2 output function	0000010	Setpoint without hysteresis
	·	0000011	Window (Checkweigher)
D8D14		0000100	Host output
	I/O2 input functions	0000101	Zeroing
		0000110	Taring
		0000111	Clearing tare
		0001000	Host input
D15	I/O2 polarity	0	Active Low
D13	1/O2 polarity	1	Active High
		0000000	Disable
		0000001	Standard setpoint
	I/O3 output function	0000010	Setpoint without hysteresis
		0000011	Window (Checkweigher)
D16D22		0000100	Host output
		0000101	Zeroing
	I/O3 input function	0000110	Taring
	1/O3 Input function	0000111	Clearing tare
		0001000	Host input
D23	I/O3 polarity	0	Active Low
DZS	1/03 polarity	1	Active High

PLC Output to FAD-40Px Input 3rd Dword

Bit no.	3 rd Dword		<u>-</u>		
D31D19	Not in use				
D18	Set/reset digital output of I/O3				
D17	Set/reset digital output of I/O2				
D16	Set/reset digital output of I/O1				
D15D11	Not in use	gitai oatp	ACC 17 0 1		
210211	1101111100	00000	No command is activated		
		00001	Zero		
		00010	Tare		
		00011	Clear		
		00101	Adjust zero calibration		
		00110	Adjust span calibration (First load can Dword with span test weight value*,		
			CMD)	Load 2 nd Dword wit	th and of these
			Operation mode selection (First	0: Count mode unit	
			load 2 nd Dword with selected	1: Count mode bipo	
		01000	value, then apply this command	2: Force mode unit	
			with New CMD)	3: Force mode bipo	
			,	4: Weight mode un	ipolar
	0		mV operation in Count Mode	Load 2 nd Dword wit	th one of these:
D10D6	Command		(First load 2 nd Dword with selected	0: 5 mV	
	list	01001	value, then apply this command	1: 10 mV	
			with New CMD)	2: 15 mV	
			,	3: 18 mV	
			Digital filter	Load 2 nd Dword wit	th one of these:
		01010	(First load 2 nd Dword with selected	0: Fast	
		01010	value, then apply this command	F. Marallinas	7: Default
			with New CMD)	5: Medium	O: Clow
		01011	I/O Configuration (First, load 2 nd Dw	ord with desired table	9: Slow
		01100	Setpoint 1 Low for I/O1 (First load 2 th		
		01101	Setpoint 1 High for I/O1 (First load 2		
		01110	Setpoint 2 Low for I/O2 (First load 2)		
		01111	Setpoint 2 High for I/O2 (First load 2		
		10000			
		10001	Setpoint 3 High for I/O3 (First load 2		, ,
		00000	Indicated weight	2	
		00001	Gross weight		
	Read selected data	00010	Tare weight		
D5D1		00011	Indicated weight (Floating point)		
		00100	Gross weight (Floating point)		
		00101	Tare weight (Floating weight)		
		10000	Calibration status		
D0	New CMD	Apply c	ommands which are listed in "Comma	and list" (Responds o	n bit changes)

^{*}Span test weight value has to be entered ignoring the decimal point; **Example:** "300.00" has to be entered as "30000"

7. FAD-40PN WITH PROFINET INTERFACE

FAD-40PN instruments are state-of-the-art strain gauge load cell signal digitizers with Profinet interface. These instruments are used for any type of process weighing and force measurement including tank and silo weighing, dynamic weighing, check weighing, filling, tension /compression force measurement etc. The GSDML file is available on a CD which is supplied together with the instrument and unter www.flintec.com.

7.1. Front View of FAD-40PN

There are 6 status LEDs on the front panel which indicate the operational instrument status (Refer to table 8.1).and the Profinet status. The setup switch on front panel of the instrument is used for Profinet addressing without PC (Refer to chapter 5.6) and for diagnostics (Refer to chapter 12).

When the error LED is ON, the other two LED indicate the error type (Refer to chapter 11 for details). Load cell connection, Profinet connection, power supply and serial interface terminals are located at the front of the DIN rail mount instrument (See figure 8.1).

