Improving a Distributed System
Post-Incident

Julius Zerwick
@

¢

Y

A

o Background

o Software Engineer at DigitalOcean
o Cloud provider with a variety of offerings
o Droplets (VPS)
o VPC, Load Balancers, Firewalls
o Managed Databases, Spaces and Volume Storage, Managed K8s

o Software-Defined Networking
o |P Address Management System (IPAM)

o Microservices, Golang, MySQL, K8s, Open vSwitch
o Prometheus, Grafana, LightStep, Kibana

o Prior to DigitalOcean, no experience being on-call

oft Goal of the talk

o Detail a long running incident at DigitalOcean
o Describe experience as a first-time responder
o Explore takeaways and improvements

o Personal learnings

O

©)

o IPAM = IP Address Management

Microservice managing every IP Address at DigitalOcean

In the critical path for our Droplet (VPS) creates and deletes
Up and running 24/7

~4.2 million actively assigned IP Addresses

~390K IP Address assignments every day

Relatively new service - about 9 months in production

Y

Public
API

Droplet —_— >

Event Queuer &
Processor

Worker

L\

IPAM

\—L Rabbit MQ

Onto the incident!

o It all started with a page...AT 4AM!

o | get paged at 4am on the last day of my on-call shift.

o Issue: Droplet create events are slow to complete and eventually
erroring out.

o In other words, lots of users were trying to create Droplets and our
system couldn’t complete their requests.

o First responding team was the Event Scheduler team, but their service
was fine -> page sent out to IPAM team

o The real issue: IPAM couldn’t finish allocating an IP Address for each
new Droplet to be created -> create event couldn’t be completeg

o Initial investigations

o Using our monitoring tools, could see that IPAM was experiencing high
latency in completing requests to allocate an IP for a Droplet

o Usual latency for allocating an IP was 40 milliseconds - 2 seconds
o We were seeing latencies > 30 sec
o 50 -100% error rate for allocating IPs

o For periods of time we couldn’t create any Droplets for customers

’) Usual latency

RPC Latency (99th) v

7 seconds
6 seconds

5 seconds

4 seconds [

3 seconds

2 seconds

1 second

0 seconds
10:00 10:30 11:00 11:30 1200 1230 1300 1330 1400 1430 15:00 1530 16:00 16:30 17.00 17:30 1800 18:30 19:00 19:30 20:00 20:30 21:00 21:30

min max ava current

Latency during incident

35 seconds

30 seconds

25 seconds - |

20 seconds ! H

15 seconds {

10 seconds

5 seconds

0 seconds -
02:00 02:10

== AllocatelP
== CleanupStalelPsReservedForUser
== GetActiveURNForlPs
== GetDetailsForlP
GetFreelPsCount
GetlPCapacity
GetlPsForURNs
Getl2ZoneForUser

GetOrphanedIPv4Addresses

RPC Latency (99th)

03:20 03:30 03:40 03:50 04:00 04:10 04:20
]

12 seconds, 922 milliseconds

7 milliseconds

63 milliseconds
16 seconds, 302 milliseconds
35 milliseconds
59 milliseconds

4 seconds, 65 milli d

04:30 04:40
max

32 seconds, 768 milliseconds

31 milliseconds

727 milliseconds
32 seconds, 604 milliseconds
130 milliseconds
424 milliseconds

32 seconds, 194 milliseconds

04:50 05:00 05:10

avg

32 seconds, 538 milliseconds

15 milliseconds

162 milliseconds

31 seconds, 565 milliseconds
51 milliseconds

241 milliseconds

19 seconds, 87 milliseconds

05:20 05:30
current

32 seconds, 768 milliseconds

127 milliseconds

46 milliseconds

252 milliseconds

LightStep capture

Time Series @

@ 150000ms 1.27s M.7s 9775 m 07:54:1
p50 p95 p99 p99.9 10/28
125000ms
- 100000ms
Q
c
2
8 75000ms
50000ms
25000ms
2.0 ops/sec
° Rate
T 2.5o0ps/sec
@
0 ops/sec
0.0%
Error
X 1%
&

0% | | /\/\/\/\/\/\ /\ A__A P A/\ /

15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00 28 Oct 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00

