
Improving a Distributed System 
Post-Incident

Julius Zerwick



Background

○ Software Engineer at DigitalOcean
○ Cloud provider with a variety of offerings
○ Droplets (VPS)
○ VPC, Load Balancers, Firewalls
○ Managed Databases, Spaces and Volume Storage, Managed K8s

○ Software-Defined Networking
○ IP Address Management System (IPAM)

○ Microservices, Golang, MySQL, K8s, Open vSwitch

○ Prometheus, Grafana, LightStep, Kibana

○ Prior to DigitalOcean, no experience being on-call



Goal of the talk

○ Detail a long running incident at DigitalOcean

○ Describe experience as a first-time responder

○ Explore takeaways and improvements

○ Personal learnings



IPAM = IP Address Management

○ Microservice managing every IP Address at DigitalOcean

○ In the critical path for our Droplet (VPS) creates and deletes

○ Up and running 24/7

○ ~4.2 million actively assigned IP Addresses

○ ~390K IP Address assignments every day

○ Relatively new service - about 9 months in production





Onto the incident!

6



It all started with a page...AT 4AM!

○ I get paged at 4am on the last day of my on-call shift.

○ Issue: Droplet create events are slow to complete and eventually 
erroring out.

○ In other words, lots of users were trying to create Droplets and our 
system couldn’t complete their requests.

○ First responding team was the Event Scheduler team, but their service 
was fine -> page sent out to IPAM team

○ The real issue: IPAM couldn’t finish allocating an IP Address for each 
new Droplet to be created -> create event couldn’t be completed



Initial investigations

○ Using our monitoring tools, could see that IPAM was experiencing high 
latency in completing requests to allocate an IP for a Droplet

○ Usual latency for allocating an IP was 40 milliseconds - 2 seconds

○ We were seeing latencies > 30 sec

○ 50 - 100% error rate for allocating IPs

○ For periods of time we couldn’t create any Droplets for customers



9

Usual latency



10

Latency during incident



11

LightStep capture



Error rate was through the roof





What was causing the issue?

○ IPAM works with Alpha, a MySQL database cluster

○ Database is shared across the system architecture
○ Many services use Alpha at the same time as IPAM

○ Overnight, several large queries were run by other services which 
increased the load on Alpha 

○ Several of these queries were run on the writer leader MySQL node when 
they didn’t need to be

○ This impacted Alpha’s ability to complete IPAM’s transactions and thus 
create events, leading to failed creates



How do we fix this?

○ Mitigations:
○ disable canaries to lessen load on Alpha
○ move offending late-night query to 

read-only
○ Not a long term solution

○ These reduced the load on Alpha and 
Droplet create events were recovering

○ IPAM runs database transactions at 
the level of Repeatable Read

○ Changing to Read Committed may be 
more performant isolation level for our 
situation



Quick patch?

○ Fix: Change the isolation level for allocating IPs from Repeatable Read 
to Read Committed

○ DB operations are a critical area of IPAM

○ Needed to ensure that the change wouldn’t cause a worse situation

○ Our performance might improve, but what if the change caused issues 
with data stored in the database?

○ Team decision: No tests, no patch

○ The rest of the day involved thoroughly testing our patch and checking 
for any issues



Testing looked good!

○ After running several levels of tests, we concluded that the patch was 
safe to merge & deploy to production
○ Load tests
○ Volume tests
○ Correctness tests

○ Things seemed to improve! For the rest of the day, IPAM ran smoothly.

○ I was officially off call and “handed off” the pager.

○ Incident status was moved to “monitoring”



Unfortunately, the next day we got another alert

18







New discoveries

○ Combination of factors at play causing further create delays

○ Allocation requests are restricted by a distributed semaphore

○ When IPAM has to allocate a bunch of IPs at once, things fall apart
○ Huge wave of create events from certain customers
○ Overnight queries by other services

○ Database can’t complete the IPAM operations fast enough

○ IPAM retries operations if they fail, which make things worse

○ Conclusion: IPAM had become too sensitive to issues with our database



Solution?

○ We changed our retry logic to retry sooner
○ Before would retry after 100ms and increase exponentially until reaching 20s
○ Now we only retry three times at 100ms, 1s, and 10s
○ If it fails on the third retry, we cancel the transaction and return an error

○ Optimized our SQL queries to create fewer unnecessary locks

○ Reordered the execution of our SQL queries
○ 3-4 different queries are executed to allocate a single IP address
○ Upon review, determined the ordering was no longer optimal
○ New reordering ensured that in some cases we only need to execute 1-2 queries

○ Improved our monitoring to get a much clearer picture of our system

○ These efforts were made over ~9 days



Culmination of our efforts











Monitoring Changes

○ Before this incident, our monitoring essentially consisted of: 
○ Metrics scrapped by Prometheus
○ Grafana dashboards
○ Kibana queries written on the fly
○ Distributed tracing with LightStep

○ We learned that we needed more visibility into our database 
operations and error rates -> Kibana dashboards

○ Can view status at a glance
○ Faster feedback loop when testing performance and changes

○ Dashboards are more informative during incidents

○ Enable every team member to be more effective



Testing Changes

○ Before this incident, our testing story was lacking

○ We had some automation to load and stress test IPAM, but needed to 
make it part of our process for major changes and releases
○ Couples really well with detailed monitoring and dashboards

○ You can only tolerate the faults you anticipate and test
○ Load test 
○ Volume test
○ Test to induce deadlocks with MySQL and observe system

○ Testing needs to be a vital piece of your system’s development

○ Invest in automation and exploring your system’s weak spots



Teamwork + Blameless Culture

○ This was a high stress situation, but there was no finger pointing.

○ Several teams across the organization rallied together, identified the 
issues, and implemented the fixes.

○ Internal PIR process to document and learn from incident

○ Software is hard at times, and no one can predict every incident that 
could occur. If an incident occurs, it’s regarded to be a process issue:
○ Code review
○ Engineering practices
○ Reliability work
○ Documentation



Takeaways

○ Good monitoring makes distributed systems easier to build, maintain, 
and debug

○ Test your patch even when under pressure

○ Document major technical and design decisions for future transitions

○ Informative dashboards benefit everyone and save precious time 



Takeaways

○ When working on big systems, ensure that you’re setting time aside for:
○ reliability
○ maintainability
○ monitoring

○ Advocate for a blameless culture and always learn from incidents

○ You’ll never avoid every bad scenario or late night page, but good 
engineering practices & improvements can decrease their likelihood

○ Have your metrics, SLOs, and SLAs drive your reliability efforts



Personal Learnings

○ Observability

○ System hotspots

○ Failure modes

○ Documentation

○ Test automation

○ Engineering quality



Thanks! Questions?

@JuliusZerwick