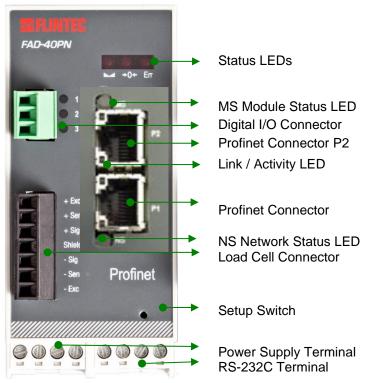


Figure 8.1 - Front view

The meanings of these LEDs in operation are described below.

LED		Operational Mode		
Symbol	Name	Weight / Force	Count	
	Stable	Stable Unstable	 Off for 0.3 seconds in 2 seconds period (No stable indication) 	
→0 ←	Centre of Zero	in the center of zero range (-0.25 e < w < 0.25 e) Out of center of zero range	Always off (No center of zero indication)	
Err	Error (*)	ADC conversion error Digital processing error No error	ADC conversion error Digital processing error No error	
Off	● On 🔻	Flashing		

(*): Refer to the error table in chapter 11.

Table 8.1 - Status LEDs

MS Module Status LED

LED State	Description	Comment
Off	No power or not initialized	No power or Profinet module is in initialization state
Green	Initialized	
Green, 1 flash	Initialized, diagnostic event(s) present	Diagnostic is active
Green, 2 flashes	Blink	Used by engineering tools to identify the node on the network
Red	Exception error	There is an exception error
Red, 1 flash	Configuration error	Check EDS configuration
Red, 2 flashes	IP address error	IP address not set
Red, 3 flashes	Station name error	Station name not set
Red, 4 flashes	Internal module error	Re-energize the instrument. If seen again, change the module.

LINK/Activity LED

LED State	Description	Comment
Off	No Link	No link, no communication present
Green	Link	Ethernet link established,
Green		no communication present
Croon flickering	Activity	Ethernet link established,
Green, flickering		communication present

NS Network Status LED

LED State	Description	Comment
Off	Not online /No power	Check power and cable
Green	On-line (RUN)	-
Green, flashing	On-line (STOP)	-

7.2. Electrical Connections

Profinet and RS-232C connections are shown in figure 8.2.

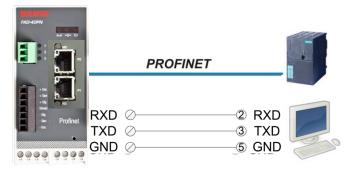


Figure 8.2 - FAD-40PN interface connections

RS-232C Serial Interface

Use	Setup via xFace
Baud rate	9600 bps
Length and parity	8 bit no parity
Start / Stop bits	1 start bit and 1stop bit

Profinet Interface

Use	Profinet interface with PC or PLC	
Data format	Profinet	
Ethernet	The Ethernet interface operates at 100Mbit, full duplex, as required by Profinet.	

WARNING: Connect the shield to the reference ground or the shield pin of the power connector.

WARNING: Disconnect xFace PC software for Profinet interfacing.

7.3. Profinet Interfacing

FAD-40PN instruments have two interface connectors on the front of the instrument: Profinet and RS-232C. The table below describes the data formats for interfacing the peripherals and their application.

Data Format	Description	Application	Hardware
Profinet	· ·	Interfacing with PLC.	Profinet
	Refer to chapter 8.5		

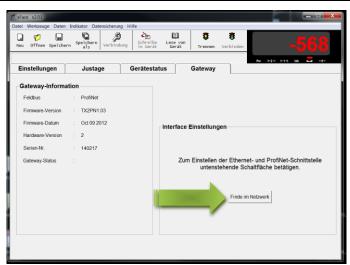
Table 8.3 - Data output interfacing

ATTENTION: Please disable the interface you will not use to increase the performance of the instrument.

7.4. Setup and Calibration

FAD-40PN instruments are set up and calibrated by xFace. The A/D Converter settings are very important for a good weighing performance. Please refer to chapter 5.3.

7.5. Profinet / Ethernet Setup

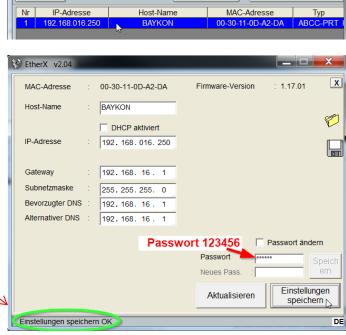

The Profinet setup is done by xFace software as described in this chapter. Select the Gateway tab after connecting xFace to the instrument. You will see the Profinet parameters in this tab.

