How to fail with Serverless

Jeremy Daly
CTO, AlertMe.news

@jeremy_daly

(FAILoVERI[H||J8

Jeremy Daly

a
s #aarjeremy-daly GOMICXICE CONF . iy

Jeremy Daly

CTO at AlertMe.news

a
s #aarjeremy-daly GOMICXICE CONF . iy

Jeremy Daly

e (CTO atAlertMe.news

* Consult with companies building in the cloud

e .
s #aarjeremy-daly GOMICXICE CONF . iy

Jeremy Daly

e (CTO atAlertMe.news

* Consult with companies building in the cloud

* 20+ year veteran of technology startups

e .
s #aarjeremy-daly GOMICXICE CONF . iy

Jeremy Daly

« (TO atAlertMe.news
* Consult with companies building in the cloud
* 20+ year veteran of technology startups

* Started working with AWS in 2009 and started using
Lambda in 2015

a
g #a-jeremy-daly GOXGO0CE CONF . @jeremy_daly

Jeremy Daly

« (TO atAlertMe.news
* Consult with companies building in the cloud
* 20+ year veteran of technology startups

* Started working with AWS in 2009 and started using
Lambda in 2015

* Blogger (Jeremydaly.com), OSS contributor, speaker

a
g #a-jeremy-daly GOXGO0CE CONF . @jeremy_daly

Jeremy Daly

« (TO atAlertMe.news
* Consult with companies building in the cloud
* 20+ year veteran of technology startups

* Started working with AWS in 2009 and started using
Lambda in 2015

* Blogger (Jeremydaly.com), OSS contributor, speaker

* Publish the Off-by-none serverless newsletter

a
g #a-jeremy-daly GOXGO0CE CONF . @jeremy_daly

Jeremy Daly

« (TO atAlertMe.news
* Consult with companies building in the cloud
* 20+ year veteran of technology startups

* Started working with AWS in 2009 and started using
Lambda in 2015

* Blogger (Jeremydaly.com), OSS contributor, speaker
* Publish the Off-by-none serverless newsletter

* Host of the Serverless Chats podcast

e .
g #a-jeremy-daly GOXGO0CE CONF . @jeremy_daly

Jeremy Daly

« (TO atAlertMe.news
* Consult with companies building in the cloud
* 20+ year veteran of technology startups

* Started working with AWS in 2009 and started using
Lambda in 2015

* Blogger (Jjeremydaly.com), OSS contributor, speaker s

* Publish the Off-by-none serverless newsletter serverless

* Host of the Serverless Chats podcast H E Ro

a
g #a-jeremy-daly GOXGO0CE CONF . @jeremy_daly

Jeremy Daly

« (TO atAlertMe.news
* Consult with companies building in the cloud
* 20+ year veteran of technology startups

* Started working with AWS in 2009 and started using
Lambda in 2015

* Blogger (Jjeremydaly.com), OSS contributor, speaker s

* Publish the Off-by-none serverless newsletter serverless

* Host of the Serverless Chats podcast H E Ro

s #aajeremy-daly ’ GOMICXICE CONF . iy

Agenda

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Agenda

* Distributed systems and serverless

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Agenda

* Distributed systems and serverless

* Writing code FOR the cloud

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Agenda

* Distributed systems and serverless
* Writing code FOR the cloud

* Failure modes in the cloud

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Agenda

* Distributed systems and serverless
* Writing code FOR the cloud
* Failure modes in the cloud

* Serverless patterns to deal with failure

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Distributed Systems are...

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Distributed Systems are...

Systems whose components are located on

different networked computers, which communicate
and coordinate their actions by passing messages to
one another. ~ Wikipedia

e .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Distributed Systems are...

Systems whose components are located on

different networked computers, which communicate
and coordinate their actions by passing messages to
one another. ~ Wikipedia

They're also really hard!

e .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Werner Vogels
CTO, Amazon.com

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

EVERYTHING FAILS
ALL THE TIME

Werner Vogels
CTO, Amazon.com

e H#aprjeremy-daly Faitovenloli)| Sl iy

Serverless applications are...

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Serverless applications are...

Distributed systems on steroids!

e .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Serverless applications are...

Distributed systems on steroids!

* Smaller, more distributed compute units

e .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Serverless applications are...

Distributed systems on steroids!

* Smaller, more distributed compute units

* Stateless, requiring network access to state

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Serverless applications are...

Distributed systems on steroids!

* Smaller, more distributed compute units

* Stateless, requiring network access to state

* Uncoordinated, requires buses, queues, pub/sub, state machines

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Serverless applications are...

Distributed systems on steroids!

* Smaller, more distributed compute units

* Stateless, requiring network access to state

* Uncoordinated, requires buses, queues, pub/sub, state machines

* Heavily reliant on other networked cloud services

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

What does it mean to be Serverless?

