SDM630MCT 40mA

DIN Rail Energy Meter for Single and Three Phase Electrical Systems

- Measures kWh kVArh, kW, kVAr, kVA, P,
 F, PF, Hz, dmd, V, A, THD,etc.
- Bi-directional measurement IMP & EXP
- Two pulse outputs
- RS485 Modbus
- Din rail mounting 35mm
- 40mA CT connection
- Better than Class 1 / B accuracy

USER MANUAL V3.6

Introduction

The SDM630MCT 40mA measures and displays the characteristics of single phase two wire (1p2w), three phase three wire (3p3w) and three phase four wire (3p4w) supplies, including voltage, frequency, current, power ,active and reactive energy, imported or exported. Energy is measured in terms of kWh, kVArh. Maximum demand current can be measured over preset periods of up to 60 minutes. In order to measure energy, the unit requires voltage and current inputs in addition to the supply required to power the product. The requisite current input are obtained current transformers(CT).

SDM630MCT 40mA can be configured to work with a wide range of CTs with 40mA output,g iving the unit a wide range of operation. Built-in interfaces provides pulse and RS485 Modbus RTU outputs. Configuration is password protected.

This unit can be powered from a separate auxiliary (AC or DC)supply. Alternatively it can be powered from the monitored supply, where appropriate.

Unit Characteristics

The Unit can measure and display:

- Line voltage and THD% (total harmonic distortion) of all phases
- Line Frequency
- Currents, Current demands and current THD% of all phases
- Power, maximum power demand and power factor
- Active energy imported and exported
- Reactive energy imported and exported

The unit has password-protected set-up screens for:

- Changing password
- Supply system selection 1p2w, 3p3w,3p4w
- Demand Interval time
- Reset for demand measurements
- Pulse output duration

Two pulse output indicates real-time energy measurement. An RS485 output allows remote monitoring from another display or a computer.

Current Transformer Primary Current

The secondary current of CT is fixed 40mA, and the primary current is optional.

RS485 Serial – Modbus RTU

This uses an RS485 serial port with Modbus RTU protocol to provide a means of remotely monitoring and controlling the Unit

Set-up screens are provided for setting up the RS485 port.

Pulse output

This provides two pulse outputs that clock up measured active and reactive energy. The constant for active energy is 3200imp/kWh (Terminals 11&12). The pulse width for pulse 1 (Terminals 9&10) can be set from the set-up menu.

Start Up Screens

*After a short delay, the screen will display active energy measurements.

M	easurements	
	cusurente	

The buttons operate as follows:

	1			age and Current display screens e, this is the "Left" or "Back"
	2	M	screens	uency and Power factor display this is the "Up" button
	3	P		r display screens this is the "Down" button
	4	E +		y display screens e, this is the "Enter" or "Right"
	and Curre	U/T		
	essive pre	ssing of the	button select	s a new range:
1-1	L1			Phase to neutral voltages (3p4w)
			. 	
	L ²	ñññ	v in	
	L ³		.ப	
	L			
1-2			•	Phase to Phase voltages (2p2w)
1-2				Phase to Phase voltages (3p3w)
	L ¹⁻²	200	Π	
	1 2-3			
	_	386		
	L ³⁻¹	380	n	
2				Current on each phase
	11			
	L ¹			
	L ²	nññ	A Ā	
	13		Ľ	
	L			
-				

2-1	N	8.8 8 8 A	Neutral current
3	L ¹ L ² L ³	00.00 v %THD 00.00 00.00	Phase to neutral voltage THD% (3p4w)
4	L ¹ L ² L ³	00.000 00.000 00.000	Current THD% for each phase

cy and Powe	er factor and Demand	
essive pressi	ng of the M A button	selects a new range:
		Frequency and Power Factor (total)
Σ	Hz	
	<u>nqqq</u>	
	LI. J. J. J. PF	
		Power Factor of each phase
Ľ	<u>n</u> qqq	
L ²	ñõõõ	
13		
_	U.SSS PF	
	essive pressi	Essive pressing of the button s E = 0.000 Hz 0.9999 PF L^1 L^2 L^3 0.9999 0.9