There are 7 setup parameters for Profinet network.


DHCP	Dynamic Host Configuration Protocol automates network parameters if it is enabled.
	Default is 'Disable'.
IP Address	If DHCP is disabled, define IP address manually. Default is '192.168.16.250'
Subnet Mask	If DHCP is disabled, define subnet mask manually. Default is '255.255.255.0'.
Default Gateway	If DHCP is disabled, define default gateway manually. Default is '192.168.16.254'.
Primary DNS	If DHCP is disabled, define primary DNS manually. Default is '208.67.222.222'
Secondary DNS	If DHCP is disabled, define secondary DNS manually. Default is '208.67.220.220'.
Host Name	Enter a unique host name to the instrument. Default is ' '

Click on the button "Find on LAN" in section "Gateway".

"EtherX" will automatically be started


All connected FAD-40PN or EN devices will be listed.

Double click on the device you want EtherX v2.04 to change the parameters. A new window appears. The network parameters can be changed. After the change the password will be

The default password is "123456"

The status of the storage "OK" will be displayed, as shown below

IP-Adresse zuweisen

7.6. Profibus and Profinet Data Structure (for FAD-40Px only)

Suchen

To install the FAD-40PN into the PLC Hardware Configuration use the GSDML file memory parts to create exactly the following memory structure:

Please refer to chapter 7.6 "Profibus and Profinet Data Structure (for FAD-40Px only)".

ATTENTION: Different versions of Profinet and their GSDM files.

until June 2016

since July 2016

GSDML-V2.2-HMS-ABCC-PRT-20100329.xml

GSDML-V2.3-HMS-ABCC-PRT2P-20140703.xml

8. FAD-40EN WITH ETHERNET INTERFACE

FAD-40EN instruments are state-of-the-art strain gauge load cell signal digitizers with Ethernet interface. These instruments are used for any type of process weighing and force measurement including tank and silo weighing, dynamic weighing, check weighing, filling, tension /compression force measurement etc.

8.1. Front View of FAD-40EN

There are 3 status LEDs on the front panel which indicate the operational instrument status (Refer to table 9.1). The setup switch on front panel of the instrument is used for diagnostics (Refer to chapter 12) When the error LED is ON, the other two LED indicate the error type (Refer to chapter 11 for details). Load cell connection, Ethernet, power supply and serial interface terminals are located at the front of the DIN rail mount instrument (See figure 9.1).

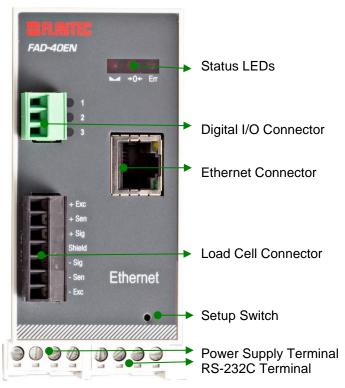


Figure 9.1 - Front view of FAD-40EN

The meanings of these LEDs in operation are described below.

LED		Operational Mode		
Symbol Name		Weight / Force	Count	
	Stable	Stable Unstable	Off for 0.3 seconds in 2 seconds period (No stable indication)	
→0 ←	Centre of Zero	in the center of zero range (-0.25 e < w < 0.25 e) Out of center of zero range	O Always off (No center of zero indication)	
Err	Error (*)	ADC conversion error Digital processing error No error	● ADC conversion error Digital processing error No error	

Off On 🌣 Flashing 🕕 Off for 0.3 seconds

(*): Refer to the error table in chapter 11

Table 9.1 - Status LEDs

8.2. Electrical Connections

Ethernet and RS-232C connections are shown in figure 9.2 to 9.4.