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

What does it mean to be Serverless?

* No server management

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

What does it mean to be Serverless?

* No server management

* Flexible scaling

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

What does it mean to be Serverless?

* No server management
* Flexible scaling

* Pay for value [never pay foridle

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

What does it mean to be Serverless?

* No server management
* Flexible scaling
* Pay for value [never pay foridle

* Automated high availability

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

What does it mean to be Serverless?

* No server management

* Flexible scaling

* Pay for value [never pay foridle
* Automated high availability

* LOTS of configuration and knowledge of cloud services

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

What does it mean to be Serverless?

* No server management

* Flexible scaling

* Pay for value [never pay foridle

* Automated high availability

* LOTS of configuration and knowledge of cloud services

* Highly event-driven

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lots of services to communicate with!

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lots of services to communicate with!

“Serverless”

Lambda Cognito Kinesis
S3 DynamoDB SQS
SNS API| Gateway EventBridge

AppSync loT Comprehend

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lots of services to communicate with!

“Serverless”

Lambda Cognito
S3 DynamoDB
SNS AP| Gateway
AppSync loT

'... #qa-jeremy-daly

Kinesis

SQS

EventBridge

Comprehend

Managed
EMR Amazon ES
ElastiCache Redshift
RDS Fargate

DocumentDB Managed Streaming
(MongoDB) for Kafka

(FAILoVERI[eo]|o

@jeremy_daly

Lots of services to communicate with!

“Serverless”

Lambda Cognito
S3 DynamoDB
SNS AP| Gateway
AppSync loT

'... #qa-jeremy-daly

Kinesis

SQS

EventBridge

Comprehend

Managed
EMR Amazon ES
ElastiCache Redshift
RDS Fargate

DocumentDB Managed Streaming
(MongoDB) for Kafka

(FAILoVERI[eo]|o

Non-Serverless

al

Anything “on EC2"

cassandra

-

e e

@jeremy_daly

Reliability or High Availability is...

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Reliability or High Availability is...

A characteristic of a system, which aims to ensure an
agreed level of operational performance,

usually uptime, for a higher than normal period.
~ Wikipedia

'.'. #qa-jeremy-daly

(FAILoVERI[H |8 @jeremy_daly

Resiliency is...

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Resiliency is...

The ability of a software solution to absorb the impact
of a problem in one or more parts of a system, while

continuing to provide an acceptable service level to
the business. ~ IBM

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Resiliency is...

The ability of a software solution to absorb the impact
of a problem in one or more parts of a system, while

continuing to provide an acceptable service level to
the business. ~ IBM

IT'S NOT ABOUT PREVENTING FAILURE

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Resiliency is...

The ability of a software solution to absorb the impact
of a problem in one or more parts of a system, while

continuing to provide an acceptable service level to
the business. ~ IBM

IT'S NOT ABOUT PREVENTING FAILURE
IT'S UNDERSTANDING HOW TO GRACEFULLY DEAL WITH IT

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Writing code FOR the Cloud

Using Lambda for our business logic

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Using Lambda for our business logic

* Ephemeral compute service

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Using Lambda for our business logic

* Ephemeral compute service

* Runs your code in response to events

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Using Lambda for our business logic

* Ephemeral compute service
* Runs your code in response to events

* Automatically manages the runtime,
compute, and scaling

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Using Lambda for our business logic

* Ephemeral compute service
* Runs your code in response to events

* Automatically manages the runtime,
compute, and scaling

* Single concurrency model

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Using Lambda for our business logic

* Ephemeral compute service
* Runs your code in response to events

* Automatically manages the runtime,
compute, and scaling

* Single concurrency model

* No sticky-sessions or guaranteed lifespan

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Traditional Error Handling & Retries

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Traditional Error Handling & Retries

try {

} catch (err) {

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Traditional Error Handling & Retries

try { What happens to the
original event?

} catch (err) {

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Traditional Error Handling & Retries

try { What happens to the
original event?

} catch (err) { What happens if there is a
network issue?

}

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Traditional Error Handling & Retries

try { What happens to the
original event?

} catch (err) { What happens if there is a
network issue?

What happens if the function
) container crashes?

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Traditional Error Handling & Retries

try { What happens to the
original event?

} catch (err) { What happens if there is a
network issue?

What happens if the function
) container crashes?

What happens if the function
never runs?

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Traditional Error Handling & Retries

try { What happens to the
original event?

} catch (err) { What happens if there is a
network issue?

What happens if the function
) container crashes?

: : What happens if the function
Losing events is very bad! never runs?

