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What does it mean to be resilient?

● Being fault tolerant.

● Exhibiting consistent behaviour.

● Recovering from failure.

● Comprehensively observable.

● Planned recovery from disasters.

● Adapting to change.
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Recovering from Disaster



Preparing for the worst.

● Solid foundation to build upon.
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Preparing for the worst.

● Solid foundation to build upon.

● Ability to get back to basics when the unspeakable happens.

● Heavy use of infrastructure as code.

● Reproducible processes for all the details.

● Provides scaling capabilities.

Disaster Recovery
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● Starting from disaster recovery allows for rapid growth.

Moving Quickly
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● Starting from disaster recovery allows for rapid growth.

● Fresh eyes onboard smoother.

● Full system replication.

● Component changes comprehensively testable.
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● Starting fresh can be an option, if it’s available.

Resilience in Disaster
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● Starting fresh can be an option, if it’s available.

● Using the plan to prepare as disaster looms can prevent loss.

● With disaster as the guide, preparedness can be better achieved.

Resilience in Disaster
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● Deployments can be a great facilitator.

Managing Change
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● Deployments can be a great facilitator.

● Minimising time to change can be a big factor in maintaining resiliency.

Managing Change
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Fault Tolerance



Gracefully handling downstream issues.

● Use patterns that enable this handling, such as circuit breakers.
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Gracefully handling downstream issues.

● Use patterns that enable this handling, such as circuit breakers.

● Be mindful of usage patterns.

● Respond appropriately for behaviour expectations.

Being Tolerant
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Without changing the application itself?

● Using a service mesh.

Orchestration Help
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Without changing the application itself?

● Using a service mesh.

● Using a load balancer.

● Using DNS.

Orchestration Help
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● Internal libraries ease the implementation.

Centralise Executions
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● Internal libraries ease the implementation.

● Set the right defaults that are tolerant within the system.

● Defining expectations on all components.

● Trade-off the edge-case with a general approach.

● Good place for other patterns, like exponential backoff.

Centralise Executions
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Recovering from Failure



What to do about it?

● Again, set expectations.

Failure Happens
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What to do about it?

● Again, set expectations.

● Internal services have the benefit of control, define and manage it.

● Buffers and caches can help.

● Be graceful with degradation.

Failure Happens
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● Video is the prime example of this.

Buffering
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● Video is the prime example of this.

● Validate the internal buffer system.

● Consider a longer term solution, especially in the event of recurrence.

● Push things out of band where possible.

Buffering
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● Catch up quicker, when there’s no traffic to worry about.
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● Catch up quicker, when there’s no traffic to worry about.

● Services continue to utilise the buffer, helping them to continue to be 

high performing.

● Entire change of architecture.

● Be mindful of things like duplication, however.

Out of band
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Behaving Consistently



● Being consistent drives home the premise of reliability.
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● Being consistent drives home the premise of reliability.

● Resiliency is born out of the ability to remain consistent while under 

duress.

● Using a buffer is a great way to exhibit this.

Consistency
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When drastic measures are needed.

● Add on to a behaviour when required rather than change it.

Adaptation
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Being Observable



Proving the resiliency.

● Ensuring that everything is behaving as expected.

Visibility
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Proving the resiliency.

● Ensuring that everything is behaving as expected.

● Generate baselines that can be extrapolated from.

● Gain an understanding of general reliability.

Visibility
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Self reliance.

● With data made available, systems can adapt.

Feedback Loop
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Self reliance.

● With data made available, systems can adapt.

● Intelligent execution of required actions.

Feedback Loop
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Resiliency



● Manage expectations.

To Being Resilient!
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● Manage expectations.

● Be graceful.

● Have the ability to move quickly.

● Adapt as required.

To Being Resilient!
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Thank you!
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