3	$ \begin{array}{ccccccc} $	Maximum Current Demand
4	MD ` C.C C C kW E	Maximum Power Demand

Power Each suc	cessive press	sing of the P but	utton selec	t a new range:
1	L ¹ L ² L ³	0.0 0 0 0.0 0 0 0.0 0 0	kW	Instantaneous Active Power in kW
2	L ¹ L ² L ³	0.000	kVAr	Instantaneous Reactive Power in kVAr
3	L ¹ L ² L ³	0.0 0 0 0.0 0 0 0.0 0 0	kVA	Instantaneous Volt-amps in KVA

Energy N	Energy Measurements				
	Each successive pressing of the button selects a new range:				
Each succe	essive pressin	g of the	button select	s a new range: Total active energy in kWh	
-			kWh	lotal active energy in kwin	
	5	11 2 11	-{		
			•		
2				Total reactive energy in kVArh	
			Π		
		<u>n</u> nni			
	Σ		kVArh		
			_		
3				Imported active energy in kWh	
			kWh		
			_		
			7		
4		(EXPORT	Exported active energy in kWh	
			kWh		
		ÜÜÜÜ			
			_		

5	IMPORT DODOO KVArh	Imported reactive energy in kVArh
6	EXPORT REAL KVArh	Exported reactive energy in kVArh

Setting Up

appears.

To enter set-up mode, pressing the

button for 3 seconds, until the password screen

Setting up is password-protected so you must enter the correct password (default '1000') before processing.

If an incorrect password is entered, the display will show: PASS Err

Set-up Entry Methods

Some menu items, such as password and CT, require a four-digit number entry while others, such as supply system, require selection from a number of menu options.

Menu Option Selection
1) Use the and buttons to select the required item from the menu. Selection
does not roll over between bottom and top of list
F .
2) Press to confirm your selection
3) If an item flashes, then it can be adjusted by the and buttons. If not, there maybe a further layer.
4) Having selected an option from the current layer, press to confirm your selection.
5) Having completed a parameter setting, press U/I to return to a higher menu level. You
will be able to use the M^{A} and P^{V} buttons for further menu selection.
will be able to use the and buttons for further menu selection .
6) On completion of all setting-up, press U/I_{RC} repeatedly until the measurement screen is
restored.
Number Entry Procedure
When setting up the unit, some screens require the entering of a number. In particular, on entry
to the setting up section, a password must be entered. Digits are set individually, from left to
right. The procedure is as follows:
м ▲ Р ▼
1) The current digit to be set flashes and is set using the and buttons
2) Press to confirm each digit setting.
3) After setting the last digit, press U/I_{ISC} to exit the number setting routine.
Communication
There is a RS485 port can be used for communication using Modbus RTU protocol. For Modbus
RTU, parameters are selected from Front panel.
RS485 Address
SEE Rddr

(The range is from 001 to 247)

Add: No.52, Dongjin Road, Nanhu, Jiaxing, Zhejiang, 314001, China.

Baud Rate

2-1	582 5800 <u>9.6</u> *	Press to enter the selection routine. The current setting will flash.
2-2	582 5800 38.4 *	Use M and P buttons to choose Baud rate 2.4k. 4.8k, 9.6k, 19.2k, 38.4k Default is 9.6k
On con	npletion of the entry procedure, press	to confirm the setting and press

Parity

1	582 P8r1 8u88	From the Set-up menu, use and buttons to select the Parity option.
2-1	582 2871 <mark>8087</mark>	Press to enter the selection routine. The current setting will flash.

2-2	582 P8r1 NoNE	Use and P buttons to choose Parity (EVEN / ODD/ NONE) Default is NONE.
On com	pletion of the entry procedure, press to return to the main set up menu.	E to confirm the setting and press

Stop bits

Note: Default is 1, and only when the parity is NONE that the stop bit can be changed to 2.