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Function Error Types

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Function Error Types

* Unhandled Exception

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Function Error Types

* Unhandled Exception

e Function Timeouts

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Function Error Types

* Unhandled Exception
* Function Timeouts

* Out-of-Memory Errors

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Function Error Types

* Unhandled Exception
* Function Timeouts
* Out-of-Memory Errors

* Throttling Errors

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The cloud is better than you...

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The cloud is better than you...

...at error handling

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The cloud is better than you...

...at error handling

...at retrying failures

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The cloud is better than you...

...at error handling
...at retrying failures

...at understanding network failures

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The cloud is better than you...

...at error handling
...at retrying failures
...at understanding network failures

...at mapping the network topology

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The cloud is better than you...

...at error handling

...at retrying failures

...at understanding network failures

...at map

ning the network to

...at hand

-... #qa-jeremy-daly

nology

ling failover and redundancy

(FAILoVERI[eo]|o

@jeremy_daly

The cloud is better than you...

...at error handling

...at retrying failures

...at understanding network failures

...at map

ning the network to

...at hand

-... #qa-jeremy-daly

nology

ling failover and rec

undancy

(FAILoVERI[H |8

So why not let the
cloud do those
things for you?

@jeremy_daly

Fail up the stack

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Fail up the stack

* Don't swallow errors with try/catch —fail the function

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Fail up the stack

* Don't swallow errors with try/catch —fail the function (sometimes)

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Fail up the stack

* Don't swallow errors with try/catch —fail the function (sometimes)

* Return errors directly to the invoking service

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Fail up the stack

* Don't swallow errors with try/catch —fail the function (sometimes)
* Return errors directly to the invoking service

 Configure built-in retry mechanisms to reprocess events

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Fail up the stack

* Don't swallow errors with try/catch —fail the function (sometimes)
* Return errors directly to the invoking service
 Configure built-in retry mechanisms to reprocess events

* Utilize dead letter queues to capture failed events

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Types of Lambda Functions

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Types of Lambda Functions

* The Lambdalith

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Types of Lambda Functions

* The Lambdalith

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Types of Lambda Functions

* The Lambdalith

* The Fat Lambda

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Types of Lambda Functions

* The Lambdalith

* The Fat Lambda

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Types of Lambda Functions

* The Lambdalith

* The Fat Lambda

* The Single-Purpose Function

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Types of Lambda Functions

* The Lambdalith

* The Fat Lambda

* The Single-Purpose Function

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Mighty Lambdalith

& e jeremy-daly GOOEGGN CONF.

The Mighty Lambdalith

& e jeremy-daly GOOEGGN CONF.

The Mighty Lambdalith

* The entire application is in one
Lambda function

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Mighty Lambdalith

* The entire application is in one
Lambda function

 Often times these are "lift and)\
shift” Express.js or Flask apps

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Mighty Lambdalith

* The entire application is in one
Lambda function

 Often times these are "lift and)\
shift” Express.js or Flask apps

* Events are synchronous via API
Gateway or ALB

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Mighty Lambdalith

* The entire application is in one
Lambda function

 Often times these are "lift and)\
shift” Express.js or Flask apps

* Events are synchronous via API
Gateway or ALB

* Partial failures are handled “in the
code”

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Fat Lambda

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

The Fat Lambda

* Several related methods are collocated in a single Lambda function

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

The Fat Lambda

* Several related methods are collocated in a single Lambda function

* Generally used to optimize the speed of synchronous operations

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

The Fat Lambda

* Several related methods are collocated in a single Lambda function
* Generally used to optimize the speed of synchronous operations

* Partial failures are still handled “in the code”

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Fat Lambda

* Several related methods are collocated in a single Lambda function
* Generally used to optimize the speed of synchronous operations
* Partial failures are still handled “in the code”

* Under the right circumstances, this can be useful

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Single-Purpose Function

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

The Single-Purpose Function

* Tightly scoped function that handles a single discrete piece of
business logic

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

The Single-Purpose Function

* Tightly scoped function that handles a single discrete piece of
business logic

* Can be invoked synchronously or asynchronously

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

The Single-Purpose Function

* Tightly scoped function that handles a single discrete piece of
business logic

* Can be invoked synchronously or asynchronously

* Failures are generally “total failures” and are passed back to the
invoking service

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Single-Purpose Function

* Tightly scoped function that handles a single discrete piece of
business logic

* Can be invoked synchronously or asynchronously

* Failures are generally “total failures” and are passed back to the
invoking service

* Can be reused as part of other “workflows”, can scale (or throttle)
independently, and can utilize the Principle of Least Privilege

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Failure Modes in the Cloud

Failure Modes in the Cloud

Firehose of overly-technical content ahead

Understanding retries...

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Understanding retries...

* Retries are a vital part of distributed systems

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Understanding retries...

* Retries are a vital part of distributed systems

* Most cloud services guarantee “at least once” delivery

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Understanding retries...

