Built-in Application Resiliency

———————————————

Allan Shone, Senior Systems Engineer at Deputy.

@CerealBoy




Being Resilient
What does it mean to be resilient?

e Being fault tolerant.

@CerealBoy



Being Resilient
What does it mean to be resilient?

e Being fault tolerant.

e Exhibiting consistent behaviour.

@CerealBoy



Being Resilient
What does it mean to be resilient?

e Being fault tolerant.
e Exhibiting consistent behaviour.

e Recovering from failure.

@CerealBoy



Being Resilient
What does it mean to be resilient?

e Being fault tolerant.
e Exhibiting consistent behaviour.
e Recovering from failure.

e (Comprehensively observable.

@CerealBoy



Being Resilient
What does it mean to be resilient?

e Being fault tolerant.

e Exhibiting consistent behaviour.
e Recovering from failure.

e (Comprehensively observable.

e Planned recovery from disasters.

@CerealBoy



Being Resilient
What does it mean to be resilient?

e Being fault tolerant.

e Exhibiting consistent behaviour.
e Recovering from failure.

e (Comprehensively observable.

e Planned recovery from disasters.

e Adapting to change.

@CerealBoy



Recovering from Disaster

@CerealBoy



Disaster Recovery

Preparing for the worst.

e Solid foundation to build upon.

@CerealBoy



Disaster Recovery

Preparing for the worst.

e Solid foundation to build upon.

e Ability to get back to basics when the unspeakable happens.

@CerealBoy

10



Disaster Recovery

Preparing for the worst.

e Solid foundation to build upon.
e Ability to get back to basics when the unspeakable happens.

e Heavy use of infrastructure as code.

@CerealBoy

11



Disaster Recovery

Preparing for the worst.

e Solid foundation to build upon.
e Ability to get back to basics when the unspeakable happens.
e Heavy use of infrastructure as code.

e Reproducible processes for all the details.

@CerealBoy

12



Disaster Recovery

Pr

eparing for the worst.

Solid foundation to build upon.

Ability to get back to basics when the unspeakable happens.
Heavy use of infrastructure as code.

Reproducible processes for all the details.

Provides scaling capabilities.

@CerealBoy

13



Moving Quickly

e Starting from disaster recovery allows for rapid growth.

@CerealBoy

14



Moving Quickly

e Starting from disaster recovery allows for rapid growth.

e Fresh eyes onboard smoother.

@CerealBoy

15



Moving Quickly

e Starting from disaster recovery allows for rapid growth.
e Fresh eyes onboard smoother.

e Full system replication.

@CerealBoy

16



Moving Quickly

e Starting from disaster recovery allows for rapid growth.
e Fresh eyes onboard smoother.
e Full system replication.

e (Component changes comprehensively testable.

@CerealBoy

17



Resilience in Disaster

e Starting fresh can be an option, if it’s available.

@CerealBoy

18



Resilience in Disaster

e Starting fresh can be an option, if it's available.

e Using the plan to prepare as disaster looms can prevent loss.

@CerealBoy

19



Resilience in Disaster

e Starting fresh can be an option, if it's available.
e Using the plan to prepare as disaster looms can prevent loss.

e With disaster as the guide, preparedness can be better achieved.

@CerealBoy

20



Managing Change

e Deployments can be a great facilitator.

@CerealBoy

21



Managing Change

e Deployments can be a great facilitator.

e Minimising time to change can be a big factor in maintaining resiliency.

@CerealBoy

22



Fault Tolerance

@CerealBoy

23



Being Tolerant

Gracefully handling downstream issues.

e Use patterns that enable this handling, such as circuit breakers.

@CerealBoy

24



Being Tolerant

Gracefully handling downstream issues.

e Use patterns that enable this handling, such as circuit breakers.

e Be mindful of usage patterns.

@CerealBoy

25



Being Tolerant

Gracefully handling downstream issues.

e Use patterns that enable this handling, such as circuit breakers.
e Be mindful of usage patterns.

e Respond appropriately for behaviour expectations.

@CerealBoy

26



Orchestration Help

Without changing the application itself?

e Using a service mesh.

@CerealBoy

27



Orchestration Help

Without changing the application itself?

e Using a service mesh.

e Using a load balancer.

@CerealBoy

28



Orchestration Help

Without changing the application itself?

e Using a service mesh.
e Using a load balancer.

e Using DNS.

@CerealBoy

29



Centralise Executions

e |[nternal libraries ease the implementation.