СТ

The CT1 option sets the primary current of CT that wires to the meter.CT2 is fixed with 40mA

ΡΤ

The PT option sets the secondary voltage (PT2 100 to 500V) of the Voltage transformer (PT) that wires to the meter.

1	582 P22 400	From the Set-up menu, use and buttons to select the PT option. The screen will show the voltage PT secondary voltage value. The default value is 400V
2	58£ P£2 400	Secondary PT setting Press to enter the PT secondary voltage selection routine. The range is from 100 to 500V.

3		Set PT ratios value
	P 2	Press E to enter the PT ratio
	_ 0 L C	screen.
	rXtt	The range is from 0001 to 2000.
For exa	ample, if set the ratio to be 100, it means the	primary voltage equals secondary voltage x

Pulse output

100

This option allows you to configure the pulse output. The output can be set to provide a pulse for a defined amount of energy active or reactive.

Use this section to set up the pulse output 1-Units: Total kWh (default), Total kVArh

1	582 r 1 y	kWh	From the Set-up menu, use and buttons to select the Pulse output option.
2	582 719	kWh	Press to enter the selection routine. The unit symbol will flash.
3	582 r19	kVArh	Use M and P buttons to choose kWh or kVArh.
On completion of the entry procedure, press I to confirm the setting and press I/I_{LSC} to return to the main set up menu.			

Pulse rate

Use this to set the energy represented by each pulse. Rate can be set to 1 pulse per 0.01kWh/0.1kWh/10kWh/100kWh/100kWh.

Pulse Duration

The energy monitored can be active or reactive and the pulse width can be 200, 100 or 60ms.

1-1	582 Puls 200	From the Set-up menu, use P buttons to select the Pulse width option.
1-2	582 Puls 200	Press to enter the selection routine. The current setting will flash. Use and buttons to choose pulse width.
On cor	mpletion of the entry procedure, press	to confirm the setting and press

DIT Demand Integration Time

This sets the period in minutes over which the current and power readings are integrated for maximum demand measurement. The options are: off (0), 5, 8, 10, 15, 20, 30, 60 minutes

1	582 242 10	From the set-up menu, use and buttons to select the DIT option. The screen will show the currently selected integration time.
2-1	582 312 10	Press to enter the selection routine. The current time interval will flash
2-2	582 242	Use and P buttons to select the time required.

Add: No.52, Dongjin Road, Nanhu, Jiaxing, Zhejiang, 314001, China.

www.eastrongroup.com

<u>Eastrun</u>

2-3	588 848 20	Press to confirm the selection. SET indicator will appear.
Press	$U/I_{\rm ssc}$ to exit the DIT selection routine and	return to the menu.

Backlit set-up

The meter provides a function to set the blue backlit lasting time.

1		The backlit lasting time is settable
F	C 1	Default lasting time is 60 minutes
2	88	For example, if it's set as 5, the backlit
Ī	$\overline{\mathbf{O}}^{-}$	will be off in 5 minutes from the last time
L	ſ -	operation on the meter.
	58	Notes: If it's set as 0, the backlit will
		always be on.
2	E Ł P <mark>8 0</mark>	Press to enter the selection routine. The current time interval will flash The options can be: 0/5/10/30/60/120 minutes
Use M and P Confirm the set-up,	buttons to select th	ne time required. Then press

Supply System

Use this section to set the type of power supply being monitored.

1	545 323	From the Set-up menu, use P buttons to select the System option. The screen will show the currently selected power supply.
---	------------	---

Change password

1	582 P855 1000	Use the M and P to choose the change password option
2-1	582 P855 1000	Press the E to enter the change password routine. The new password screen will appear with the first digit flashing

2-2	582 2855 1 <mark>0</mark> 00	Use M and P to set the E to confirm your selection. The next digit will flash.
2-3	582 P855 1100	Repeat the procedure for the remaining three digits
2-4	582 P855 1100	After setting the last digit, SET will show.
Press U/I R	to exit the number setting rout	tine and return to the Set-up menu. SET will be

CLR

The meter provides a function to reset the maximum demand value of current and power.