* Retries are a vital part of distributed systems
* Most cloud services guarantee “at least once” delivery

* Itis possible for the same event to be received more than once

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Understanding retries...

* Retries are a vital part of distributed systems
* Most cloud services guarantee “at least once” delivery
* It is possible for the same event to be received more than once

* Retried operations should be idempotent

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Idempotent means that...

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Idempotent means that...

An operation can be repeated multiple times and
always provide the same result, with no side effects

to other objects in the system. ~ Computer Hope

e .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Idempotent means that...

An operation can be repeated multiple times and
always provide the same result, with no side effects
to other objects in the system. ~ Computer Hope

Idempotent operations:

e .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Idempotent means that...

An operation can be repeated multiple times and
always provide the same result, with no side effects
to other objects in the system. ~ Computer Hope

Idempotent operations:
* Update a database record

e .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Idempotent means that...

An operation can be repeated multiple times and
always provide the same result, with no side effects
to other objects in the system. ~ Computer Hope

Idempotent operations:
* Update a database record
* Authenticate a user

e .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Idempotent means that...

An operation can be repeated multiple times and
always provide the same result, with no side effects
to other objects in the system. ~ Computer Hope
Idempotent operations:

* Update a database record

 Authenticate a user
 Checkif arecord exists and create if not

e .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Idempotent means that...

An operation can be repeated multiple times and
always provide the same result, with no side effects
to other objects in the system. ~ Computer Hope
Idempotent operations:

* Update a database record

 Authenticate a user
 Checkif arecord exists and create if not

There are lots of
strategies to ensure
idempotency!

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Dead Letter Queues (DLQs)

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Dead Letter Queues (DLQs)

 Capture messages/events that fail to process or are skipped

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Dead Letter Queues (DLQs)

» Capture messages/events that fail to process or are skipped

* Allows for alarming, inspection, and potential replay

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Dead Letter Queues (DLQs)

 Capture messages/events that fail to process or are skipped
* Allows for alarming, inspection, and potential replay

* Can be added to SQS queues, SNS subscriptions, Lambda functions

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Lambda Invocation Types

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Invocation Types

* Synchronous — request/response model

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Invocation Types

* Synchronous — request/response model

* Asynchronous —set it and forget it

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Invocation Types

* Synchronous — request/response model
* Asynchronous —set it and forget it

* Stream-based - push

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Invocation Types

* Synchronous — request/response model
* Asynchronous —set it and forget it
* Stream-based - push

* Poller-based - pull

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Synchronous Lambda Retry Behavior

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Synchronous Lambda Retry Behavior

* Functions are invoked directly using request/response method

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Synchronous Lambda Retry Behavior

* Functions are invoked directly using request/response method

e Failures are returned to the invoker

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Synchronous Lambda Retry Behavior

* Functions are invoked directly using request/response method
* Failures are returned to the invoker

* Retries are delegated to the invoking application

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Synchronous Lambda Retry Behavior

* Functions are invoked directly using request/response method
* Failures are returned to the invoker

* Retries are delegated to the invoking application

* Some AWS services automatically retry (e.g. Alexa & Cognito)

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Synchronous Lambda Retry Behavior

* Functions are invoked directly using request/response method
* Failures are returned to the invoker

* Retries are delegated to the invoking application

* Some AWS services automatically retry (e.g. Alexa & Cognito)

* Other services do not retry (e.g. APl Gateway, ALB, Step Functions)

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Synchronous Lambda Retry Behavior

* Functions are invoked directly using request/response method

* Failures are returned to the invoker

* Retries are delegated to the invoking application

* Some AWS services automatically retry (e.g. Alexa & Cognito)

* Other services do not retry (e.g. APl Gateway, ALB, Step Functions)

* APl Gateway and ALB can return errors to the client for retry

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Asynchronous Lambda Retry Behavior

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Asynchronous Lambda Retry Behavior

* The Lambda Service accepts requests and adds them to a queue

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Asynchronous Lambda Retry Behavior

* The Lambda Service accepts requests and adds them to a queue

* The invoker receives a 202 status code and disconnects

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Asynchronous Lambda Retry Behavior

* The Lambda Service accepts requests and adds them to a queue

* The invoker receives a 202 status code and disconnects

* The Lambda Service will attempt to reprocess failed events up to
2 times, configured using the MaximumRetryAttempts setting

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Asynchronous Lambda Retry Behavior

* The Lambda Service accepts requests and adds them to a queue

* The invoker receives a 202 status code and disconnects

* The Lambda Service will attempt to reprocess failed events up to
2 times, configured using the MaximumRetryAttempts setting

* If the Lambda function is throttled, the event will be retried for up to
6 hours, configured using MaximumEventAgelnSeconds

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Asynchronous Lambda Retry Behavior