@CerealBoy

30



Centralise Executions

e |[nternal libraries ease the implementation.

e Set the right defaults that are tolerant within the system.

@CerealBoy

31



Centralise Executions

e Internal libraries ease the implementation.
e Set the right defaults that are tolerant within the system.

e Defining expectations on all components.

@CerealBoy

32



Centralise Executions

e |[nternal libraries ease the implementation.

e Set the right defaults that are tolerant within the system.
e Defining expectations on all components.

e Trade-off the edge-case with a general approach.

@CerealBoy

33



Centralise Executions

e |[nternal libraries ease the implementation.

e Set the right defaults that are tolerant within the system.

e Defining expectations on all components.
e Trade-off the edge-case with a general approach.

e (Good place for other patterns, like exponential backoff.

@CerealBoy

34



Recovering from Failure

@CerealBoy

35



Failure Happens

What to do about it?

e Again, set expectations.

@CerealBoy

36



Failure Happens

What to do about it?

e Again, set expectations.

e Internal services have the benefit of control, define and manage it.

@CerealBoy

37



Failure Happens

What to do about it?

e Again, set expectations.
e Internal services have the benefit of control, define and manage it.

e Buffers and caches can help.

@CerealBoy

38



Failure Happens

What to do about it?

e Again, set expectations.

e Internal services have the benefit of control, define and manage it.

e Buffers and caches can help.

e Be graceful with degradation.

@CerealBoy

39



Buffering

e Video is the prime example of this.

@CerealBoy

40



Buffering

e Video is the prime example of this.

e Validate the internal buffer system.

@CerealBoy

41



Buffering

e Video is the prime example of this.
e Validate the internal buffer system.

e (onsider a longer term solution, especially in the event of recurrence.

@CerealBoy

42



Buffering

e Video is the prime example of this.

e Validate the internal buffer system.

e (onsider a longer term solution, especially in the event of recurrence.

e Push things out of band where possible.

@CerealBoy

43



Out of band

e (atch up quicker, when there’s no traffic to worry about.

@CerealBoy

44



Out of band

e (atch up quicker, when there’s no traffic to worry about.
e Services continue to utilise the buffer, helping them to continue to be

high performing.

@CerealBoy

45



Out of band

e (atch up quicker, when there’s no traffic to worry about.
e Services continue to utilise the buffer, helping them to continue to be
high performing.

e Entire change of architecture.

@CerealBoy

46



Out of band

e (atch up quicker, when there’s no traffic to worry about.

e Services continue to utilise the buffer, helping them to continue to be
high performing.

e Entire change of architecture.

e Be mindful of things like duplication, however.

@CerealBoy

47



Behaving Consistently

48



Consistency

e Being consistent drives home the premise of reliability.

@CerealBoy

49



Consistency

e Being consistent drives home the premise of reliability.
e Resiliency is born out of the ability to remain consistent while under

duress.

@CerealBoy

50



Consistency

e Being consistent drives home the premise of reliability.
e Resiliency is born out of the ability to remain consistent while under
duress.

e Using a buffer is a great way to exhibit this.

@CerealBoy

51



Adaptation

When drastic measures are needed.

e Add on to a behaviour when required rather than change it.

@CerealBoy

52



Being Observable

@CerealBoy

53



Visibility
Proving the resiliency.

e Ensuring that everything is behaving as expected.

@CerealBoy

54



Visibility
Proving the resiliency.

e Ensuring that everything is behaving as expected.

e (Generate baselines that can be extrapolated from.

@CerealBoy

55



Visibility
Proving the resiliency.

e Ensuring that everything is behaving as expected.
e (Generate baselines that can be extrapolated from.

e (Gain an understanding of general reliability.

@CerealBoy

56



Feedback Loop

Self reliance.

e With data made available, systems can adapt.

@CerealBoy

57



Feedback Loop

Self reliance.

e With data made available, systems can adapt.

e Intelligent execution of required actions.

@CerealBoy

58



Resiliency



To Being Resilient!

e Manage expectations.

@CerealBoy

60



To Being Resilient!

e Manage expectations.

e Be graceful.

@CerealBoy

61



To Being Resilient!

e Manage expectations.
e Be graceful.

e Have the ability to move quickly.

@CerealBoy

62



To Being Resilient!

e Manage expectations.
e Be graceful.
e Have the ability to move quickly.

e Adapt as required.

@CerealBoy

63



Thank you!



