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Various parts of the turmeric plant have been used as medicinal treatment for various conditions from ulcers and arthritis to
cardiovascular disease and neuroinflammation. The rhizome’s curcumin extract is the most studied active constituent, which
exhibits an expansive polypharmacology with influence on many key inflammatory markers. Despite the expansive reports
of curcucmin’s therapeutic value, clinical reliability and research repeatability with curcumin treatment are still poor. The
pharmacology must be better understood and reliably mapped if curcumin is to be accepted and used in modern medical
applications. Although the polypharmacology of this extract has been considered, in mainstream medicine, to be a drawback, a
perspective change reveals a comprehensive and even synergistic shaping of the NF-kB pathway, including transactivation. Much
of the inconsistent research data and unreliable clinical outcomes may be due to a lack of standardization which also pervades
research standard samples. The possibility of other well-known curcumin by-products contributing in the polypharmacology is
also discussed. A new flowchart of crosstalk in transduction pathways that lead to shaping of nuclear NF-kB transactivation is
generated and a new calibration or standardization protocol for the extract is proposed which could lead to more consistent data
extraction and improved reliability in therapy.

1. Introduction

Turmeric is a spice used for thousands of years in Indo-
Asian culinary recipes, a significant component ofmost curry
powders [1, 2]. The bright orange-yellow powder that is
derived from the boiled, dried, and crushed turmeric rhizome
is also used as a potent natural dye and food colouring
agent even today [3, 4]. Various parts of the turmeric plant
have been used as medicinal treatment for various conditions
from ulcers [5] and arthritis [6] to cardiovascular disease
[7] and neuroinflammation [8]. Turmeric plays a central
role in Ayurveda and other traditional medicines [5, 9–11].
The rhizome’s naturally occurring curcuminoid analogues
are likely the most studied active constituents [12]; however,
the perennial plant contains many other active constituents
including awater-soluble peptide, turmerin, and essential oils
including turmerones and zingiberene that can contribute
pharmacology of their own [13–16].

The curcumin extract, although relatively isolated from
the rest of the plant’s constituents, still exhibits an expansive

polypharmacology [17, 18]. The extract is made up of three
main curcuminoid analogues: diferuloylmethane (curcumin
I), desmethoxycurcumin (curcumin II), and bisdesmethoxy-
curcumin (curcumin III) [19]. Each curcuminoid analogue
is similar in structure as shown in Figure 1. As we see
displayed in Figures 2 and 3, the curcumin extract with
its three naturally occurring curcumin analogues targets
multiple subcellular proteins in a broad manner [20–22].
This polypharmacology may be a function of the nonspecific
activity by each curcuminoid analogue on different targets,
but it may also be a function of other factors that will be
discussed.

Curcumin has been shown to influence many key bio-
logical markers of inflammation such as NF-kB [23, 24] and
C-reactive protein [25]; growth factors and growth factor
receptors [26]; eicosanoid enzymes such as cyclooxygenase
(COX) inhibition [27]; tumor suppressor proteins such as p53
[28]; lipoxygenase (LOX) inhibition [29]; and inhibition of
BACE1 and 𝛽-amyloid aggregation to potentially deliver ben-
efits in Alzheimer’s treatment [30–32]. Curcumin modulates
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Figure 1: Comparing the structure of the three curcuminoids.

various cytokines such as inhibition of interleukins 1, 2, 6,
8, and 12, TNF𝛼, and IFN𝛾 [24, 33, 34], while inducing the
anti-inflammatory IL-10 [35, 36]. Curcumin is also shown to
inhibit expression of CD80, CD86, and MHC II in T-cells
[33].

However, reliability and research repeatability with this
therapeutic agent are still falling short [37]. This may be
due to the fact that the initiative has not been taken to
establish a standardization protocol for the natural medicinal
agent that will set in motion consistent specifications for the
curcumin research standard samples being studied. Other
factors contributing to the pharmacology such as the well-
known curcumin degradation by-products [38, 39] are also
likely playing a role.

In this review, curcumin’s pharmacologywill be discussed
in the context of NF-kB-related proteins and their signalling
pathways and other subcellular pathways that the extract
successfully targets. A new calibration or standardization
protocol is proposed with hopes that it may help set the
stage for more consistent data extraction and improved
reliability in therapy. This correction may facilitate health
care professionals’ trust in the treatment of inflammatory
disorders with curcumin-based therapies.