Error rate was through the roof

RPC error rate (%)
120%
100%
80%
60%
40%
20%
\ A
| |
| |
ox YV
02:00 02:10 03:50 04:00 04:10 04:20 04:30 04:40 04:50 05:00 05:10 05:30
min max avg current
== {method="AllocatelP"} 0% 100% 24% 0%
== {method="GetDetailsForlP"}
== {method="GetIPsForURNs"} 0% 0% 0% 0%
== {method="ReleaselP"}

0% 100% 2% 0%

Y

Public
API

Droplet

A

Event Queuer &
Processor

Worker

IPAM

u Rabbit MQ

O What was causing the issue?

o IPAM works with Alpha, a MySQL database cluster

o Database is shared across the system architecture
o Many services use Alpha at the same time as IPAM

o Overnight, several large queries were run by other services which
increased the load on Alpha

o Several of these queries were run on the writer leader MySQL node when
they didn’t need to be

o This impacted Alpha’s ability to complete IPAM’s transactions and thus
create events, leading to failed creates

" How do we fix this?

o Mitigations:

o disable canaries to lessen load on Alpha

o move offending late-night query to
read-only

o Not a long term solution

o These reduced the load on Alpha and
Droplet create events were recovering

o IPAM runs database transactions at
the level of Repeatable Read
o Changing to Read Committed may be

more performant isolation level for our
situation

High +

Medium

Performance

Low -+

»
L

Read
uncommitted

Read

committed

Securily

}
Repeatable

Read

L
Serializable

f-) Quick patch?

o Fix: Change the isolation level for allocating IPs from Repeatable Read
to Read Committed

o DB operations are a critical area of IPAM

o Needed to ensure that the change wouldn’t cause a worse situation

o Our performance might improve, but what if the change caused issues
with data stored in the database?

o Team decision: No tests, no patch

o The rest of the day involved thoroughly testing our patch and checking
for any issues P

f.) Testing looked good!

o After running several levels of tests, we concluded that the patch was

safe to merge & deploy to production
o Load tests
o Volume tests
o Correctness tests

o Things seemed to improve! For the rest of the day, IPAM ran smoothly.
o | was officially off call and “handed off” the pager.

o Incident status was moved to “monitoring”

Unfortunately, the next day we got another alert

18

g
L
mmmmmmm
I

Time Series @

4 150000ms

125000ms

100000ms

Latency

75000ms

50000ms

2 ops/sec

Rate

0 ops/sec

20%

Err %

0% !
28 Oct

15:57:28
11/03

JAL)

1.1 ops/sec
Rate

WW

0.0%
Error

8 Nov

New discoveries

o Combination of factors at play causing further create delays
o Allocation requests are restricted by a distributed semaphore

o When IPAM has to allocate a bunch of IPs at once, things fall apart
o Huge wave of create events from certain customers
o Overnight queries by other services

o Database can’t complete the IPAM operations fast enough
o IPAM retries operations if they fail, which make things worse
o Conclusion: IPAM had become too sensitive to issues with our database

f-) Solution?

o We changed our retry logic to retry sooner

o Before would retry after 100ms and increase exponentially until reaching 20s
o Now we only retry three times at 100ms, 1s, and 10s
o Ifit fails on the third retry, we cancel the transaction and return an error

o Optimized our SQL queries to create fewer unnecessary locks

o Reordered the execution of our SQL queries
o 3-4 different queries are executed to allocate a single IP address
o Upon review, determined the ordering was no longer optimal
o New reordering ensured that in some cases we only need to execute 1-2 queries

o Improved our monitoring to get a much clearer picture of our system

o These efforts were made over V9 days ®

9 Culmination of our efforts

Time Series @

[, 150000ms 169ms 1.42s 2.61s 3.17s 19:32:52
p50 p95 p99 p99.9 11/04
125000ms
-, 100000ms
2
2
& 75000ms
1.1 ops/sec
@ Rate
: WWWMMMWW
4
0 ops/sec
0.0%
Error