Ethernet Connector (RJ45)

Pin	Signal	DIR	Description
1	TX+	Out	Differential Ethernet transmit data +
2	TX-	Out	Differential Ethernet transmit data -
3	RX+	In	Differential Ethernet receive data +
6	RX-	In	Differential Ethernet receive data -
4	Not used		Terminated
5	Not used		Terminated
7	Not used		Terminated
8	Not used		Terminated
	Shield		Chassis ground

The HUB connection cabling will be a direct connection as shown below:

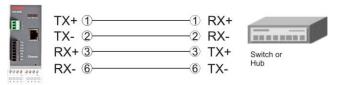


Figure 9.2 - HUB connection

The PC connection cabling will be done via cross cable as shown below:

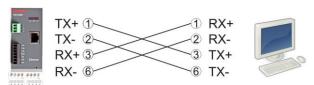


Figure 9.3 - Direct PC connection with cross cable

FAD-40EN interface connections are shown below:

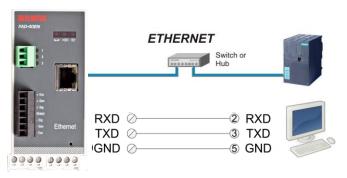


Figure 9.4 - FAD-40EN interface connections

RS-232C Serial Interface

Use	Setup via xFace
Baud rate 9600 bps	
Length and parity	8 bit, no parity
Start / Stop bits	1 start bit and 1stop bit

Ethernet Interface

Use	Ethernet interface with PC or PLC
Data format	Modbus TCP/IP
Ethernet	The Ethernet interface operates at 10Mbit, half duplex

WARNING: Connect the shield to the reference ground or shield pin of the power connector.

WARNING: Disconnect xFace PC software for Ethernet interfacing.

8.3. Ethernet Interfacing

FAD-40EN instruments have two interface connectors on the front of the instrument: Ethernet and RS-232C. The table below describes the data formats for interfacing the peripherals and their application:

Data Format	Description	Application	Hardware	
Modbus TCP/IP	Ethernet interfacing.	Interfacing with PLC	Ethernet	
	Refer to chapter 6.7			

Table 9.2 - Data output interfacing

ATTENTION: Please disable the interface you will not use to increase the performance of the instrument.

8.4. Setup and Calibration

FAD-40EN instruments are set up and calibrated by xFace. The A/D Converter settings are very important for a good weighing performance. Please refer to chapter 5.3.

8.5. Ethernet Setup

The Ethernet setup is done by xFace software as described in this chapter. Select the Gateway tab after connecting xFace to the instrument. You will see the Ethernet parameters in this tab.

Ethernet Setup

There are 11 setup parameters for the Ethernet network as described below:

Host Name	Device name of the instrument. Default is ' '.									
Data Format	This parameter defines the data format for the Ethernet port. The available settings are:									
	Disable : No data will be transmitted. Select disable if this port is not used.									
	Modbus-TCP/IP : Modbus TCP/IP communication. Refer to chapter 6.7 for details.									
IP Address	Define IP address manually. Default is '192.168.16.250'									
Local Port	Ethernet connection port of the instrument. Default is '10001.									
Gateway	Network point that acts as an entrance to another networks. Default is 192.168.16.254'.									
Subnet Mask	Defines IP addresses which can be used in network. Default is '255.255.255.0'.									
Primary DNS	Define primary DNS manually. Default is '208.67.222.222'.									
Secondary DNS	Define secondary DNS manually. Default is '208.67.220.220'.									

8.6. Modbus Data Structure

If the instrument is set up for Modbus TCP/IP, it can be used as a Modbus TCP/IP slave on an Ethernet communication network. The function codes '0x03' and '0x10' are supported.

For the Modbus Data Structure please refer to chapter 6.6.

9. FAD-40CO WITH CANOPEN INTERFACE

FAD-40CO instruments are state-of-the-art strain gauge load cell signal digitizers with CANopen interface. These instruments are used for any type of process weighing and force measurement including tank and silo weighing, dynamic weighing, check weighing, filling, tension /compression force measurement etc. The EDS file is available on a CD which is supplied together with the instrument.

9.1. Front View of FAD-40CO

There are 5 status LEDs on the front panel which indicate the operational instrument status (Refer to table 10.1) and the CANopen status. The setup switch on front panel of the instrument is used for Profinet addressing without PC (Refer to chapter 5.6) and for diagnostics (Refer to chapter 12). When the error LED is ON, the other two LED indicate the error type (refer to chapter 11 for details). Load cell connection, CANopen connection, power supply and serial interface terminals are located at the front of the DIN rail mount instrument (See figure 10.1).

