WRITING LINUX FS
4FUN

Part 2
Short story of Pages and Virtual Memory

Outline

m Why

m Main Concepts and bit of history
- VM as a start of the journey
- Paging, Swapping

m Caching vs Latencies

m VM caching problem statement
- Solaris Page Cache
- Linux Page Cache

m IO paths

m Code Fragments:
- Read/Write Page

- mmap

Why this talk?!

m Cons
- Writing FS is quite time consuming (approx. 10 years..)

- Just few production ready FS, many abandoned or not truly
maintained

- File Systems considered as passé: now is Object Stores
era!

m Pros
- Address specific Education gap
- Solving other complicated problems
B Memory Management is considered as difficult topic
m Storage stack is complicated and usually became a bottleneck
m Data is foundation of most todays application

VM 1n UNIX

m Virtual Memory: “high level”
abstraction

m Multiple Processes with
different address space

m Concept of Primary Storage:
Main Memory (Fast - RAM) and
Secondary Storage (Slow -
Backing Device)

UNIX, like all time-sharing systems, and some mul-
tiprogramming systems uses “program swapping”
(also called “rollin/roll-out”) to share the limited
resource of the main physical memory among sev-
eral processes.

Processes which are suspended may be selec-
tively “swapped out” by writing their data seg-
ments (including the “per process data”) into a
“swap area” on disk

From J.Lions[77] cl4. Program Swapping

P a. g i n g Physical Memory

Virtual Virtual K Page N+1
m Mechanism of Memory Management: Addresi Address
Divide whole physical memory to Space Space 2 .. Page N
small chunks called pages _ 67
pag Page 0 | Pagse ‘0 page N-1
m Pages referred by their number o
. Page 1 ° - | Page 1 /. .
i.e. PFN S .
m Three important paging policies - o~ : .
n e + 0 =
[1973]: . - '. } Page k
- Fetch policy , ’ ‘. by

" ‘\ l" “ n
- Placement policy Page N \ Page N, : .

- Replacement Policy

Demand Paging

m Introduced in : Demand paging
made its appearance in UNIX
with the introduction of the
VAX-11/780 in 1978

m All versions of UNIX used
demand paging as the primary
memory management technique,
with swapping relegated to a
secondary role in 80s

m When referencing memory which
is not present Page Fault:
Minor, Major

Computing 1s all about caching

Processor
Processor-Memory

Performance Gap

m Intel Laptop CPU can execute 50 Bilions instruction per second
- Unless it takes a cache miss
m DRAM can deliver 500 Milions cache lines per second
m SSD can deliver 800 thousand 4KiB pages per second
100,000
m PDP 11/70 could execute
400 Thousand IPS o
m Its Memory could handle : e
300 Thousand cache misses p/s g -
m The RKO05 drive could deliver
10

4 thousand 4KiB pages p/s

1980

Memory

1995 2000 2005 2010

Year

1990

1985

Latencies numbers that you should know

Ll cache referenceccieeeececcccccccacs 0.5 ns
Branch misprediCt ...ceeeeeeceeccsccscsocscnss 5 ns
L2 cache referenceccieceececcccccccacsse 7 ns
Main memory referencecccciiiiicccnns 100 ns
SSD) EEMEIEIN TEEEI cocooco0c0 0000 a0aC a0 a0 150,000 ns = 150 us
Read 1 MB sequentially from memory 250,000 ns = 250 us
Read 1 MB sequentially from SSD* 1,000,000 ns = 1 ms
Disk S€EK et eeeeeeeceeccccnccccocs 10,000,000 ns = 10 ms
Read 1 MB sequentially from disk 20,000,000 ns = 20 ms

Lets multiply all these durations

by a billion:

L1 cache reference
Branch mispredict

L2 cqche reference
machine

Main memory reference

SSD random read
Read 1 MB sequentially from memory
Read 1 MB sequentially from SSD

Disk seek
Read 1 MB sequentially from disk
The above 2 together

0.5 s
5 s
7 s

100 s

1.7 days
2.9 days
11.6 days

16.5 weeks
7.8 months

1 year

One heart beat (0.5 s)
Yawn

Dispatching expresso in coffee

Doing a toasted sandwich

A normal weekend

A long weekend

Waiting for 2 weeks for a delivery

A semester in university

Almost producing a new human being

General Caching problem

Process

Process
Files

Fdl

Fd2

FdN

File memory in pages

File Offset Writeback/Flush
;-,.»-"' T
7 =ese N
Not -
G Igmmd‘w T
] Y% \\\\h__#,,#//
o
\s 7 Backing
M‘//A/ ™~ Device
Z N 7) ~
N 7/~ —
N