* The Lambda Service accepts requests and adds them to a queue

* The invoker receives a 202 status code and disconnects

* The Lambda Service will attempt to reprocess failed events up to
2 times, configured using the MaximumRetryAttempts setting

* If the Lambda function is throttled, the event will be retried for up to
6 hours, configured using MaximumEventAgelnSeconds

* Failed and expired events can be sent to a Dead Letter Queue (DLQ)
or an on-failure destination

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Stream-based Lambda Retry Behavior

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Stream-based Lambda Retry Behavior

* Records are pushed synchronously to Lambda from Kinesis or
DynamoDB streams in batches (10k and 1k limits per batch)

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Stream-based Lambda Retry Behavior

* Records are pushed synchronously to Lambda from Kinesis or
DynamoDB streams in batches (10k and 1k limits per batch)

* MaximumRetryAttempts: number of retry attempts for batches
before they can be skipped (up to 10,000)

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Stream-based Lambda Retry Behavior

* Records are pushed synchronously to Lambda from Kinesis or
DynamoDB streams in batches (10k and 1k limits per batch)

* MaximumRetryAttempts: number of retry attempts for batches
before they can be skipped (up to 10,000)

* MaximumRecordAgelnSeconds: store records up to 7 days

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Stream-based Lambda Retry Behavior

* Records are pushed synchronously to Lambda from Kinesis or
DynamoDB streams in batches (10k and 1k limits per batch)

* MaximumRetryAttempts: number of retry attempts for batches
before they can be skipped (up to 10,000)

* MaximumRecordAgelnSeconds: store records up to 7 days

* BisectBatchOnFunctionError: recursively split failed batches
(poison pill)

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Stream-based Lambda Retry Behavior

* Records are pushed synchronously to Lambda from Kinesis or
DynamoDB streams in batches (10k and 1k limits per batch)

* MaximumRetryAttempts: number of retry attempts for batches
before they can be skipped (up to 10,000)

* MaximumRecordAgelnSeconds: store records up to 7 days

* BisectBatchOnFunctionError: recursively split failed batches
(poison pill)

* Skipped records are sent to an On-failure Destination (SQS or SNS)

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Poller-based Lambda Retry Behavior

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Poller-based Lambda Retry Behavior

* The Lambda Poller pulls records synchronously from SQS in
batches (up to 10)

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Poller-based Lambda Retry Behavior

* The Lambda Poller pulls records synchronously from SQS in
batches (up to 10)

* Errors fail the entire batch

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Poller-based Lambda Retry Behavior

* The Lambda Poller pulls records synchronously from SQS in
batches (up to 10)

* Errors fail the entire batch

* MaxReceiveCount: number of times messages can be returned to
the queue before being sent to the DLQ (up to 1,000)

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Poller-based Lambda Retry Behavior

* The Lambda Poller pulls records synchronously from SQS in
batches (up to 10)

* Errors fail the entire batch

* MaxReceiveCount: number of times messages can be returned to
the queue before being sent to the DLQ (up to 1,000)

* Polling frequency is tied to function concurrency

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Poller-based Lambda Retry Behavior

* The Lambda Poller pulls records synchronously from SQS in
batches (up to 10)

* Errors fail the entire batch

* MaxReceiveCount: number of times messages can be returned to
the queue before being sent to the DLQ (up to 1,000)

* Polling frequency is tied to function concurrency

* Visibility Timeout should be set to at least 6 times the timeout
configured on your consuming function

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Destinations

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Destinations

* Only for asynchronous invocations

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Destinations

* Only for asynchronous invocations

* Routing based on SUCCESS and/or FAILURE

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Destinations

* Only for asynchronous invocations

* Routing based on SUCCESS and/or FAILURE

* OnFailure should be favored over a standard DLQ

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Destinations

* Only for asynchronous invocations
* Routing based on SUCCESS and/or FAILURE
* OnFailure should be favored over a standard DLQ

* Destinations can be an SQS queue, SNS topic,
Lambda function, or EventBridge event bus

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Lambda Destinations (continued)

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Destinations (continued)

Destination-specific JSON format

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Destinations (continued)

Destination-specific JSON format

* SQS/SNS: JSON object is passed as the Message

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Destinations (continued)

Destination-specific JSON format

* SQS/SNS: JSON object is passed as the Message

* Lambda: JSON is passed as the payload to the function

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Destinations (continued)

Destination-specific JSON format

* SQS/SNS: JSON object is passed as the Message
* Lambda: JSON is passed as the payload to the function

* EventBridge: JSON is passed as the Detail in the PutEvents call

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Lambda Destinations (continued)

Destination-specific JSON format

* SQS/SNS: JSON object is passed as the Message
* Lambda: JSON is passed as the payload to the function

