
WRITING LINUX FS
4FUN

Part 2
Short story of Pages and Virtual Memory

Outline
■ Why

■ Main Concepts and bit of history
– VM as a start of the journey
– Paging, Swapping

■ Caching vs Latencies

■ VM caching problem statement
– Solaris Page Cache
– Linux Page Cache

■ IO paths

■ Code Fragments:
– Read/Write Page
– mmap

Why this talk?!

■ Cons
– Writing FS is quite time consuming (approx. 10 years…)
– Just few production ready FS, many abandoned or not truly

maintained
– File Systems considered as passé: now is Object Stores

era!

■ Pros
– Address specific Education gap
– Solving other complicated problems

■ Memory Management is considered as difficult topic
■ Storage stack is complicated and usually became a bottleneck
■ Data is foundation of most todays application

VM in UNIX
■ Virtual Memory: “high level”

abstraction

■ Multiple Processes with
different address space

■ Concept of Primary Storage:
Main Memory (Fast - RAM) and
Secondary Storage (Slow -
Backing Device)

From J.Lions[77] c14. Program Swapping

Paging
■ Mechanism of Memory Management:

Divide whole physical memory to
small chunks called pages

■ Pages referred by their number
i.e. PFN

■ Three important paging policies
[1973]:
– Fetch policy
– Placement policy
– Replacement Policy

Demand Paging
■ Introduced in : Demand paging

made its appearance in UNIX
with the introduction of the
VAX-11/780 in 1978

■ All versions of UNIX used
demand paging as the primary
memory management technique,
with swapping relegated to a
secondary role in 80s

■ When referencing memory which
is not present Page Fault:
Minor, Major

Computing is all about caching
■ Intel Laptop CPU can execute 50 Bilions instruction per second

– Unless it takes a cache miss

■ DRAM can deliver 500 Milions cache lines per second

■ SSD can deliver 800 thousand 4KiB pages per second

■ PDP 11/70 could execute

400 Thousand IPS

■ Its Memory could handle

300 Thousand cache misses p/s

■ The RK05 drive could deliver

4 thousand 4KiB pages p/s

Latencies numbers that you should know

L1 cache reference 0.5 ns

Branch mispredict 5 ns
L2 cache reference 7 ns

Main memory reference 100 ns

SSD random read 150,000 ns = 150 µs

Read 1 MB sequentially from memory 250,000 ns = 250 µs

Read 1 MB sequentially from SSD* 1,000,000 ns = 1 ms

Disk seek 10,000,000 ns = 10 ms
Read 1 MB sequentially from disk 20,000,000 ns = 20 ms

Lets multiply all these durations
by a billion:
L1 cache reference 0.5 s One heart beat (0.5 s)
Branch mispredict 5 s Yawn
L2 cache reference 7 s Dispatching expresso in coffee
machine

Main memory reference 100 s Doing a toasted sandwich

SSD random read 1.7 days A normal weekend

Read 1 MB sequentially from memory 2.9 days A long weekend
Read 1 MB sequentially from SSD 11.6 days Waiting for 2 weeks for a delivery

Disk seek 16.5 weeks A semester in university
Read 1 MB sequentially from disk 7.8 months Almost producing a new human being

The above 2 together 1 year

General Caching problem

SOLARIS
■ Page Cache implemented

as a Hash Table

■ Hashing of Pages done
by key [vnode, offset]

■ Each vnode maintain
list of pages
associated to this
vnode

Linux
■ Page Cache: inode

connected to the
address space

■ Address space
mapping of the
pages

■ Radix tree as
Page Cache

■ One Page Cache
per inode (file)

IO Paths:

■ Data can be sent to the
Storage device in many ways

■ Multiple components inside
kernel space

■ Userspace can advise the
kernel

Buffered IO

■ Application do frequent R/W

■ Is fine for data to sync with
disk after some time

■ Read/Write directly from/to
the Cache

■ Cache do synchronization with
storage by its own

■ If cache miss during the Read
need to wait

Synchronous Buffered IO

■ Application want Write the
data to reach the disk and get
confirmation.

■ Cache do store this data as
well as it needs to sync data
between it and Storage medium

Direct IO

■ Application wants to manage
caching the data by its own

■ Whenever IO performed it
should go directly to the
disk, no point for caching the
same data inside kernel

Memory mapped IO

■ Application wants to use
kernel Page Cache, but not
keep a copy of the data on
their site

■ Same pages can be shared
between Processes

Page Cache and Storage Device

■ Page Cache is a set of pages
per address space

■ Possible to GET/PUT page to
the page cache

What are we trying to achieve?