2. Inflammation and the NF-kB
Signalling Pathway

Inflammation is a broad term used to describe a complex
process by which the body recruits immune system and other
biochemicals to eliminate pathogens, autoreactive self-cells
and dead cells, and start in motion a restorative and recovery
process. Inflammation is characterised by swelling, heat, and
pain [40] as we see with acute conditions such as injury.
However, the subcellular events associated with inflamma-
tion are quite complex and are more recently associated with
chronic systemic illnesses that at first thought appear to be

far removed from the inflammatory process [41] including
the pathophysiology of hypertension [42], atherosclerosis
[43], depression [44, 45], and diabetes [46]. Obesity, in fact,
is closely linked with inflammation as white adipose cells
secrete inflammatory cytokines and adipokines that exacer-
bate systemic proinflammatory state, insulin resistance, and
general morbidity [47–49]. The NF-kB family of proteins,
RelA (p65), RelB, and c-Rel, and p100 and p105 which
subsequently degrade to form p52 and p50, respectively, [50]
are central to the regulation of inflammation [51]. To be
able to present the full scope of NF-kB regulation and the
transcription factor expression of its cognate genes could take
a small book. However, here a selected understanding of the
transcription factor’s interactivity in the framework of the
curcumin extract’s pharmacology will be discussed.

Beyond even inflammation, NF-kB is a transcription
factor that regulates networks which maintain cell health and
survival and also plays a common and central role in disease
pathology [52, 53]. The transcription factor system is a cen-
tral mediator and conductor of the immune, inflammatory,
oxidative, and stress responses [54–56]. It plays a central role
in the mechanism of cancer, viral, and bacterial induction
and survival [57, 58]. In fact, host responsiveness to viral
infection such as with TNF𝛼 synthesis can, itself, activate NF-
kB binding toDNAand transactivation to convert viruses like
HIV-1 into their active forms [59].

The NF-kB family of proteins partakes in a complex
expression of as many as 150 genes [55, 60–63] including key
cytokines central to regulation of inflammatory and immune
system activity: interleukin 2 (IL-2) [64, 65], interleukin 6
(IL-6) [66], interleukin 8 (IL-8) [67], interleukin 12 (IL-12)
[68], TNF-𝛼 [69], and interleukin 1 (IL-1) [70]. Mutations
of genes, such as NFkBIA, transcribing p65-p50 inhibitor
protein, and I-kappa-B, are shown to be involved in the
pathophysiology of autoimmune disorders where the tran-
scription factor is uncontrollably freed to deliver constitutive
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Figure 2: Depiction of classical and nonclassical pathway to NF-kB (p65-p50 or RelBp52) translocation activation. Figure: schematic by
Franco Cavaleri.

activity [51, 71]. Otherwise, the NF-kB p65-p50 heterodimer
is held inactive in the cytoplasm by the I-kappa-B repressor
protein until I-kappa-B is phosphorylated by I-kappa-B
kinase (IKK) at serines32&36 to set in motion its degradation
by the 26S proteasome [72].

A rather simplistic model explaining the activation of the
cytoplasmic p65-p50 heterodimer speaks to IKK activation
by phosphorylation of its serine176 [73]. This IKK phospho-
rylation can be induced by a variety of upstream kinases as
shown in Figure 2 and once phosphorylated it ultimately frees
the heterodimer to facilitate p65-p50 translocation into the
nucleus.The IKK complex is typically found as a heterotrimer
in the cytoplasm as shown in Figure 2 or as a homodimer [74,
75] as seen in the alternate nonclassical transduction pathway
of the same figure. These aggregated IKK isoforms cross-
phosphorylate or crosstalk to facilitate their synergistic roles
[76, 77]. The variable IKK configurations trigger different
modalities by which free p65-p50 or p65-p52 transcription

factors are, respectively, generated from different upstream
receptors to make for varying translocation dynamics and
transcriptional outcomes by the same family of transcription
factors. It is a nonlinear, rather complex, system producing
outcomes that can vary rheostatically and by gene target
[23, 78].

Once uncoupled from its cytosolic repressor, p65-p50 can
translocate into the nucleus [79] to engage in the transcrip-
tion of genes with the kappa-B motif (GGG ACT TTC C)
[58, 80]. This promoter nucleotide motif is essential for NF-
kB docking. While posttranslational phosphorylation of p65
may be required for docking and expression of one gene,
other posttranslational modifications of the transcription
factor can prevent its docking on gene promoters [81–84]
and transactivation despite the promoter regions of these
genes containing the requisite kappa-B nucleotidemotif.This
phosphorylative coding helps shape p65-p50 transactivation
selectivity after the transcription factor has translocated into
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Figure 3: Curcumin polypharmacology plotted to show a rendered influence on p65-p50 transactivation potential showing a relatively more
selective outcome if NF-kB is selected as the ultimate target of the polypharmacology.

the nucleus [83, 85] guiding it to highly specific genomic
targets [86–88]. Despite the fact that the transcription factor
potentially expresses as many as 150 different genes this
phosphorylative coding, as will be further detailed, limits
transactivation to the expression of genes which produce an
appropriately measured behavioural response to the stimulus
that started in motion the NF-kB activity [89–93].