* EventBridge: JSON is passed as the Detail in the PutEvents call

* Source is “lambda”
* Detail Type is "Lambda Function Invocation Result — Success/Failure”

* Resource fields contain the function and destination ARNs

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

SQS Redrive Policies

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

SQS Redrive Policies

* Only supports another SQS queue as the DLQ

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

SQS Redrive Policies

* Only supports another SQS queue as the DLQ

* Messages are sent to the DLQ if the Maximum Receives value is
exceeded

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

SNS Redrive Policies

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

SNS Redrive Policies

* Dead Letter Queues are attached to Subscriptions, not Topics

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

SNS Redrive Policies

* Dead Letter Queues are attached to Subscriptions, not Topics

* Only supports SQS queues as the DLQ

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

SNS Redrive Policies

* Dead Letter Queues are attached to Subscriptions, not Topics
* Only supports SQS queues as the DLQ

* Client-side errors (e.g. Lambda doesn’t exist) do no retry

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

SNS Redrive Policies

* Dead Letter Queues are attached to Subscriptions, not Topics
* Only supports SQS queues as the DLQ
* Client-side errors (e.g. Lambda doesn’t exist) do no retry

* Messages to SQS or Lambda are retried 100,015 times over 23 days

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

SNS Redrive Policies

* Dead Letter Queues are attached to Subscriptions, not Topics

* Only supports SQS queues as the DLQ

* Client-side errors (e.g. Lambda doesn’t exist) do no retry

* Messages to SQS or Lambda are retried 100,015 times over 23 days

* Messages to SMTP, SMS, and Mobile retry 5o times over 6 hours

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

SNS Redrive Policies

* Dead Letter Queues are attached to Subscriptions, not Topics

* Only supports SQS queues as the DLQ

* Client-side errors (e.g. Lambda doesn’t exist) do no retry

* Messages to SQS or Lambda are retried 100,015 times over 23 days
* Messages to SMTP, SMS, and Mobile retry 5o times over 6 hours

* HTTP endpoints support customer-defined retry policies
(number of retries, delays, and backoff strategy)

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

EventBridge Retry Behavior

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

EventBridge Retry Behavior

* Will attempt to deliver events for up to 24 hours with backoff

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

EventBridge Retry Behavior

* Will attempt to deliver events for up to 24 hours with backoff

* Failed events are lost (this is very unlikely)

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

EventBridge Retry Behavior

* Will attempt to deliver events for up to 24 hours with backoff

* Failed events are lost (this is very unlikely)

* Once events are accepted by the target service, failure modes of
those services are used

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

EventBridge Retry Behavior

* Will attempt to deliver events for up to 24 hours with backoff

* Failed events are lost (this is very unlikely)

* Once events are accepted by the target service, failure modes of
those services are used

* Lambda functions are invoked asynchronously

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Step Functions

a - . .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Step Functions

e State Machines: Orchestration workflows

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Step Functions

e State Machines: Orchestration workflows

Complex Error Handling Pattern
Credit: Yan Cui

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Step Functions

e State Machines: Orchestration workflows

* Lambdas are invoked synchronously

Complex Error Handling Pattern
Credit: Yan Cui

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Step Functions

* State Machines: Orchestration workflows
* Lambdas are invoked synchronously

* Retriers and Catchers allow for complex
error handling patterns

Complex Error Handling Pattern
Credit: Yan Cui

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Step Functions

* State Machines: Orchestration workflows
* Lambdas are invoked synchronously

* Retriers and Catchers allow for complex
error handling patterns

* Use “error names"” with ErrorEquals for
condition error handling (States.*)

Complex Error Handling Pattern
Credit: Yan Cui

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Step Functions

* State Machines: Orchestration workflows
* Lambdas are invoked synchronously

* Retriers and Catchers allow for complex
error handling patterns

* Use “error names"” with ErrorEquals for
condition error handling (States.*)

 Control retry policies with IntervalSeconds,
MaXA ttemp tSl BaCkOffRa te Complex Error Handling Pattern

Credit: Yan Cui

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

AWS SDK Retries

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

AWS SDK Retries

* Automatic retries and exponential backoff

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

AWS SDK Retries

* Automatic retries and exponential backoff

Maximum retry Connection

. Socket timeout
count timeout

AWS SDK

Python (Boto 3) depends on service 60 seconds 60 seconds

Node.js depends on service N/A 120 seconds

Java 10 seconds 50 seconds
NET 100 seconds 300 seconds

Go N/A N/A

T8 #oajeremy-daly GOUBO0GC CONF. I

Error Handling Patterns

Buffer events for throttling and durability

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Buffer events for throttling and durability

— —

C——=
Client APl Gateway Lambda

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Buffer events for throttling and durability

