Built-in Application Resiliency

———————————————

Allan Shone, Senior Systems Engineer at Deputy.
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Being Resilient
What does it mean to be resilient?

e Being fault tolerant.

e Exhibiting consistent behaviour.
e Recovering from failure.

e (Comprehensively observable.

e Planned recovery from disasters.

e Adapting to change.

@CerealBoy



Recovering from Disaster
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Disaster Recovery

Preparing for the worst.

e Solid foundation to build upon.
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Disaster Recovery

Preparing for the worst.

e Solid foundation to build upon.
e Ability to get back to basics when the unspeakable happens.
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Disaster Recovery

Pr

eparing for the worst.

Solid foundation to build upon.

Ability to get back to basics when the unspeakable happens.
Heavy use of infrastructure as code.

Reproducible processes for all the details.

Provides scaling capabilities.
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Moving Quickly

e Starting from disaster recovery allows for rapid growth.
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Moving Quickly

e Starting from disaster recovery allows for rapid growth.
e Fresh eyes onboard smoother.
e Full system replication.

e (Component changes comprehensively testable.
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Resilience in Disaster

e Starting fresh can be an option, if it’s available.
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Resilience in Disaster

e Starting fresh can be an option, if it's available.
e Using the plan to prepare as disaster looms can prevent loss.

e With disaster as the guide, preparedness can be better achieved.
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Managing Change

e Deployments can be a great facilitator.
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Managing Change

e Deployments can be a great facilitator.

e Minimising time to change can be a big factor in maintaining resiliency.
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Fault Tolerance
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Being Tolerant

Gracefully handling downstream issues.

e Use patterns that enable this handling, such as circuit breakers.
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Gracefully handling downstream issues.

e Use patterns that enable this handling, such as circuit breakers.

e Be mindful of usage patterns.
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Being Tolerant

Gracefully handling downstream issues.

e Use patterns that enable this handling, such as circuit breakers.
e Be mindful of usage patterns.

e Respond appropriately for behaviour expectations.
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Orchestration Help

Without changing the application itself?

e Using a service mesh.
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Orchestration Help

Without changing the application itself?

e Using a service mesh.
e Using a load balancer.

e Using DNS.
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Centralise Executions

e |[nternal libraries ease the implementation.
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Centralise Executions

e |[nternal libraries ease the implementation.

e Set the right defaults that are tolerant within the system.

e Defining expectations on all components.
e Trade-off the edge-case with a general approach.

e (Good place for other patterns, like exponential backoff.
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Recovering from Failure
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Failure Happens

What to do about it?

e Again, set expectations.
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Failure Happens

What to do about it?

e Again, set expectations.

e Internal services have the benefit of control, define and manage it.

e Buffers and caches can help.

e Be graceful with degradation.
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Buffering

e Video is the prime example of this.
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Buffering

e Video is the prime example of this.

e Validate the internal buffer system.

e (onsider a longer term solution, especially in the event of recurrence.

e Push things out of band where possible.
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Out of band

e (atch up quicker, when there’s no traffic to worry about.
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high performing.
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Out of band

e (atch up quicker, when there’s no traffic to worry about.

e Services continue to utilise the buffer, helping them to continue to be
high performing.

e Entire change of architecture.

e Be mindful of things like duplication, however.
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Behaving Consistently

48



Consistency

e Being consistent drives home the premise of reliability.
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Consistency

e Being consistent drives home the premise of reliability.
e Resiliency is born out of the ability to remain consistent while under

duress.
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Consistency

e Being consistent drives home the premise of reliability.
e Resiliency is born out of the ability to remain consistent while under
duress.

e Using a buffer is a great way to exhibit this.
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Adaptation

When drastic measures are needed.

e Add on to a behaviour when required rather than change it.
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Being Observable

@CerealBoy

53



Visibility
Proving the resiliency.

e Ensuring that everything is behaving as expected.
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Visibility
Proving the resiliency.

e Ensuring that everything is behaving as expected.
e (Generate baselines that can be extrapolated from.

e (Gain an understanding of general reliability.
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Feedback Loop

Self reliance.

e With data made available, systems can adapt.
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Feedback Loop

Self reliance.

e With data made available, systems can adapt.

e Intelligent execution of required actions.
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Resiliency



To Being Resilient!

e Manage expectations.
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e Have the ability to move quickly.
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To Being Resilient!

e Manage expectations.
e Be graceful.
e Have the ability to move quickly.

e Adapt as required.
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Thank you!