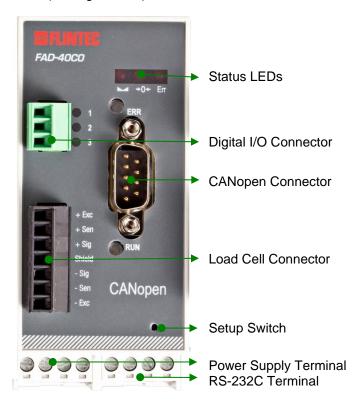


Figure 10.1 - Front view

The meanings of these LEDs in operation are described below.

LE	D	Operational Mode							
Symbol	Name	Weight / Force	Count						
	Stable	Stable Unstable	Off for 0.3 seconds in 2 seconds period (No stable indication)						
→0 ←	Centre of Zero	in the center of zero range (-0.25 e < w < 0.25 e) Out of center of zero range	O Always off (No center of zero indication)						
Err	Error (*)	ADC conversion errorDigital processing errorNo error	ADC conversion errorDigital processing errorNo error						
O Off	On 🔻	Flashing							

(*): Refer to the error table in chapter 11.

Table 10.1 - Status LEDs

RUN LED

State	Indication	Comment
Off	No power or not initialized	No power or cable broken
Green	On-line, data exchange	
Green, flashing On-line, initializing		
Green, single flash	Stopped	Check for hardware damages
Green, flickering Auto baud rate detection in progress		
Red	Exception error	Check EDS file

ERR LED

State	Indication	Comment						
Off	No error	No power or CANopen module is initializing						
Red, single flash Warning limit reached		Bus error counter reached or exceeded its warning limit						
Red, flickering LSS		LSS services in progress						
Red, double flash	Error count event	A guard (NMT slave or master) or heartbeat event (hearthas occurred)						
Red	Bus off (fatal event)	Bus off						

9.2. Electrical Connections

CANopen and RS-232C connections are shown in figure 10.2.

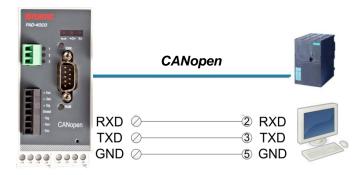


Figure 10.2 - FAD-40CO interface connections

CANopen Connector (DB9M)

Pin	Signal	Description
1	-	-
2	CAN_L	-
3	CAN_GND	-
4	-	-
5	CAN_SHIELD	-
6	-	-
7	CAN_H	-
8	-	-
9	-	-
Housing	Cable shield	-

RS-232C Serial Interface

Use	Setup via xFace
Baud rate	9600 bps
Length and parity	8 bit no parity
Start / Stop bits	1 start bit and 1stop bit

CANopen Interface

Use	Interfacing with PC or PLC
Data format	CANopen
Baud rate	Automatically detected and supported baud rates are 10 kbps, 20 kbps, 50 kbps, 100 kbps, 125 kbps, 250 kbps, 500 kbps, 800 kbps, 1 Mbps; Autobaud is default setting.

Warning: Connect the shield to the reference ground or shield pin of the power connector.

Warning: Disconnect xFace PC software for Profibus interfacing.

9.3. CANopen Interfacing

FAD-40CO instruments have two interface connectors on the front of the instrument: CANopen and RS-232C. The table below describes the data formats for interfacing the peripherals and their application.

Data Format	Description	Application	Hardware
CANopen	CANopen interfacing.	Interfacing with PLC	CANopen
	Refer to chapter 5.13		

Table 11.3 - Data output interfacing

Attention: Please disable the interface you will not use to increase the performance of the instrument.

9.4. Setup and Calibration

FAD-40CO instruments are set up and calibrated by xFace. The A/D Converter settings are very important for a good weighing performance. Please refer to chapter 5.3.

9.5. CANopen Setup

The CANopen setup is done by xFace software as described in this chapter. Select the Gateway tab after connecting xFace to the instrument. You will see the CANopen parameters in this tab.

CANopen Setup

There is only one parameter for the CANopen network.

CANopen Rack Address	The address range is 1 (default setting) to 127.