— —

—)
Client AP| Gateway Lambda RDS

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Buffer events for throttling and durability

— —

—— o
Client AP| Gateway Lambda Queue RDS

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Buffer events for throttling and durability

"Asynchronous”
Request
 — — 1
—— o
Client AP| Gateway Lambda Queue RDS

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Buffer events for throttling and durability

"Asynchronous”
Request
 — — L
ack
—— o
Client AP| Gateway Lambda Queue RDS

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Buffer events for throttling and durability

"Asynchronous”
Request
E— — L
< — ack
—= 5Q5S
Client API Gateway Lambda Queue RDS

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Buffer events for throttling and durability

"Asynchronous”
Request
— — 1
= ack
_ SQs
Client AP| Gateway Lambda Queue Lambda RDS

(throttled)

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Buffer events for throttling and durability

—)

Client

'... #qa-jeremy-daly

APl Gateway

"Asynchronous”
Request
e
ack
SQS
Lambda Queue
(FalLoveERI[i[28

Lambda
(throttled)

1

Limit the
concurrency to match
RDS throughput

RDS

@jeremy_daly

Buffer events for throttling and durability

"Asynchronous”
Request
 — — 1 —
= ack
_ sQs
Client AP| Gateway Lambda Queue Lambda RDS
(throttled)
Limit the
concurrency to match
RDS throughput

e .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Buffer events for throttling and durability

"Asynchronous” Synchronous
Request Request
 — — 1 —
—— ack
_ SQS
Client AP| Gateway Lambda Queue Lambda RDS
(throttled)
Limit the
concurrency to match
RDS throughput

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Buffer events for throttling and durability

"Asynchronous” Synchronous
Request Request
 — — 1 — —
: S ack S
(E)_ SQS
Client AP| Gateway Lambda Queue Lambda RDS
(throttled)
Limit the
concurrency to match
RDS throughput

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Buffer events for throttling and durability

"Asynchronous” Synchronous
Request Request
 — — 1 — —
: S ack S S
—— o
Client AP| Gateway Lambda Queue Lambda RDS
(throttled)
Limit the
concurrency to match
RDS throughput

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Buffer events for throttling and durability

"Asynchronous” Synchronous
Request Request
 — — 1 — —
: S ack S
(E)_ SQS
Client AP| Gateway Lambda Queue Lambda RDS
(throttled)
Limit the
concurrency to match
RDS throughput

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Buffer events for throttling and durability

"Asynchronous” Synchronous
Request Request
 — — 1 — —
: S ack S
(E)_ SQS
Client AP| Gateway Lambda Queue Lambda RDS
(throttled)
Limit the
concurrency to match
RDS throughput
SQS
(DLQ)

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Buffer events for throttling and durability

“Asynchronous” Synchronous
Request Request
_— " L _ —
T ack
_ SQS
Client AP| Gateway Lambda Queue Lambda RDS
(throttled)
Key Points: Limit the
* SQS adds durability concurrency to match
RDS throughput
SQS
(DLQ)

a
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Buffer events for throttling and durability

"Asynchronous” Synchronous
Request Request
 — — 1 — E—
—
—— 2k
_ SQS
Client AP| Gateway Lambda Queue Lambda RDS
(throttled)
Key Points: Limit the
* SQS adds durability concurrency to match
RDS throughput
* Throttled Lambdas reduce downstream pressure
SQS
(DLQ)

e .
s #aarjeremy-daly GOMICXICE CONF . @ISie ety

Buffer events for throttling and durability

"Asynchronous” Synchronous
Request Request
 — — 1 — E—
—
—— ack
_ SQS
Client AP| Gateway Lambda Queue Lambda RDS
(throttled)
Key Points: Limit the
* SQS adds durability concurrency to match
RDS throughput
* Throttled Lambdas reduce downstream pressure
SQS
* Failed events are stored for further inspection/replay (DLQ)

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Buffer events for throttling and durability

"Asynchronous” Synchronous
Request Request
 — — 1 — E—
—
—— ack
_ SQS
Client AP| Gateway Lambda Queue Lambda RDS
(throttled)
Key Points: Limit the
* SQS adds durability concurrency to match
RDS throughput
* Throttled Lambdas reduce downstream pressure
SQS
* Failed events are stored for further inspection/replay (DLQ)

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Buffer events for throttling and durability

Utilize Service

Integrations “Asynchronous” Synchronous
l Request Request
e — e — 1 —_—> —
—
—— ack
_ sQs

Client AP| Gateway Lambda Queue Lambda RDS
(throttled)

Key Points: Limit the

* SQS adds durability concurrency to match

RDS throughput
* Throttled Lambdas reduce downstream pressure
SQS
* Failed events are stored for further inspection/replay (DLQ)