Despite translocation, phosphorylation of the right p65
amino acid residues, and accessibility to a kappa-B equipped
gene promotor, transcription by p65-p50 of the kappa-B
TATA-less promoter also depends on the activation by phos-
phorylation of other nuclear transcription factors such as Sp1
[94, 95] and cAMP response element binding protein (CREB)
[96]. The TATA box (consensus sequence TATAAAA) is
located upstream of the start site of transcription and serves
as a facilitator for transcription factor-promoter binding in
higher eukaryotes [97]. The kappa-B promoter for which the

p65-p50 transcription factor has affinity is TATA-less with the
TATA region replaced by a “CG-rich” nucleotide sequence.

As a function of the TATA-less configuration, transcrip-
tion by NF-kB depends on cotranscription factors that con-
verge on the promoter to facilitate NF-kB docking and gene
expression [98]. In the case of p65-p50,we see cotranscription
factors Sp1 and CREB serving this purpose [94, 95]. Gene
expression naturally also depends on histone phosphoryla-
tion and acetylation of chromatin to induce remodelling and
accessibility by these converging cotranscriptional elements
[96, 99–101]. Further to the old school understanding of IKK’s
cytosolic activation of p65-p50, once phosphorylated, IKK
is more recently known to shuttle into the nucleus [99] and
also partake in histone H3 phosphorylation which supports
chromatin remodelling [102]. The shaping and regulation
of NF-kB are complex and comprehensive to say the least
but this complexity produces an opportunity for multiple
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points of regulation that we will see shortly. Curcumin is
intimately interactive with and regulatory of this NF-kB
signalling pathway at multiple points [23, 103, 104]. Figure 3
captures this interactive dynamic in schematic form.

3. MAPK Pathway Crosstalk with
NF-kB Signalling Pathway

The MAPK pathway is also involved in this NF-kB shaping
[105].TheMAPKpathway is an evolutionary ancient pathway
like NF-kB’s and is found in most species to control a
vast array of cellular processes [106]. Curcumin is closely
interactive with and regulatory of the MAPK pathway as well
[107, 108].This pathway interacts intimately with NF-kB [105,
109]. The MAPK pathway, like the NF-kB proteins and their
pathways, is activated by inflammatory cytokines [110] and by
environmental stressors to contribute to disease pathologies
from tumorigenesis [111] to autoimmune diseases [112] and
asthma [113, 114]. This central pathway plays a critical role
in cell survival, apoptosis, and proliferation [115, 116]. NF-kB
p65 (RelA) protein shaping by phosphorylation is complex
[117–119] and begins in the cytoplasm, in part, by the MAPK
(MEK/ERK) and continues into the nucleus all the way to
transactivation and expression of the transcription factor’s
cognate genes [90, 105, 109, 120–123] as seen in Figures 2 and
3.

As previously discussed, phosphorylation of various p65
residues affords the NF-kB transcription factor the phos-
phorylative coding required to dock on some promoters for
transactivation and not others once it has translocated. For
example, phosphorylation of p65 serine536 is expected to be
necessary for nuclear translocation but is also required for
transcription of IL-6 [85]. However, lack of p65 serine536
phosphorylation abrogates p65 affinity for the IL-8 gene
promotor [83]. Lack of serine536 phosphorylation does not,
however, preclude the p65 heterodimer from docking and
transcribing other cytokines, the genes of which are equipped
with the kappa-B nucleotide motif.

Nuclear phosphorylation of the NF-kB p65 protein con-
tinues to shape the transcription factor’s activity through
nuclear kinases like the MAPKmitogen- and stress-activated
kinase 1 (MSK1) [124, 125].MSK1’s nuclear activity ismultifac-
torial and compounding in the context of NF-kB regulation.
It phosphorylates and activates CREB [126], one of the p65-
p50’s cotranscription factors. In addition to MSK1, protein
kinase A (PKA) [50, 125] coordinates a symphony of nuclear
events that aggregate multiple cotranscription factors as well,
including phosphorylation and activation of CREB [126]
just like MSK1 does [105, 127]; activation of CBP/p300 and
Sp1; and coordination of HDAC-1 to further contribute to
chromatin remodelling [50]. These transcriptional elements
all converge on and collaborate toward regulation of p65-p50
transactivation.