9.6. CANopen Data Structure (for FAD-40CO only)

Hardware Configuration Hint

To install the FAD-40CO into the PLC Hardware Configuration use the ESD file memory parts to create **exactly** the following memory structure:

- Input 2 Words
- Output 2 Words
- Input 2 Words
- Input 2 Words
- Output 2 Words
- Output 2 Words

FAD-40CO Output to PLC Input

Dword	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
DWord	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
TxPDO 1 (T_DW1)								rese	rved							
TxPDO 2	W31 MSB	W30	W29	W28	W27	W26	W25	W24	W23	W22	W21	W20	W19	W18	W17	W16
(T_DW2)	W15	W14	W13	W12	W11	W10	W9	W8	W7	W6	W5	W4	W3	W2	W1	W0 LSB
					N	ot in us	20					I/O2	I/O3	I/O3	I/O2	I/O1
TxPDO 3	Not in use								in	in	out	out	out			
(T_DW3)	Error	codes	of con	verter	Not i	n use	Op. mode	Zero range	Gross Net	MD	Re	ad con	nmand	respo	nse	Cmd Flag

FAD-40CO Output to PLC Input T_DW2

T_DW2 contains the weight value respective the calibration information according to the "read command response" (Refer to PLC Output to FAD-30CO Input T_DW3).

Calibration Status

Bit no.	TxPDO 2 (T_DW2) descriptions when read command is 'Calibration Status'. Refer to PLC Output to FAD-40CO Input R_DW3							
D31D16	Not in use							
		0000 0001	Calibration timeout - Restart calibration					
		0000 0010	ADC error - Re-energize the instrument					
	Calibration	0000 0011	Instrument cannot be calibrated - Check load cell cable - Re-energize the instrument					
D15D8		0010 0010	Instrument cannot be calibrated - Load cell signal is very low or too high					
51350	error	0010 0011	Calibration Error - Calibration test weight is too small - Increase calibration weight value (Write test weight value from PLC Output to FAD-40CO Input R_DW2 then restart the calibration) - Check load cell connections					
		0010 0101	Scale unstable - Wait until scale becomes stable - Check ground wiring					
	Calibration	0000 0001	System ready for calibration					
D7D0	process	0000 0011	Zero calibration in process					
	status	0000 0100	Span calibration in process					
		0000 1001	Error (Calibration error)					

FAD-40CO Output to PLC Input T_DW3

Bit no.	TxPDO 3 (T_DW3	B) Descri	ption					
D31D21	Not in use							
D20	Input for I/O2							
D19	Input for I/O3							
D18	Output for I/O3							
D17	Output for I/O2							
D16	Output for I/O1							
		0000	No error found					
		0001	ADC out					
		0010	ADC over					
D15D12	Error codes of	0011	ADC under					
D15D12	converter	0100	System error					
		0101	In setup mode					
		0110	Low/High voltage error					
		0111	Instrument not found					
D11D10	Not in use							
D9	Operation mode	0	Weight & Force Mode					
Da		1	Count Mode					
D8	Zero range	0	Weight is out of zero range					
Do		1	Weight is in zero range					
D7	Indication	0	Gross					
D1	mulcation	1	Net					
D6	MD –	0	Stable					
D0	Motion detection	1	Unstable					
		00000	Indicated weight					
D5		00001	Gross weight					
D4	Read command	00010	Tare weight					
D3	response	00011	Indicated weight (floating point type)					
D2	response	00100	Gross weight (floating point type)					
D1		00101	Tare weight (floating point type)					
		10000	Calibration Status (Refer to table 8.2)					
D0	CMD flag The command is applied successfully							

PLC Output to FAD-40CO Input

Dword	D31	D30	D29	D28	D27	D26	D25	D24	D23	D22	D21	D20	D19	D18	D17	D16
DWord	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
RxPDO 1 (R_DW1)	Reserved															
RxPDO 2	W31 MSB	W30	W29	W28	W27	W26	W25	W24	W23	W22	W21	W20	W19	W18	W17	W16
(R_DW2)	W15	W14	W13	W12	W11	W10	W9	W8	W7	W6	W5	W4	W3	W2	W01	W00 LSB
	Not used										I/O3	I/O2	I/O1			
RxPDO 3 (R_DW3)		1100 0300											out	out	out	
	Not used Command List Data Selec							ction		New CMD						

PLC Output to FAD-40CO Input R_DW2

R_DW 2contains the setting / parameter value (Refer to "Adjust span calibration" and "I/O configuration" in "Command List", see PLC Output to FAD-40CO Input R_DW 3).