2
»_

/

SOLARIS

Page Cache implemented
as a Hash Table

Hashing of Pages done
by key [vnode, offset]

Each vnode maintain
list of pages
associated to this
vnode

vEs

!

vnode

vpages

VT%de page list

page

—__| p_vpnext

p_vnode

p_offset
p_hash]

p_vpprev

p_next -

p_prev

Page Cache

Global
Hash list

of Pages
g 4
//" g P 2 g
L)
I
Key —

[vnode,offset]

- >

Global Free List

LLinux

m Page Cache: inode
connected to the

address space

m Address space
mapping of the
pages

m Radix tree as
Page Cache

m One Page Cache
per inode (file)

Block

Device

Backing
Device
reference

Synchronization

Address

Radix tree

space

13

IO Paths:

m Data can be sent to the
Storage device in many ways

m Multiple components inside
kernel space

m Userspace can advise the
kernel

Application
Data Buffer
User Space f}
Kernel Space i}
VFS
]\ Page
> Cache
Filesystem

1l

Volume Manager

I

\Z

[E?Efige Deviggj

Buffered IO

Application do frequent R/W Application

Is fine for data to sync with Sata Boffor
disk after some time I

User Space

Read/Write directly from/to Kernel Space
the Cache

Filesystem *‘ cage

Cache

1"?

If cache miss during the Read . .

need to wait —
Storage Device

Cache do synchronization with
storage by its own

Synchronous Buffered IO

m Application want Write the Application
data to reach the disk and get Data Buffer
confirmation. User Space I
m Cache do store this data as fernel Space
well as it needs to sync data _ Pa
: : Filesystem tj e
between 1t and Storage medium Cache

E;igrage Device

Direct IO

m Application wants to manage

caching the data by its own

Whenever IO performed it
should go directly to the
disk, no point for caching the
same data inside kernel

Application

ol =
Data Buffer Cache

User Space
Kernel Space

Filesystem

[Ezgiage Deéiggj

Memory mapped IO

m Application wants to use

kernel Page Cache, but not Appllcatlon
keep a copy of the data on mmap Mapped Memory
their site User Space ﬂ I
Kernel Space l}
m Same pages can be shared

between Processes . Memory Pages
Filesystem {—)

Page Cache

. 4

—
Storage Device

— —

Page Cache and Storage Device

m Page Cache is a set of pages
per address space

m Possible to GET/PUT page to
the page cache

Page Cache

-

pd AN i N
Pages
put_page get page

\/

ﬁata Storagi

What are we trying to achieve?

m Make use of the Page Cache for:
- Buffered IO
- Sync IO

m Make sure that Direct IO works and
omit Page Cache

m Support mmap/munmap

//mm/filemap.c

/* This is used for a general mmap of a disk file

int generic file mmap(struct file * file, struct
vm_area struct * vma)

{
!/
file accessed(file);
vma->vm_ops = &generic_file vm ops;
// file.c fops for dm file return 0;
file operations dummy file ops = { }

.mmap = dm file mmap, /* These are filemap generic methods */
vmm_operations struct generic _file vm ops = ({
// Handler of mmap .fault = filemap fault,
static int .map pages = filemap map pages,

dm file mmap(struct file *file, .page mkwrite = filemap page mkwrite,

struct vm area struct *vma)

return generic file mmap(file, vma);

Fragments: R/W through PC

// mm/filemap.c

generic_ file read iter(struct kiocb *iocb, struct iov_iter
*iter)

/**

* This is the "read iter()”

* routine for all filesystems

* that can use the page cache

* directly. */
ssize t
generic_file read iter(struct

kiocb *, struct iov_iter *)

file operations dummy file ops = {
.read iter = dm file read iter,
.write iter = dm file write_ iter,

/* Plug it in */

static ssize t

ext2 file read iter(struct kiocb *iocb,
struct iov_iter *to)

{

return generic file read iter(iocb, to);