Err %

o N n J\A A/m/\ i /\ /_/m P AN A~ /\A

4 Nov 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00

IPAM deadlocks by query G IPAM deadlocks by user

K © © GetMostRecentlyUpd... 16 © © Missing
<ol @ GetExistinglPv4Alloca... ® 4435909
<
& E 3 @ GetMostRecentlyUpd... “ @®633183
£6 2 @ GetMostRecentlyUpd... ©911675
& ; ® UpdatelPv4 2 ® 6286097

5 @ GetMostRecentlyUpd... - ® 181838
q 4 @ GetMostRecentlyUpd... @ 3418836
£E 3 £, @ 6056698
23 2 I I S ® 2020192
g
e~ 1 ® 7126454
o bl s U LDk ollll |1 ¢ i
“ 4 a4 @ 623725
Cu ® 7097506
el | 2 2 I ® 1637240
3

1
= o INRNENNRNRRNAN i

19:30 20:00 20:30 21:00 21:30 22:00 22:30 19:30 20:00 20:30 21:00 21:30 22:00 2230
@timestamp per 5 minutes @timestamp per 5 minutes
IPAM errors by type IPAM errors by retry count
80 © © err:Deadlock 16 © @0
@ err:"Context canceled" o1
@ err:"Context deadline... 14
@ (NOT err:Deadlock) A...
60 12
10
- -
5 5
3 40 5 s
o (¥
6
20 4
" . 1 II |] III III i I I I I
19:30 20:00 20:30 21:00 21:30 22:00 22:30 19:30 20:00 20:30 21:00 21:30 22:00 22:30

@timestamp per 5 minutes @timestamp per 5 minutes

IPAM errors by retry count

Count

45

40

N
[

N
o

[

o

w

0

03:00

06:00

09:00

12:00
@timestamp per 30 minutes

15:00

18

00

21:00

© 00
@1
@02

IPAM errors by type

Count

500

450

400

3

[
o

3

o
<)

2

a
o

2

o
(=3

1

u
=]

1

o
S

%
o

0

11:00

11:30

12:00

12:30
@timestamp per 5 minutes

13:00

13:30

14:00

14:30

© © err:Deadlock
@ err:"Context can...
@ err:"Context dea...
@ (NOT err:Deadlo...

IPAM deadlocks by user

8
6

4
0 I I I II l II

Count

f.) Monitoring Changes

o Before this incident, our monitoring essentially consisted of:
o Metrics scrapped by Prometheus
o Grafana dashboards
o Kibana queries written on the fly
o Distributed tracing with LightStep

o We learned that we needed more visibility into our database

operations and error rates -> Kibana dashboards
o Can view status at a glance
o Faster feedback loop when testing performance and changes

o Dashboards are more informative during incidents

o Enable every team member to be more effective

f.) Testing Changes

o Before this incident, our testing story was lacking

o We had some automation to load and stress test IPAM, but needed to

make it part of our process for major changes and releases
o Couples really well with detailed monitoring and dashboards

o You can only tolerate the faults you anticipate and test

o Load test
o Volume test
o Test to induce deadlocks with MySQL and observe system

o Testing needs to be a vital piece of your system’s development

o Invest in automation and exploring your system’s weak spots

9 Teamwork + Blameless Culture

o This was a high stress situation, but there was no finger pointing.

o Several teams across the organization rallied together, identified the
issues, and implemented the fixes.

o Internal PIR process to document and learn from incident

o Software is hard at times, and no one can predict every incident that

could occur. If an incident occurs, it's regarded to be a process issue:
o Code review
o Engineering practices
o Reliability work
o Documentation

.’_.) Takeaways

o Good monitoring makes distributed systems easier to build, maintain,
and debug

o Test your patch even when under pressure
o Document major technical and design decisions for future transitions

o Informative dashboards benefit everyone and save precious time

f.) Takeaways

o When working on big systems, ensure that you're setting time aside for:
o reliability
© maintainability
© monitoring

o Advocate for a blameless culture and always learn from incidents

o You’'ll never avoid every bad scenario or late night page, but good
engineering practices & improvements can decrease their likelihood

o Have your metrics, SLOs, and SLAs drive your reliability efforts

‘._.) Personal Learnings

o Observability

o System hotspots
o Failure modes

o Documentation

o Test automation

o Engineering quality

Thanks! Questions?

(@NISH[VEYA=1"[el

