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o Background

o Software Engineer at DigitalOcean
o  Cloud provider with a variety of offerings
o  Droplets (VPS)
o VPC, Load Balancers, Firewalls
o Managed Databases, Spaces and Volume Storage, Managed K8s

o Software-Defined Networking
o |P Address Management System (IPAM)

o Microservices, Golang, MySQL, K8s, Open vSwitch
o Prometheus, Grafana, LightStep, Kibana

o Prior to DigitalOcean, no experience being on-call



oft Goal of the talk

o Detail a long running incident at DigitalOcean
o Describe experience as a first-time responder
o Explore takeaways and improvements

o Personal learnings
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o IPAM = IP Address Management

Microservice managing every IP Address at DigitalOcean

In the critical path for our Droplet (VPS) creates and deletes
Up and running 24/7

~4.2 million actively assigned IP Addresses

~390K IP Address assignments every day

Relatively new service - about 9 months in production
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Onto the incident!



o It all started with a page...AT 4AM!

o | get paged at 4am on the last day of my on-call shift.

o Issue: Droplet create events are slow to complete and eventually
erroring out.

o In other words, lots of users were trying to create Droplets and our
system couldn’t complete their requests.

o First responding team was the Event Scheduler team, but their service
was fine -> page sent out to IPAM team

o The real issue: IPAM couldn’t finish allocating an IP Address for each
new Droplet to be created -> create event couldn’t be completeg




o Initial investigations

o Using our monitoring tools, could see that IPAM was experiencing high
latency in completing requests to allocate an IP for a Droplet

o Usual latency for allocating an IP was 40 milliseconds - 2 seconds
o We were seeing latencies > 30 sec
o 50 -100% error rate for allocating IPs

o For periods of time we couldn’t create any Droplets for customers



’) Usual latency
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Latency during incident
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LightStep capture

Time Series @

@ 150000ms 1.27s M.7s 9775 m 07:54:1
p50 p95 p99 p99.9 10/28
125000ms
- 100000ms
Q
c
2
8 75000ms
50000ms
25000ms
2.0 ops/sec
° Rate
T 2.5o0ps/sec
@
0 ops/sec
0.0%
Error
X 1%
&

0% | | /\/\/\/\/\/\ /\ A__A P A/\ /

15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 28 Oct 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00



Error rate was through the roof
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O What was causing the issue?

o IPAM works with Alpha, a MySQL database cluster

o Database is shared across the system architecture
o Many services use Alpha at the same time as IPAM

o Overnight, several large queries were run by other services which
increased the load on Alpha

o Several of these queries were run on the writer leader MySQL node when
they didn’t need to be

o This impacted Alpha’s ability to complete IPAM’s transactions and thus
create events, leading to failed creates



" How do we fix this?

o Mitigations:

o disable canaries to lessen load on Alpha

o move offending late-night query to
read-only

o Not a long term solution

o These reduced the load on Alpha and
Droplet create events were recovering

o IPAM runs database transactions at
the level of Repeatable Read
o Changing to Read Committed may be

more performant isolation level for our
situation
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f-) Quick patch?

o Fix: Change the isolation level for allocating IPs from Repeatable Read
to Read Committed

o DB operations are a critical area of IPAM

o Needed to ensure that the change wouldn’t cause a worse situation

o Our performance might improve, but what if the change caused issues
with data stored in the database?

o Team decision: No tests, no patch

o The rest of the day involved thoroughly testing our patch and checking
for any issues P



f.) Testing looked good!

o After running several levels of tests, we concluded that the patch was

safe to merge & deploy to production
o Load tests
o Volume tests
o Correctness tests

o Things seemed to improve! For the rest of the day, IPAM ran smoothly.
o | was officially off call and “handed off” the pager.

o Incident status was moved to “monitoring”



Unfortunately, the next day we got another alert
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4 150000ms

125000ms

100000ms

Latency

75000ms

50000ms

2 ops/sec

Rate

0 ops/sec

20%

Err %

0% !
28 Oct

15:57:28
11/03

JAL )

1.1 ops/sec
Rate

WW

0.0%
Error

8 Nov



New discoveries

o Combination of factors at play causing further create delays
o Allocation requests are restricted by a distributed semaphore

o  When IPAM has to allocate a bunch of IPs at once, things fall apart
o Huge wave of create events from certain customers
o Overnight queries by other services

o Database can’t complete the IPAM operations fast enough
o IPAM retries operations if they fail, which make things worse
o Conclusion: IPAM had become too sensitive to issues with our database



f-) Solution?

o We changed our retry logic to retry sooner

o Before would retry after 100ms and increase exponentially until reaching 20s
o Now we only retry three times at 100ms, 1s, and 10s
o Ifit fails on the third retry, we cancel the transaction and return an error

o Optimized our SQL queries to create fewer unnecessary locks

o Reordered the execution of our SQL queries
o 3-4 different queries are executed to allocate a single IP address
o Upon review, determined the ordering was no longer optimal
o New reordering ensured that in some cases we only need to execute 1-2 queries

o Improved our monitoring to get a much clearer picture of our system

o These efforts were made over V9 days ®



9 Culmination of our efforts
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IPAM deadlocks by query G IPAM deadlocks by user
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IPAM errors by retry count
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IPAM errors by type
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IPAM deadlocks by user
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f.) Monitoring Changes

o Before this incident, our monitoring essentially consisted of:
o Metrics scrapped by Prometheus
o Grafana dashboards
o Kibana queries written on the fly
o Distributed tracing with LightStep

o We learned that we needed more visibility into our database

operations and error rates -> Kibana dashboards
o Can view status at a glance
o Faster feedback loop when testing performance and changes

o Dashboards are more informative during incidents

o Enable every team member to be more effective



f.) Testing Changes

o Before this incident, our testing story was lacking

o We had some automation to load and stress test IPAM, but needed to

make it part of our process for major changes and releases
o Couples really well with detailed monitoring and dashboards

o You can only tolerate the faults you anticipate and test

o Load test
o Volume test
o Test to induce deadlocks with MySQL and observe system

o Testing needs to be a vital piece of your system’s development

o Invest in automation and exploring your system’s weak spots



9 Teamwork + Blameless Culture

o This was a high stress situation, but there was no finger pointing.

o Several teams across the organization rallied together, identified the
issues, and implemented the fixes.

o Internal PIR process to document and learn from incident

o Software is hard at times, and no one can predict every incident that

could occur. If an incident occurs, it's regarded to be a process issue:
o Code review
o Engineering practices
o Reliability work
o Documentation



.’_.) Takeaways

o Good monitoring makes distributed systems easier to build, maintain,
and debug

o Test your patch even when under pressure
o Document major technical and design decisions for future transitions

o Informative dashboards benefit everyone and save precious time



f.) Takeaways

o When working on big systems, ensure that you're setting time aside for:
o reliability
© maintainability
© monitoring

o Advocate for a blameless culture and always learn from incidents

o You’'ll never avoid every bad scenario or late night page, but good
engineering practices & improvements can decrease their likelihood

o Have your metrics, SLOs, and SLAs drive your reliability efforts



‘._. ) Personal Learnings

o Observability

o System hotspots
o Failure modes

o Documentation

o Test automation

o Engineering quality



Thanks! Questions?
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