
Built-in Application Resiliency

Allan Shone, Senior Systems Engineer at Deputy.

@CerealBoy



What does it mean to be resilient?

● Being fault tolerant.

Being Resilient

2
@CerealBoy



What does it mean to be resilient?

● Being fault tolerant.

● Exhibiting consistent behaviour.

Being Resilient

3
@CerealBoy



What does it mean to be resilient?

● Being fault tolerant.

● Exhibiting consistent behaviour.

● Recovering from failure.

Being Resilient

4
@CerealBoy



What does it mean to be resilient?

● Being fault tolerant.

● Exhibiting consistent behaviour.

● Recovering from failure.

● Comprehensively observable.

Being Resilient

5
@CerealBoy



What does it mean to be resilient?

● Being fault tolerant.

● Exhibiting consistent behaviour.

● Recovering from failure.

● Comprehensively observable.

● Planned recovery from disasters.

Being Resilient

6
@CerealBoy



What does it mean to be resilient?

● Being fault tolerant.

● Exhibiting consistent behaviour.

● Recovering from failure.

● Comprehensively observable.

● Planned recovery from disasters.

● Adapting to change.

Being Resilient

7
@CerealBoy



@CerealBoy 8

Recovering from Disaster



Preparing for the worst.

● Solid foundation to build upon.

Disaster Recovery

9
@CerealBoy



Preparing for the worst.

● Solid foundation to build upon.

● Ability to get back to basics when the unspeakable happens.

Disaster Recovery

10
@CerealBoy



Preparing for the worst.

● Solid foundation to build upon.

● Ability to get back to basics when the unspeakable happens.

● Heavy use of infrastructure as code.

Disaster Recovery

11
@CerealBoy



Preparing for the worst.

● Solid foundation to build upon.

● Ability to get back to basics when the unspeakable happens.

● Heavy use of infrastructure as code.

● Reproducible processes for all the details.

Disaster Recovery

12
@CerealBoy



Preparing for the worst.

● Solid foundation to build upon.

● Ability to get back to basics when the unspeakable happens.

● Heavy use of infrastructure as code.

● Reproducible processes for all the details.

● Provides scaling capabilities.

Disaster Recovery

13
@CerealBoy



● Starting from disaster recovery allows for rapid growth.

Moving Quickly

14
@CerealBoy



● Starting from disaster recovery allows for rapid growth.

● Fresh eyes onboard smoother.

Moving Quickly

15
@CerealBoy



● Starting from disaster recovery allows for rapid growth.

● Fresh eyes onboard smoother.

● Full system replication.

Moving Quickly

16
@CerealBoy



● Starting from disaster recovery allows for rapid growth.

● Fresh eyes onboard smoother.

● Full system replication.

● Component changes comprehensively testable.

Moving Quickly

17
@CerealBoy



● Starting fresh can be an option, if it’s available.

Resilience in Disaster

18
@CerealBoy



● Starting fresh can be an option, if it’s available.

● Using the plan to prepare as disaster looms can prevent loss.

Resilience in Disaster

19
@CerealBoy



● Starting fresh can be an option, if it’s available.

● Using the plan to prepare as disaster looms can prevent loss.

● With disaster as the guide, preparedness can be better achieved.

Resilience in Disaster

20
@CerealBoy



● Deployments can be a great facilitator.

Managing Change

21
@CerealBoy



● Deployments can be a great facilitator.

● Minimising time to change can be a big factor in maintaining resiliency.

Managing Change

22
@CerealBoy



@CerealBoy 23

Fault Tolerance



Gracefully handling downstream issues.

● Use patterns that enable this handling, such as circuit breakers.

Being Tolerant

24
@CerealBoy



Gracefully handling downstream issues.

● Use patterns that enable this handling, such as circuit breakers.

● Be mindful of usage patterns.

Being Tolerant

25
@CerealBoy



Gracefully handling downstream issues.

● Use patterns that enable this handling, such as circuit breakers.

● Be mindful of usage patterns.

● Respond appropriately for behaviour expectations.

Being Tolerant

26
@CerealBoy



Without changing the application itself?

● Using a service mesh.

Orchestration Help

27
@CerealBoy



Without changing the application itself?

● Using a service mesh.

● Using a load balancer.

Orchestration Help

28
@CerealBoy



Without changing the application itself?

● Using a service mesh.

● Using a load balancer.

● Using DNS.

Orchestration Help

29
@CerealBoy



● Internal libraries ease the implementation.