1	ELr	From the Set-up menu, use and p buttons to select the reset option.
2		Press E to enter the selection routine. The MD will flash.
Press	E L to confirm the setting and press	$I_{\rm ssc}$ to return to the main set up menu.

Reverse connected current inputs correction set-up

How to operate if phase A is reversely connected

Add: No.52, Dongjin Road, Nanhu, Jiaxing, Zhejiang, 314001, China.

www.eastrongroup.com

<u>Eastron</u>

Specifications

Measured Parameters

The unit can monitor and display the following parameters of a single phase two wire (1p2w), three phase three wire (3p3w) or four phase four wire (3p4w) supply.

Voltage and Current

Phase to neutral voltages 230(±20%)V a.c. (Not suitable for 3P3W) Voltages between phases 400(±20%)V a.c. (Suitable for 3P3W) Percentage total voltage harmonic distortion (THD%) for each phase to N (not for 3p3w supplies) Percentage voltage THD% between phases (three phase supplies only) Current THD% for each phase

Power factor and Frequency and Max. Demand

Frequency in Hz

Instantaneous power: Power 0 to 3600 MW

Reactive Power 0 to 3600 MVAr

Volt-amps 0 to 3600 MVA

Maximum demanded power since last Demand reset Power factor

Maximum neutral demand current, since the last Demand reset (Suitable for 3P3W)

Energy Measurements

٠	Imported/Exported active energy	0 to 9999999.9 kWh
•	Imported/Exported reactive energy	0 to 9999999.9 kVArh
•	Total active energy	0 to 9999999.9 kWh
•	Total reactive energy	0 to 9999999.9 kVArh

Measured Inputs

Voltage inputs through 4-way fixed connector with 2.5mm² stranded wire capacity. single phase two wire (1p2w), three phase three wire(3p3w) or four phase four wire (3p4w) unbalanced. Line frequency measured from L1 voltage or L3 voltage.

Three current inputs (six physical terminals) with 2.5mm² stranded wire capacity for connection of external CTs. Nominal rated input current 333mV a.c. Rms.

Maximum torque is 0.4Nm.

Accuracy

- Voltage 0.5% of range maximum
- Current 0.5% of nominal
- Frequency 0.2% of mid-frequency
- Power factor 1% of unity (0.01)
- Active power (W) ±1% of range maximum

- Reactive power (VAr)
- Apparent power (VA)
- Active energy (Wh)
 - Reactive energy (VARh)
- Total harmonic distortion
- Response time to step input

*Auxiliary Supply

Two-way fixed connector with 2.5mm² stranded wire capacity. 100 to 277V a.c. , 50/60Hz ±10% or 140 to 392V d.c. ±20%. Consumption < 10W.

Interfaces for External Monitoring

Three interfaces are provided:

- an RS485 communication channel that can be programmed for Modbus RTU protocol
- an output indicating real-time measured energy.(configurable)
- an pulse output 3200imp/kWh (not configurable)

The Modbus configuration (Baud rate etc.) and the pulse output assignments (kWh/kVArh) are configured through the Set-up screens.

±1% of range maximum

±1% of range maximum

1% up to 31st harmonic

1s, typical, to >99% of final reading, at50/60Hz.

Class 1 IEC 62053-21

Class 2 IEC62053-23

Pulse Output

The unit provides two pulse outputs. Both pulse outputs are passive type.

Pulse output 1 is configurable. The pulse output can be set to generate pulses to represent total kWh or kVArh.

The pulse constant can be set to generate 1 pulse per:

0.01 = 10 Wh/VArh

0.1 = 100 Wh/VArh

1 = 1 kWh/kVArh

10 = 10 kWh/kVArh

100 = 100 kWh/kVArh

1000=1000 kWh/kVArh

Pulse width: 200/100(default)/60ms

Pulse output 2 is non-configurable. It is fixed up with total kWh. The constant is 3200imp/kWh.