{

}

struct file *file = iocb->ki filp;

struct address_space *mapping = file->f mapping;
struct inode *inode = mapping->host;

loff t size;

size = i _size read(inode);
if (iocb->ki flags & IOCB_NOWAIT) ({
if (filemap_ range has page(mapping, iocb->ki pos,

iocb->ki pos + count - 1))
return -EAGAIN;
} else {
return filemap write and wait range(mapping,
iocb->ki pos, iocb->ki pos + count - 1);
}

file accessed(file);

retval = mapping->a_ ops->direct IO(iocb, iter);

return generic_ file buffered read(iocb, iter, retval);

// inode as ops for dm inode

struct address space operations
dm as ops = {

.readpage dm readpage,
.readpages = dm readpages,
.writepage = dm writepage,
.writepages dm writepages,
.write begin dm write begin,
.write end = dm write end,
.bmap = dm bmap,

//inode.c
static int dm readpage(struct file *file,
struct page *page)

return mpage readpage(page, dm get block);

static int

dm readpages(struct file *file, struct address space
*mapping, struct list head *pages, unsigned nr pages)

{
return mpage_readpages(mapping, pages, nr_pages,
dm get block);

static int dm writepage(struct page *page,
struct writeback control *wbc)

return block write full page(page, dm get block, wbc);
}

static int
dm writepages(struct address space *mapping,
struct writeback control *wbc)

{

return mpage writepages(mapping, wbc, dm get block);

Fragments: get block

[** int dm _get_block(struct inode *inode, sector_t iblock,
)) struct buffer head *bh result, int create)
* Get Block with block index {
. unsigned max_blocks =
* _
iblock bh result->b _size >> inode->i blkbits;
* map it to the buffer head bool new = false, boundary = false;
- u32 bno;
* This 1s FS specific routine int ret;
*
/ /*x*
int dm_get_block(* return > 0, ‘N’ of blocks mapped or allocated.
. . * return = 0, if plain lookup failed.
*
struct inode ande’ * return < 0, error case.
sector t iblock, */
£ t_b £f h d *bh 1t ret = dm get blocks(inode, iblock, max blocks, &bno,
StrucC u er ea resu
. - - ! &new, &boundary, create);
int create) if (ret <= 0)

return ret;

map bh(bh result, inode->i sb, bno);
bh_result->b_size = (ret << inode->i_blkbits);
if (new)

set _buffer new(bh result);
if (boundary)

set buffer boundary(bh_ result);
return 0;

Fragments: Get Blocks

/] **

* Return the blocks

* routine for Filesystem

* iblock is start block

* maxblocks max number of blocks

* /

static int dm get blocks(
struct inode *inode,
sector t iblock,
unsigned long maxblocks,
u32 *bno,
bool *new,
bool *boundary,
int create)

/* Iterate all extends see if we can find a block range
inside existing range */
while (count < maxblocks && count <= blocks to boundary)

/* Simple case block found in existing blocks and do
not overflow return it */

if (err != -EAGAIN)
goto got_it;

/* Next simple case - plain lookup or failed read of
indirect block so we need to chain them. */

if (!create || err == -EIO)
goto cleanup;

/* We do need to create new blocks */
err = dm alloc blocks(inode, indirect blks, &count,
offsets + (partial - chain));

/* Truncate if size bigger than requested */
if (count > blocks to boundary)

*boundary = true;

err = count;

// We can again use magic get blok function
// and plug to FS framework

static ssize t
dm direct IO(struct kiocb *iocb, struct iov _iter *iter)
{

struct file *file = iocb->ki_filp;

struct address space *mapping = file->f mapping;
// inode as ops for dm inode struct inode *inode = mapping->host;
size t count = iov_iter count(iter);
loff t offset = iocb->ki pos;

struct address space operations
dm as ops = {

return blockdev direct IO(iocb, inode, iter,
.direct IO = dm direct IO, dm get block);

Other resources:

m J.Lions: "A commentary on the sixth edition UNIX Operating
System” [1977]

m R McDougall, J. Mauro: “Solaris Internals Second edition”
[2006]

m Uresh Vahalia: “UNIX Internals The new Frontiers” [1996]

m Steve D. Pate: "UNIX Filesystems: Evolution, Design and
Implementation”

m Ext2, Ufs: Linux source code

m github.com/gotoco/dummyfs

https://twitter.com/mathfriday