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

Client API Gateway Lambda

a . . d |
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

Client API Gateway Lambda Stripe API

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

Client API Gateway Lambda Stripe API

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

Client API Gateway Lambda Stripe API

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

Client API Gateway Lambda Stripe API

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

Client API Gateway Lambda Stripe API

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

e — — %@
—=

Client API Gateway Lambda Stripe API

e .
g #a-jeremy-daly GOXGO0CE CONF . iEarLdhy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

Client API Gateway Lambda Stripe API

DynamoDB

e .
g #a-jeremy-daly GOXGO0CE CONF . iEarLdhy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

Client API Gateway Lambda Stripe API

or

DynamoDB Elasticache

e .
g #a-jeremy-daly GOXGO0CE CONF . iEarLdhy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

—
CLOSED

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

—
— CLOSED

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

Client

-... #qa-jeremy-daly

“Everything fails all the time.”
~WernerVogels

—> R
CLOSED
AP| Gateway Lambda l T Stripe AP
or
DynamoDB Elasticache
(FA1LovERI[e0]|]oN

@jeremy_daly

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

—
CLOSED

Client AP| Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

Increment Failure Count

e .
g #a-jeremy-daly GOXGO0CE CONF . iEarLdhy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

—

Client

-... #qa-jeremy-daly

CLOSED

AP| Gateway Lambda l T Stripe AP

or

DynamoDB Elasticache

Increment Failure Count

(FAILoVERI[eo]|o

@jeremy_daly

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

Client API Gateway Lambda Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly Faitovenloli)| Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

Client API Gateway Lambda Stripe API

or

DynamoDB Elasticache

e .
g #a-jeremy-daly GOXGO0CE CONF . iEarLdhy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
g #a-jeremy-daly GOXGO0CE CONF . iEarLdhy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

— — —
%
—— oPen
Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

— — —
R P
—— oPen
Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
g #a-jeremy-daly GOXGO0CE CONF . iEarLdhy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

HALF OPEN
—

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

HALF OPEN
—

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

HALF OPEN
—

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

HALF OPEN
—

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

HALF OPEN
—

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

—
— CLOSED

Client API Gateway Lambda l T Stripe API

or

DynamoDB Elasticache

e .
s #aarjeremy-daly GOMICXICE CONF . Sl iy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

—_— —_— :
< CLOSED
C—=
or
Key Points: DynamoDB Elasticache

» Cache your cache with warm functions

e .
g #a-jeremy-daly GOXGO0CE CONF . iEarLdhy

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

—_— —_— :
< CLOSED
C—=
or
Key Points: DynamoDB Elasticache

» Cache your cache with warm functions

 Use areasonable failure count

-... #qa-jeremy-daly

(FAILoVERI[H |8

@jeremy_daly

The Circuit Breaker

“Everything fails all the time.”
~WernerVogels

—_— —_— :
< CLOSED
C—=
or
Key Points: DynamoDB Elasticache

» Cache your cache with warm functions

 Use areasonable failure count

* Understand idempotency!

'... #qa-jeremy-daly

(FAILoVERI[H |8

@jeremy_daly

Key Takeaways

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Key Takeaways

* Be prepared for failure — everything fails all the time!

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Key Takeaways

* Be prepared for failure — everything fails all the time!

* Utilize the built in retry mechanisms of the cloud

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Key Takeaways

* Be prepared for failure — everything fails all the time!
* Utilize the built in retry mechanisms of the cloud

* Understand failure modes to protect against data loss

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Key Takeaways

* Be prepared for failure — everything fails all the time!
* Utilize the built in retry mechanisms of the cloud
* Understand failure modes to protect against data loss

 Buffer and throttle events to distributed systems

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Key Takeaways

* Be prepared for failure — everything fails all the time!
* Utilize the built in retry mechanisms of the cloud
* Understand failure modes to protect against data loss
 Buffer and throttle events to distributed systems

* Embrace asynchronous processes to decouple components

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

Thank You!
Blog: JeremyDaly.com i@ (« y)

Podcast: ServerlessChats.com
Newsletter: Offbynone.io off- by-one

A Weekly Serverless Newsletter

a
s #aarjeremy-daly GOMICXICE CONF . Sl iy

DDB Toolbox: DynamoDBToolbox.com
Lambda APl: LambdaAPl.com

GitHub: github.com/jeremydaly
Twitter: @jeremy_daly

Thank You!
Blog: JeremyDaly.com i@ (« y)

Podcast: ServerlessChats.com
Newsletter: Offbynone.io off- by-one

A Weekly Serverless Newsletter

i #qa-jeremy-daly ’ Faiiove e ofo][@jeremy_daly

DDB Toolbox: DynamoDBToolbox.com
Lambda APl: LambdaAPl.com

GitHub: github.com/jeremydaly
Twitter: @jeremy_daly