Both MAPK and NF-kB pathways are central to disease
pathology and cell survival [115, 128–130]. Curcumin targets
both these pathways at multiple points each as previously
cited, portrayed schematically in Figure 2 [131–133], and
discussed further in the pages to come.

4. Curcumin Helps Shape NF-kB p65-p50
Transactivation and Inflammation

Regulation of the NF-kB transcription factor is rather com-
plex and the result of its modification can have profound
implications based on the plethora of genes it transcribes [60–
62]. To know that curcumin can inhibit p65-p50 activity at
multiple phosphorylation sites sets the stage for an interesting
investigative journey. However, to consider that the naturally
occurring curcuminoid analogues comprising the curcumin
extract have differing structural features that may be con-
tributing different pharmacological characteristics leads to
the cautious expectation that the true pharmacology of the
curcumin extract has yet to be demystified.

The complexity of the subcellular events induced by cur-
cuminoid preparations in various studies indicates that the
curcuminoids are aimed at multiple biological targets where
many of which guide NF-kB p65-p50 transactivation [23, 131,
134]. The effective inhibition of p65-p50 and inflammation
by curcumin [135] heightens interest in the natural extract as
a therapeutic agent [136]. However, curcumin pharmacology
may be as complex and convoluted as the pleiotropic activity
of the NF-kB family of transcription proteins. Curcumin is
shown to inhibit IKK [23] as one component of the natural
extract’s pharmacology and as a result curcumin ultimately
inhibits p65-p50 nuclear translocation [137, 138]. Curcumin
inhibition of IKK is a classically accepted mechanism for the
natural extract’s anti-inflammatory activity [23, 138]. How-
ever, this cannot completely explain all the pharmacological
outcomes shown in the literature with curcumin treatment
[139]. Curcumin is shown to also inhibit PKC [140], which
inhibits MAPK activity. Curcumin is also shown to inhibit
Raf-1 [132, 133] which also reduces MEK signalling (MAPK)
from yet another point in the MAPK pathway as seen in
Figures 2 and 3. Inhibition ofmultiple cytosolic PKC isoforms
[103, 140–142] plays a monumental role in MAPK pathway
regulation [143, 144].

The symphony of curcuminoid activity on transduction
through the MAPK pathway modulation and influences of
NF-kB transactivation appears at first to be void of selectivity
or strategy. However, once this plethora of activity is carefully
mapped, a bigger picture begins to emerge. The pleiotropic
influences by curcumin and its inherent curcuminoid ana-
logues seem to be honing in, in a compounding manner,
on inhibition of p65 activity. The extract’s polypharmacology
looks as though it is sharpening transactivation of p65-
p50 synergistically through crosstalk by the MAPK pathway
all the way into the nucleus. As mentioned, curcumin is
also shown in the literature to inhibit PKA [145] delivering
another level of compounding inhibitive activity on p65-p50
transactivation at the nuclear level.

Curcumin’s pharmacology is complex. Curcumin is
shown to inhibit transactivation of p65-p50 while still main-
taining basal activity in healthy cells [146]. Curcumin is
shown to induce apoptosis inmutated cells such asmelanoma
[146, 147] and to facilitate apoptosis by chemotherapies in
drug-resistant cells improving drug efficacy [148]. This could
be intimately related to its influence on NF-kB. Curcumin
enhances caspase 8 activity [149]. However, at the same time,
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curcumin promotesmalignant cell death and it preserves and
protects healthy cells in the same environment from chemo-
toxicity [148]. Curcumin’s pharmacology varies depending
on cell type and receptor-ligand interaction triggering the
cell response [150–152]. Different sources of cell stimulation
such as LPS, TNF𝛼, and TGF𝛽, to name a few, which initiate
transduction from different receptor sites create a differential
p65 phosphorylation dynamic [129, 153].

The variable trigger points for inflammatory activity
result in variations of the same p65 protein [85] that dif-
fer in their phosphorylation and heterodimer configura-
tions; the outcome of which is multiple condition-specific
responses from one transcription factor. Nevertheless, cur-
cumin inhibits the different IKK isoforms involved in these
different pathways and the different NF-kB heterodimer
configurations that rise out of these different trigger points
[23, 154, 155]. Still, despite all we know about the many
mechanisms involved, the fundamental mechanism driving
curcumin pharmacology is not fully understood since we
are still discovering new targets and new interactions with
conflicting results [156–160].