RS485 Output for Modbus RTU

For Modbus RTU, the following RS485 communication parameters can be configured from the Set-up menu:

Baud rate : 2400, 4800, 9600(default), 19200, 38400
Parity : none (default)/odd/even
Stop bits : 1 or 2
RS485 network address : nnn – 3-digit number, 001 to 247
Modbus™ Word order : Hi/Lo byte order is set automatically to normal or reverse.

It cannot be configured from the set-up menu.

Reference Conditions of Influence Quantities

Influence Quantities are variables that affect measurement errors to a minor degree. Accuracy is verified under nominal value (within the specified tolerance) of these conditions.

• Ambient temperature 23°C ±1°C Input frequency 50 or 60Hz ±2% Input waveform Sinusoidal (distortion factor < 0.005) Auxiliary supply voltage Nominal ±1% • Auxiliary supply frequency Nominal ±1% • Auxiliary supply waveform (if AC) Sinusoidal (distortion factor < 0.05) Magnetic field of external origin Terrestrial flux

Environment

- Operating temperature
- Storage temperature
- Relative humidity
- Altitude
- Warm up time
- Vibration
- Shock

-40°C to +70C -40°C to +70°C 0 to 95%, non-condensing Up to 2000m 5s

10Hz to 50Hz, IEC 60068-2-6, 2g 30g in 3 planes

Dimensions and Installation

Serial Number	Serial number of terminal block	Terminals Capacity	Recommended To Install Torque	
1	RS485/Pulse Terminals: 9、10、11、12、13、14	0.5~2.5mm²	0.2~0.4Nm	
2	Sampling Terminals: 1, 2, 3, 4, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20	1.5~2.5mm²	0.2~0.4Nm	

Add: No.52, Dongjin Road, Nanhu, Jiaxing, Zhejiang, 314001, China.

www.eastrongroup.com

Wiring diagram

Single Phase Two Wire 1CT

If you have any question, please feel free to contact our sales team.

Zhejiang Eastron Electronic Co., Ltd.

NNo.52, Dongjin Road, Nanhu,Jiaxing, Zhejiang, 314001, China Tel: +86-573-83698881 Fax: +86-573-83698883 Email: sales@eastrongroup.com www.eastrongroup.com

Add: No.52, Dongjin Road, Nanhu, Jiaxing, Zhejiang, 314001, China.

www.eastrongroup.com

Eastron Product specification

1. Product name: open and closing current transformer

2. Product specification: ESCT-TA16 120A/40mA

3. Main technical parameters:

Project	Symbol	Technical Parameter	Project	Symbol	Technical Parameter		
Service frequency	f	50/60Hz	Insulation strength	—	500M $\Omega/500V/min$		
Rated primary current	In	120A	Power frequency and pressure resistance	_	4KV / 1 mA / 1min (through the cable)		
Rated secondary current	Io	40mA	Working temperature	Та	-25°C ~+70°C		
Accuracy class	_	0.5	Storage temperature	Ts	-40°C ∼+85°C		
Number of core turns	Ι	1 turn	Degree of linearity	%	0.5		
Reference standards	GB 20840.2-2014 / IEC61869-2						

4. Primary, secondary and polar end definitions:

- 4.1 Primary definition of transformer: primary penetration input of transformer and secondary lead output.
- 4.2 Definition of the same name of primary and secondary leads: P1 into P2 and out of P2 of the transformer.
- 4.3 The electrical schematic diagram of the transformer is as follows.

5. Main production technical requirements of the transformer:

5.1 Shell color is black.

- 5.2 CT wire requirement: 2 * 0.3 mm², black and white (line arrangement), line length is 1.0m.
- 5.3 Please refer to the following figure for the overall dimensions

5.4 CT error requirements

Accurate level	Current Error±(%)				Phase Error \pm (')					
	At the following current				At the following current					
	0.01In	0.05In	0.2In	In	1.2In	0.01In	0.05In	0.2In	In	1.2In
0.5	0 ± 0.2	0 ± 0.2	0 ± 0.2	0 ± 0.2	0 ± 0.2	40 ± 15	37 ± 15	32 ± 15	30 ± 15	35 ± 15