I/O Configuration

Bit no.	R_DW_2 description		
		0000000	Disable
		0000001	Standard setpoint
D0D6	I/O1 output function	0000010	Setpoint without hyster.
	·	0000011	Window
		0000100	Host output
D7	I/O1 polarity	0	Active Low
וט	I/O1 polarity	1	Active High
		0000000	Disable
		0000001	Standard setpoint
	I/O2 output function	0000010	Setpoint without hyster.
	-	0000011	Window
D8D14		0000100	Host output
	I/O2 input functions	0000101	Zeroing
		0000110	Taring
		0000111	Clearing tare
		0001000	Host input
D15	I/O2 polarity	0	Active Low
D13	1/O2 polarity	1	Active High
		0000000	Disable
		0000001	Standard setpoint
	I/O3 output function	0000010	Setpoint without hyster.
		0000011	Window
D16D22		0000100	Host output
		0000101	Zeroing
	I/O3 input function	0000110	Taring
	1/03 input function	0000111	Clearing tare
		0001000	Host input
D23	I/O3 polarity	0	Active Low
DZS	1/03 polarity	1	Active High

PLC Output to FAD-40CO Input R_DW3

Bit no.	R_DW3 des	criptions							
D31D19	Not in use								
D18	Set/Reset digital output of I/O 3								
D17	Set/Reset digital output of I/O 2								
D16	Set/Reset digital output of I/O 1								
D15D11	Not in use	in use							
		00000 No command is activated							
		00001	Zero						
		00010	Tare						
		00011	Clear						
		00101	Adjust zero calibration						
		00110	Adjust span calibration (First loathen apply this command with N	lew CMD)	•				
				Load R_DW2 with	one of these:				
			Operation mode selection	0: Count mode uni					
		01000	(First load 2 nd Dword with	1: Count mode bip					
		01000	selected value, then apply this	2: Force mode uni					
			command with New CMD)	3: Force mode bipolar					
				4: Weight mode unipolar					
	Command list	01001	mV operation in Count Mode	Load R_DW2 with one of these:					
D10D6			(First load 2 nd Dword with	0: 5 mV 1: 10 mV					
			selected value, then apply this	2: 15 mV					
			command with New CMD)	3: 18 mV					
		01010		Load R_DW2 with	one of these:				
			Digital filter	0: Fast	One of these.				
			(First load 2 nd Dword with	 5: Medium	7: Default				
			selected value, then apply this						
			command with New CMD)		9: Slow				
		01011	I/O Configuration (First, load 2nd	(First, load 2 nd Dword with desired table)					
		01100	Setpoint 1 Low for I/O1 (First loa						
		01101	Setpoint 1 High for I/O1 (First lo	ired value)					
		01110	Setpoint 2 Low for I/O2 (First loa						
		01111	Setpoint 2 High for I/O2 (First lo						
		10000	Setpoint 3 Low for I/O3 (First loa						
		10001	Setpoint 3 High for I/O3 (First lo	ad R_DW2 with des	ired value)				
		00000	Indicated weight						
		00001	Gross weight						
	Read	00010	Tare weight						
D5D1	selected	00011	Indicated weight (Floating point)						
	data	00100	Gross weight (Floating point)						
		00101	Tare weight (Floating weight)						
		10000	Calibration status						
D0	New CMD	Apply comm	nands which are listed in "Commar	nd list" (Responds o	n bit changes)				

^{*}Span test weight value has to be entered ignoring the decimal point; e.g. "300.00" has to be entered as "30000"

10. ERROR TABLE

The FAD-40 A/D Converters have been designed as very reliable and virtually error free instruments. However if an error occurs do not attempt to repair the equipment before you understand what caused the error. Note the problems you have with your instrument and the error messages shown by the LEDs located on the front panel. Then try to solve the problem according to the error table given below.