Bymodulating brain derived neurotrophic factor (BDNF)
[161], curcumin performs as an antidepressant agent in a
fashion similar to fluoxetine and imipramine [162]. Cur-
cumin is shown to improve cardiac hypertrophy and heart
failure in animal models [163, 164]. Curcumin can perform
better than diclofenac sodium in the treatment of rheuma-
toid arthritis [6, 165]. In murine models of cystic fibrosis
(CF), curcumin improves cystic fibrosis transmembrane con-
ductance (CTFR) defects [166]. The extract helps improve
muscle regeneration after injury [167]. Administration of
curcumin improves cognitive function in Alzheimer’s disease
patients [168] and improves COPD-like airway inflammation
[169]. Curcumin administration improves lipid metabolism
to support healthier total cholesterol and HDL to LDL ratios
associated with obesity [170–172].

However, as much as these and many other positive
findings serve as a storyline for curcumin praise just as many
studies demonstrate lack of efficacy with curcumin admin-
istration [173]; in depression models [174]; in CTFR (CF)
defects [175]; and in rheumatoid arthritis and inflammatory
bowel disease [176]. There is no doubt that curcumin can
play a role in the management of inflammatory disease but in
order for this to happenwith greater reliability, the underlying
mechanism must be better understood.

Curcumin has shown promise in the treatment of cancer
[177], for instance, and in combination with paclitaxel can be
effective in enhancing cytotoxicity in drug-resistant cancers
[178–180]. Although the mechanism is understood to be
centered on NF-kB inhibition by curcumin, the full story is
still incomplete.

5. Curcumin-Based Therapy Challenges

A new perspective that involves two new viewpoints must be
adopted in order to unveil some of the mystery still trapped
within this natural extract.

Studying each of the curcuminoid analogues in isola-
tion may help unravel some of the mystery surrounding

this medicinal agent. Synthetic curcumin analogues, for
example, can display unique pharmacological characteristics
associated with structure [181, 182], structural differences
that are rather miniscule. The naturally occurring curcum-
inoid analogues display similar structural characteristics,
but as shown in Figure 1, their unique features may also
contribute distinct pharmacological characteristics that are
unique to each analogue. However, the naturally occurring
curcuminoid analogues have not been studied expansively
in this context in the past. A reevaluation of each of the
curcuminoid analogues’ pharmacology in isolation in the
framework of NF-kB regulation may provide more insight
into the full spectrum of curcumin activity and the source of
the curcumin extract’s polypharmacology.

Curcuminoid nomenclature also needs to be revisited.
The whole 1 : 1 turmeric rhizome powder (Curcuma longa)
will contain approximately 3–6% curcumin that comprises
a mixture of the three naturally occurring curcuminoid
analogues at concentrations that approximate 50–80% cur-
cumin I, 10–20% curcumin II, and 0.5–2% curcumin III
[31, 183–185]. Total curcumin content can be as high as
98% for a curcumin extract that retains these same cur-
cuminoid analogue proportions inherently [139]. The term
“curcumin” can refer to the principal curcuminoid, curcumin
I (one), also called diferuloylmethane [186]. However, the
term “curcumin” is confusingly also used in the literature and
commercial applications, as will be shown, to describe the
curcumin extract that contains all three curcuminoids (I, II,
and III). To make matters related to consistency worse, the
proportion of the naturally occurring curcuminoid analogues
(I, II, and III) in curcumin extracts can vary from sample
to sample contributing to a lack of standardization when
comparing research executed with “curcumin.” This lack of
nomenclature clarity must be more definitive.

Natural curcumin preparations that are standardized to
a precise concentration, often as high as 95% curcumin,
have within them these underlying variances that may be
contributing to inconsistent outcomes. The assumption is
that the curcuminoid analogues all display similar pharma-
cology. However, studies do point to the likelihood that the
curcuminoids do not produce the same pharmacology on
all targets. For example, bisdemethoxycurcumin (curcumin
III aka BDMC) is shown to deliver cytotoxicity to inhibit
growth of the K562 cell line and this inhibitory activity is
significantly greater than that of curcumin (curcumin I aka
diferuloylmethane) and demethoxycurcumin (curcumin II
aka DMC) [187]. On the other end of the spectrum studies
showed that curcumin I and demethoxycurcumin (curcumin
II) have equally potent inhibitory activity on TPA induced
tumorigenesis but bisdemethoxycurcumin (curcumin III)
was less active [188]. The mechanisms are undefined and
seemingly conflictive, nevertheless indicative of different
activity by the different curcuminoid analogues.

The curcumin nomenclature does not help to make
research initiatives clear. If we take an example of PKC inhi-
bition by curcumin [189], Balasubramanyam et al. revealed
that they acquired their curcumin for research from Sigma-
Aldrich Co. with no more descriptive detail in the study.
Another study demonstrating PKC inhibition by curcumin
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Figure 4: Diferuloylmethane’s (curcumin I) nonenzymatic degradation yielding ferulic acid and vanillin as by-products.