Centralise Executions

30
@CerealBoy



● Internal libraries ease the implementation.

● Set the right defaults that are tolerant within the system.

Centralise Executions

31
@CerealBoy



● Internal libraries ease the implementation.

● Set the right defaults that are tolerant within the system.

● Defining expectations on all components.

Centralise Executions

32
@CerealBoy



● Internal libraries ease the implementation.

● Set the right defaults that are tolerant within the system.

● Defining expectations on all components.

● Trade-off the edge-case with a general approach.

Centralise Executions

33
@CerealBoy



● Internal libraries ease the implementation.

● Set the right defaults that are tolerant within the system.

● Defining expectations on all components.

● Trade-off the edge-case with a general approach.

● Good place for other patterns, like exponential backoff.

Centralise Executions

34
@CerealBoy



@CerealBoy 35

Recovering from Failure



What to do about it?

● Again, set expectations.

Failure Happens

36
@CerealBoy



What to do about it?

● Again, set expectations.

● Internal services have the benefit of control, define and manage it.

Failure Happens

37
@CerealBoy



What to do about it?

● Again, set expectations.

● Internal services have the benefit of control, define and manage it.

● Buffers and caches can help.

Failure Happens

38
@CerealBoy



What to do about it?

● Again, set expectations.

● Internal services have the benefit of control, define and manage it.

● Buffers and caches can help.

● Be graceful with degradation.

Failure Happens

39
@CerealBoy



● Video is the prime example of this.

Buffering

40
@CerealBoy



● Video is the prime example of this.

● Validate the internal buffer system.

Buffering

41
@CerealBoy



● Video is the prime example of this.

● Validate the internal buffer system.

● Consider a longer term solution, especially in the event of recurrence.

Buffering

42
@CerealBoy



● Video is the prime example of this.

● Validate the internal buffer system.

● Consider a longer term solution, especially in the event of recurrence.

● Push things out of band where possible.

Buffering

43
@CerealBoy



● Catch up quicker, when there’s no traffic to worry about.

Out of band

44
@CerealBoy



● Catch up quicker, when there’s no traffic to worry about.

● Services continue to utilise the buffer, helping them to continue to be 

high performing.

Out of band

45
@CerealBoy



● Catch up quicker, when there’s no traffic to worry about.

● Services continue to utilise the buffer, helping them to continue to be 

high performing.

● Entire change of architecture.

Out of band

46
@CerealBoy



● Catch up quicker, when there’s no traffic to worry about.

● Services continue to utilise the buffer, helping them to continue to be 

high performing.

● Entire change of architecture.

● Be mindful of things like duplication, however.

Out of band

47
@CerealBoy



@CerealBoy 48

Behaving Consistently



● Being consistent drives home the premise of reliability.

Consistency

49
@CerealBoy



● Being consistent drives home the premise of reliability.

● Resiliency is born out of the ability to remain consistent while under 

duress.

Consistency

50
@CerealBoy



● Being consistent drives home the premise of reliability.

● Resiliency is born out of the ability to remain consistent while under 

duress.

● Using a buffer is a great way to exhibit this.

Consistency

51
@CerealBoy



When drastic measures are needed.

● Add on to a behaviour when required rather than change it.

Adaptation

52
@CerealBoy



@CerealBoy 53

Being Observable



Proving the resiliency.

● Ensuring that everything is behaving as expected.

Visibility

54
@CerealBoy



Proving the resiliency.

● Ensuring that everything is behaving as expected.

● Generate baselines that can be extrapolated from.

Visibility

55
@CerealBoy



Proving the resiliency.

● Ensuring that everything is behaving as expected.

● Generate baselines that can be extrapolated from.

● Gain an understanding of general reliability.

Visibility

56
@CerealBoy



Self reliance.

● With data made available, systems can adapt.

Feedback Loop

57
@CerealBoy



Self reliance.

● With data made available, systems can adapt.

● Intelligent execution of required actions.

Feedback Loop

58
@CerealBoy



@CerealBoy

Resiliency



● Manage expectations.

To Being Resilient!

60
@CerealBoy



● Manage expectations.

● Be graceful.

To Being Resilient!

61
@CerealBoy



● Manage expectations.

● Be graceful.

● Have the ability to move quickly.

To Being Resilient!

62
@CerealBoy



● Manage expectations.

● Be graceful.

● Have the ability to move quickly.

● Adapt as required.

To Being Resilient!

63
@CerealBoy



Thank you!

@CerealBoy