Error Code			Description	Actions to undertake / Possible cause				
1	→0 ←	Err						
0	0	•	ADC error	- Re-energize the instrument Instrument could be defective.				
0	•	•	Overload	- Check the load.				
•	0	•	Weight is too low	- Load cell or instrument could be defective.				
•	•	•	ADC out	 Check the load. Check the calibration. Load cell or instrument could be defective. 				
0	0	*	System error	Re-energize the instrument.Instrument could be defective.				
•	0	*	Board identity error	Re-energize the instrument.If seen again, repeat the setup of the instrument.				
•	•	*	Internal communication error	Re-energize the instrument.If seen again, change the cabling inside the housing.				
0	*	*	High voltage detected	- Check the power supply, the voltage has to be within the required voltage range.				
*	0	*	Low voltage detected	Check the power supply, the voltage has to be within the required voltage range.				

Off On Flash

Table 11.1 - Error table

11. DIAGNOSTICS

In this test menu serial interface tests (RC-232C and/or RS-485) and load cell signal analog to digital conversion and processing tests are performed sequentially.

For entering the diagnostics mode, press the setup switch before power on and release the switch after the instrument is powered on. The instrument will go into the RS-232C RXD test mode which is indicated by lighted LED and flashed Err LED as shown below. The status of LEDs on the front panel indicate the test steps and the test result as described below. You can go to the next test by pressing the setup switch.

Test	LED's	Status		Description		
rest	1	→0← Err		Description		
RS-232C RxD (not for FAD-40 and FAD-40MB)	0 0 *		*	LED gets off 0.3 s after receiving any data. Press the setup switch to go to the next test step.		
RS-232C TxD (not for FAD-40 and FAD-40MB)	0 * *		*	'A' to 'Z' characters are sent sequentially in 0.8 s intervals. If the same data is received, LED gets off for 0.3 s. Press the setup switch to go to the next test step.		
RS-485 RD (for FAD-40 and FAD-40MB only)			0	LED gets off for 0.3 s after receiving any data. Press the setup switch to go to the next step.		
RS-485 TD (for FAD-40 and FAD-40MB only)	•	*	0	'A' to 'Z' characters are sent sequentially in 0.8 s intervals. Press the setup switch to go to the next step.		
Lood call signal	•	0	•	→0← LED gets off while the load cell signal increases. Press the setup switch to go to the next step.		
Load cell signal	0	•	•	LED gets off while the load cell signal decreases. Press the setup switch to return to the RS-232C RxD test.		

Off On Flash Off for 0.3 second

Table 12.1 - Diagnostics

12. INDEX

A/D Status	19	I/O Polarity	20
Accessories	8	Increased External Resolution	
Address of A/D Converter	16	Installation	ç
Auto Zero Tracking	15	Line Feed (LF)	16
Average Load Cell Output		Load Cell Connection	
Back up Settings		Modbus Data Structure	28, 44
Baud Rate		Modbus RTU	
BSI Command Table		Modbus-RTU-Interfacing	
BSI Commands and Responses		Mode Selection	
BSI Data Structure		Motion Detection	
BSI Status Table		Overview	
Bus Addressing via Setup Switch		Parity	
Bus Interface Setup		Performance Test	
Calibration by Test Weights		Power On Zero	
CANopen Data Structure		Power Supply	
Carriage Return (CR)		Profibus Data Structure	
Checksum		ProfiNet Data Structure	
Commissioning		Recommendations	
Communication Interface		RS-232C Interfacing	
Control Cabinet		RS-485	
Cross cable		Safety Instructions	
Data Length		Save Tare at Power Off	15
Declaration of Conformity		Scale Build	
Diagnostics		Scale Build and Calibration	
Digital Filter		Scale Parameters	
Digital I/O		Serial Interface RS232	
Digital I/O Connection		Setpoint with hysteresis	
Digital Input Function		Setpoint without hysteresis	
Digital Output Function		Setup	
Direct PC connection		Setup and Calibration	
Electronic Calibration (eCal)	18	Setup of Digital I/O	
Error Table		Span Adjustment	
Estimated Dead Load	18	Span Adjustment under Load	
Ethernet Interfacing	44	Specifications	
EtherX		Table of Contents	
FAD-40 / FAD-40MB with RS-485 Interface	e22	Tare	15
FAD-40CO with CANopen Interface	45	Tolerance band	
FAD-40EN with Ethernet Interface		Toolbox	14
FAD-40PB with Profibus		Total Load Cell Capacity	
FAD-40PN with ProfiNet		xFace Software	
features	6	Zero Adjustment	
Housing		Zeroing by Key	
HUB connection		Zeroing Range	15

http:// www.flintec.com