[103] where curcumin is “purchased from LKT Laboratories
(>98%)” includes no more detail than this in the material
description including no catalogue number for the item.
Upon viewing the LKT catalogue, it is confirmed that this
product appears to be almost exclusively curcumin I. Other
researches showing that curcumin inhibits PKC [190, 191]
simply state that curcumin is procured from Sigma and no
more detail other than that.

Sigma, in another example, displays a 94% curcuminoid
content curcumin (catalogue number C7727) but guarantees
greater than 80% curcumin in the research standard. This
product is obviously a curcumin extract, labelled “curcumin”
but supplies multiple curcuminoids with the major curcum-
inoid analogue being curcumin I based on the molecular
structure of the primary constituent shown in the product
specification sheet. However, this product is more than just
curcumin I; it also includes a nondescript array of other
curcuminoids and as a result provides a variety of possible
contributors to the pharmacology demonstrated in the study.

Inhibition of PKC by curcumin is shown in another
study by Mahmmoud [192]. They too are using Sigma’s
curcumin (catalogue number C7727) which contains more
than one curcuminoid analogue but the researchers refer
to their inhibitor as “curcumin.” Catalogue number C7727
has only approximately 80% curcumin I and almost 20%
other constituents. Inconsistent material specification may
be playing a monumental role in the lack of reliability and
repeatability of research and treatment outcomes. As we have
demonstrated above, the curcuminoid analogues can display
differing pharmacology and as submitted, standardization
must be taken more seriously.

Acknowledging the Pharmacological Contribution of the Cur-
cumin Autooxidative By-Product. High dose administration
by oral route of some curcumin products results in lim-
ited to no serum curcumin in the subjects [24, 193], so
why therapeutic results are still positive? Curcumin readily
degrades in biological mediums and biological pH nonen-
zymatically to yield ferulic aldehyde, trans-6-(40-hydroxy-
30-methoxyphenyl)-2,4-dioxo-5-hexenal, feruloyl methane,
ferulic acid, and vanillin [194]. Although the studies have
revealed conflictive evidence, some of these degradation by-
products display significant pharmacological activity [195–
197]. In addition, some, such as ferulic acid and vanillin,
unlike the parent curcuminoids, display significant solubility
and stability in biological mediums and at biological pH

[198, 199]. If serum curcumin levels are regularly measured
too low [24, 193] to account for pharmacological results after
steady oral loading with curcumin, what is the source of the
irrefutable results [200]? Are the nonenzymatic autooxidative
degradation products responsible?

Curcuminoid degradation proceeds rapidly at pH above
neutral, which is associated with biological mediums [198,
201]. Is curcumin or its degradation by-products responsible
for the in vivo pharmacology at the site of activity? Are both
classes,degradation andparentmolecules, responsible?While
curcumin is known to inhibit xanthine oxidase [202], ferulic
acid, for example, a curcumin degradation by-product is also
shown to inhibit xanthine oxidase reducing uric acid crys-
tallization associated with gout [203–205]. Inhibition of xan-
thine oxidase can also reduce the intensity ofmany symptoms
of disease including nonspecific symptoms associated with
aging and chronic inflammation [206]. Xanthine oxidase
escalates superoxide radical production, where overactivity
simply produces additive biological stress [207]. Inhibition
may play a functional role in disease management.

Ferulic acid administration can facilitate NO-mediated
vasodilation [208]; pharmacology is also induced by cur-
cumin administration [209]. Curcumin [210], just like ferulic
acid [211], is shown to have significant antitumor activity.
While we know that curcumin inhibits NF-kB [155, 212],
ferulic acid is shown to do the same [213]. Curcumin [155,
212, 214–217], just like ferulic acid [197, 217–219], destabi-
lizes preformed 𝛽-amyloid protein and inhibits stability of
soluble oligomer and fibril aggregation. Vanillin, a curcumin
degradation by-product, inhibits cyclooxygenase (COX),NF-
kB, caspase-1 [220], and ischemia-induced hippocampal CA1
cell death [221]. Vanillin also protects neurons from oxidative
stress [197].

Since oral administration of some curcumin drugs is
shown to result in low to zero serum curcumin even with
prolonged high dose administration [18, 222], it leaves us
with the degradation products as likely contributors, at
least in part, to the broad polypharmacology attributed to
curcumin. However, not all curcumin-related studies reflect
the same curcumin bioavailability limitation so inevitably
serum curcuminoids are playing a significant role as will be
evidenced shortly. It must be considered that this autooxida-
tive degradation of curcumin may not proceed as linearly as
we would like to think. Figure 4 displays the nonenzymatic
degradation products of diferuloylmethane’s (curcumin I)
depicted again with ferulic acid and vanillin as by-products.
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Figure 5: Bisdesmethoxycurcumin’s (curcumin III) nonenzymatic degradation yield.