■ Make use of the Page Cache for:
– Buffered IO
– Sync IO

■ Make sure that Direct IO works and
omit Page Cache

■ Support mmap/munmap

Fragments:
mmap

“support mmap(2)”
// file.c fops for dm file
file_operations dummy_file_ops = {
…
.mmap = dm_file_mmap,

…
// Handler of mmap
static int
dm_file_mmap(struct file *file,

struct vm_area_struct *vma)

return generic_file_mmap(file, vma);

//mm/filemap.c

/* This is used for a general mmap of a disk file
int generic_file_mmap(struct file * file, struct
vm_area_struct * vma)
{
…//

file_accessed(file);
vma->vm_ops = &generic_file_vm_ops;
return 0;

}

/* These are filemap generic methods */
vm_operations_struct generic_file_vm_ops = {
.fault = filemap_fault,
.map_pages = filemap_map_pages,
.page_mkwrite = filemap_page_mkwrite,

};

Fragments: R/W through PC
/**
* This is the "read_iter()”
* routine for all filesystems
* that can use the page cache
* directly. */
ssize_t
generic_file_read_iter(struct

kiocb *, struct iov_iter *)

file_operations dummy_file_ops = {
.read_iter = dm_file_read_iter,
.write_iter = dm_file_write_iter,
…
/* Plug it in */
static ssize_t
ext2_file_read_iter(struct kiocb *iocb,

struct iov_iter *to)
{
return generic_file_read_iter(iocb, to);

// mm/filemap.c
generic_file_read_iter(struct kiocb *iocb, struct iov_iter
*iter)
{

struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
loff_t size;

size = i_size_read(inode);
if (iocb->ki_flags & IOCB_NOWAIT) {

if (filemap_range_has_page(mapping, iocb->ki_pos,
iocb->ki_pos + count - 1))

return -EAGAIN;
} else {

return filemap_write_and_wait_range(mapping,
iocb->ki_pos, iocb->ki_pos + count - 1);

}

file_accessed(file);

retval = mapping->a_ops->direct_IO(iocb, iter);

}

return generic_file_buffered_read(iocb, iter, retval);

Fragments:
pages

“support r/w pages”
// inode as ops for dm_inode
struct address_space_operations
dm_as_ops = {
.readpage = dm_readpage,
.readpages = dm_readpages,
.writepage = dm_writepage,
.writepages = dm_writepages,
.write_begin = dm_write_begin,
.write_end = dm_write_end,
.bmap = dm_bmap,

//inode.c
static int dm_readpage(struct file *file,

struct page *page)
{

return mpage_readpage(page, dm_get_block);
}

static int
dm_readpages(struct file *file, struct address_space
*mapping, struct list_head *pages, unsigned nr_pages)
{

return mpage_readpages(mapping, pages, nr_pages,
dm_get_block);

}

static int dm_writepage(struct page *page,
struct writeback_control *wbc)

{
return block_write_full_page(page, dm_get_block, wbc);

}

static int
dm_writepages(struct address_space *mapping,

struct writeback_control *wbc)
{

return mpage_writepages(mapping, wbc, dm_get_block);
}
…

Fragments: get_block
/**
* Get Block with block index
* iblock
* map it to the buffer_head
* This is FS specific routine
*/
int dm_get_block(

struct inode *inode,
sector_t iblock,
struct buffer_head *bh_result,
int create)

int dm_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)

{
unsigned max_blocks =

bh_result->b_size >> inode->i_blkbits;
bool new = false, boundary = false;
u32 bno;
int ret;

/**
* return > 0, ‘N’ of blocks mapped or allocated.
* return = 0, if plain lookup failed.
* return < 0, error case.
*/

ret = dm_get_blocks(inode, iblock, max_blocks, &bno,

&new, &boundary, create);
if (ret <= 0)

return ret;

map_bh(bh_result, inode->i_sb, bno);
bh_result->b_size = (ret << inode->i_blkbits);
if (new)

set_buffer_new(bh_result);
if (boundary)

set_buffer_boundary(bh_result);
return 0;

}

Fragments: Get Blocks
/**
* Return the blocks
* routine for Filesystem
* iblock is start block
* maxblocks max number of blocks
*/
static int dm_get_blocks(

struct inode *inode,
sector_t iblock,
unsigned long maxblocks,
u32 *bno,
bool *new,
bool *boundary,
int create)

/* Iterate all extends see if we can find a block range
inside existing range */
while (count < maxblocks && count <= blocks_to_boundary)
/* Simple case block found in existing blocks and do
not overflow return it */
if (err != -EAGAIN)

goto got_it;

/* Next simple case - plain lookup or failed read of
indirect block so we need to chain them. */
if (!create || err == -EIO)

goto cleanup;

/* We do need to create new blocks */
err = dm_alloc_blocks(inode, indirect_blks, &count,

offsets + (partial - chain));

/* Truncate if size bigger than requested */
if (count > blocks_to_boundary)

*boundary = true;

err = count;

Fragments:
DirectIO
“support for
DirectIO”

// inode as ops for dm_inode

struct address_space_operations
dm_as_ops = {
...

.direct_IO = dm_direct_IO,

// We can again use magic get_blok function
// and plug to FS framework

static ssize_t
dm_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
{

struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
loff_t offset = iocb->ki_pos;

return blockdev_direct_IO(iocb, inode, iter,
dm_get_block);

}

Other resources:
■ J.Lions: "A commentary on the sixth edition UNIX Operating

System” [1977]

■ R McDougall, J. Mauro: “Solaris Internals Second edition”
[2006]

■ Uresh Vahalia: “UNIX Internals The new Frontiers” [1996]

■ Steve D. Pate: "UNIX Filesystems: Evolution, Design and
Implementation”

■ Ext2, Ufs: Linux source code

■ github.com/gotoco/dummyfs

Q&A
@mathfriday

https://twitter.com/mathfriday