However, curcumin III (bisdemethoxycurcumin) would pro-
duce degradation products with structure varying from those
presented for curcumin I as seen in Figure 5.

In addition to the nonenzymatic autooxidative degrada-
tion of curcumin, curcumin is quicklymetabolised enzymati-
cally in an attempt by the body to neutralize and eliminate the
natural agent.This enzymaticmodulation starts in the intesti-
nal lumen [223, 224] and subsequently, once absorbed into
systemic circulation, yet another therapeutic barrier, the liver,
imposes enzymatic neutralization. The metabolites resulting
from this activity are quickly further subjected to glucurona-
tion and sulfation to form curcumin glucuronide, curcumin
sulfate, dihdrocurcumin glucuroside, tetrahydrocurcumin
glucuronoside, and hexahydrocurcumin glucuronoside [223,
225–227]. This enzymatic neutralization contributes further
to the elimination of serum curcumin and that low to no
serum curcumin often associated with curcumin admin-
istration even at high oral doses. However, despite the
apparent limitations associated with bioavailability, oxidative
degradation and metabolic activity in vivo results persist
albeit not reliably by all curcumin-containing products tested
[216, 228–231, 231–233].

6. The Therapeutic Value of a Standardized
Curcuminoid Treatment

Needless to say, curcumin’s potential as a therapeutic agent
is significant. However, there are some challenges that need
to be overcome. Curcumin is known for its bioavailability
limitations but this challenge may very well be overstated.
Contrary to the stated bioavailability limitations, many stud-
ies such as that executed by Baum et al. applying regular
curcumin extract in human clinical trials at daily doses of 1.0
grams showed significant serumcurcumin (1100+/−260nM)
within 1.5 hours [234]. In addition, the parent curcuminoids
were also accompanied by significant serum levels of the
nonenzymatic degradation by-products of curcumin. Poor
curcumin/curcuminoid bioavailability is said to be caused
by the phenolic compound’s hydrophobic property and the
consequential poor solubility in aqueous mediums [235].

Improving curcumin solubility in aqueous medium by
complexing the curcuminoid with hydrophilic compounds
like phosphatidylcholine improves solubility but is also
purported to improve bioavailability [200]. However, these
studies showing increased serum curcumin with reacted

forms of curcumin that appear to have higher solubility
[200] in aqueous solutions than curcumin alone might be
missing another cause of improved serum curcumin, such
as improved survival against hepatic enzyme modification
[236]. In addition, improved solubility does not convey
improved bioavailability. Even in studies that show low to no
serum curcumin upon oral administration [24, 37, 193, 237]
and excessive efflux [238] reported results from the therapies
as previously mentioned are considered good, thus indicat-
ing from this standpoint that other factors, possibly even
the autooxidative degradation by-products, are contributing
pharmacology.

Regulation of the complexNF-kB transcription factor can
play a significant role in disease management and improved
cell survival [153, 239, 240]. Curcumin’s biological activity is
intimately interactive with NF-kB through multiple targets
to downregulate the transcription factor and its involvement
in disease pathology [23, 23, 155, 182]. Since inflammatory
chemistry is central to all disease pathology in one form
or another and is ultimately the target of disease treatment
including diseases as difficult to treat as cancer [241–243],
multiple sclerosis [244, 245], rheumatoid arthritis [245–247],
ulcerative colitis [248, 249], Crohn’s disease [250], and other
autoimmune and autoinflammatory diseases [251, 252], NF-
kB regulation is a highly targeted prospect in disease therapy
[253].

Improved regulation of inflammatory markers by cur-
cumin administration can lead to the potential improvement
cognitive deficits [254], those aligned with Parkinson’s dis-
ease pathology [255], Alzheimer’s disease [168], and non-
specific oxidative brain damage [256, 257]. Obesity, as we
have seen, is also closely linked with inflammation [47–49].
These age- and lifestyle-related diseases are North American
epidemics today evolving to global pandemic status [258–
260]. The right curcuminoid design could play a powerful
therapeutic role in the treatment or prevention of many
diseases including premature aging.

7. Future Direction for Curcumin
Standardization in Research and Therapy

The future of curcumin is as bright as its pigmentation.
However, in order for the pharmacology of this medicinal
agent to be optimised, a better understanding of the distinct
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pharmacology of each naturally occurring curcuminoid ana-
logue must be fully explored. The expansive polypharmacol-
ogy is likely a function of the multiple targets successfully
modulated by each curcuminoid analogue distinctly and
the same targets they may successfully regulate to produce
additive activity. In addition, it may be considered that the
curcuminoid analogues successfullymodulate distinct targets
that act synergistically by crosstalk such as that seen between
the MAPK and NF-kB pathways. In all, the total outcome of
this polypharmacologymay be one that plays out as a strategic
corralling or shaping of NF-kB transactivation as described
schematically in Figures 2 and 3.

Curcumin must be studied from this polypharmaco-
logical point of view in order to better understand the
pharmacokinetics and pharmacology of each curcuminoid
in isolation. This compartmentalized information will likely
help us improve selective usage of curcumin-based strategies
in research. It may even help improve the synergistic value
hiding within the natural extract that may be unlocked
by man-made drug designs that involve varying the cur-
cuminoid analogue proportions within the curcumin-based
treatment.

It is well established in some studies that bioavailability
limitations are real with the hydrophobic curcumin but this
is countered by studies that show otherwise. Commercially
driven claims that the hydrophobic nature of the curcumi-
noid and its lack of solubility in aqueousmediums is the cause
of curcumin bioavailability limitation is simply unfounded.
Even with those demonstrating poor serum curcumin after
heavy oral dosing, there is difficulty explaining the pharma-
cological results experienced by subjects receiving curcumin.

Serum curcumin levels are not found to be significant
enough to explain therapeutic results in some studies [24,
37, 193, 223, 224] but as has been demonstrated in other
researches, serum curcumin with unmodified curcumin
extracts that are properly extracted can be significant and suf-
ficient for efficacy [200]. However, despite the challenges, in
vivo results can range from therapeutically great to mediocre
from one curcumin-based product to another [216, 228–231,
231–233]. This indicates that other factors are playing phar-
macological roles and also contributing activity. It is likely
the internal proportion shifts of the curcuminoid analogues
and the autooxidative by-products that must be considered
in this pharmacological equation. The inconsistency and
uncertainty are amongst the challenges that researchers need
to overcome in order for the true value and full potential of
this therapeutic agent to be extracted and put to good use.

Despite some attempts to improve curcumin bioavailabil-
ity through liposomal and other forms ofmicroencapsulation
[261–263] and aerosol delivery [264], the effective hepatic
degradation of the curcuminoids [223, 225–227] and that
which can start in the lumen [265, 266] are shown to present
yet another formidable therapeutic barrier contributing to
serum insufficiency found with curcumin dosing.The condi-
tions in which the curcumin-based therapies are studied also
play a monumental role in the outcome seen in the literature.
Serumproteins significantly improve curcumin survival [194]
so once in the bloodstream a unique dynamic ensues. Factors
such as pH, serum antioxidant status, and temperature all

influence curcuminoid stability and autooxidative degrada-
tion [194, 267].

The status of the by-products of curcumin autooxidative
degradation and their potential contribution to in vivo phar-
macology must also be studied with greater sophistication
such as starting with fundamental measurement of actual
tissue distribution. Too much conflicting data has been
presented in this context [38, 194, 268–270] and although
the multiple viewpoints are great to see for meta-analysis, it
must be considered that these conflicting positions could also
be a function of the variable conditions being used to study
the curcuminoids. Variable pH, temperature, serum protein,
and other conditions, if even mildly varied, result in varying
the degradation dynamic and outcome even at the analytical
stage of serum samples after extraction.

Standardization of the curcumin extract to clearly define
its constituent curcuminoid analogues at every juncture is
crucial. Labelling and definitions of standards and consumer
products must be made more universal. Curcumin extracts
described on the label of a supplement source or natural
therapeutic product, for example, may not be describing the
same principal agent today from brand to brand due to these
discrepancies in interpretation. Even within one brand, how-
ever, the variable proportion of curcuminoid analogues could
also play a role in the inconsistency experienced from one lot
number to the next using the existing regulatory standards.
An extract displaying 95% curcumin purity, for instance, does
not necessarily specify the curcuminoid proportions (I, II,
and III).This lack of consistency extends to the peer-reviewed
literature as well.

“Curcumin” is a descriptor often used to describe the
curcumin extract which contains all three curcuminoids:
curcumin I, curcumin II, and curcumin III. Confusingly,
however, as described, “curcumin” is also used to describe
curcumin I on a label. It must be established as a standard in
commercial and research applications that a reference made
to any one or three of the curcuminoids would be qualified
by naming the specific curcuminoids. This nomenclature
specificity must be standardized globally in order for label
claims on consumable products, pharmacological agents, and
research reports to be consistent in the health care field
including peer-reviewed literature. Once this standard is set
and adhered to we can begin to further define and better
understand the expansive potential of this therapeutic agent
with reliable and repeatable results.
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