
How to fail with Serverless

Jeremy Daly

CTO, AlertMe.news
@jeremy_daly

Jeremy Daly

@jeremy_daly#qa-jeremy-daly

Jeremy Daly

• CTO at AlertMe.news

@jeremy_daly#qa-jeremy-daly

Jeremy Daly

• CTO at AlertMe.news

• Consult with companies building in the cloud

@jeremy_daly#qa-jeremy-daly

Jeremy Daly

• CTO at AlertMe.news

• Consult with companies building in the cloud

• 20+ year veteran of technology startups

@jeremy_daly#qa-jeremy-daly

Jeremy Daly

• CTO at AlertMe.news

• Consult with companies building in the cloud

• 20+ year veteran of technology startups

• Started working with AWS in 2009 and started using
Lambda in 2015

@jeremy_daly#qa-jeremy-daly

Jeremy Daly

• CTO at AlertMe.news

• Consult with companies building in the cloud

• 20+ year veteran of technology startups

• Started working with AWS in 2009 and started using
Lambda in 2015

• Blogger (jeremydaly.com), OSS contributor, speaker

@jeremy_daly#qa-jeremy-daly

Jeremy Daly

• CTO at AlertMe.news

• Consult with companies building in the cloud

• 20+ year veteran of technology startups

• Started working with AWS in 2009 and started using
Lambda in 2015

• Blogger (jeremydaly.com), OSS contributor, speaker

• Publish the Off-by-none serverless newsletter

@jeremy_daly#qa-jeremy-daly

Jeremy Daly

• CTO at AlertMe.news

• Consult with companies building in the cloud

• 20+ year veteran of technology startups

• Started working with AWS in 2009 and started using
Lambda in 2015

• Blogger (jeremydaly.com), OSS contributor, speaker

• Publish the Off-by-none serverless newsletter

• Host of the Serverless Chats podcast

@jeremy_daly#qa-jeremy-daly

Jeremy Daly

• CTO at AlertMe.news

• Consult with companies building in the cloud

• 20+ year veteran of technology startups

• Started working with AWS in 2009 and started using
Lambda in 2015

• Blogger (jeremydaly.com), OSS contributor, speaker

• Publish the Off-by-none serverless newsletter

• Host of the Serverless Chats podcast

@jeremy_daly#qa-jeremy-daly

Jeremy Daly

• CTO at AlertMe.news

• Consult with companies building in the cloud

• 20+ year veteran of technology startups

• Started working with AWS in 2009 and started using
Lambda in 2015

• Blogger (jeremydaly.com), OSS contributor, speaker

• Publish the Off-by-none serverless newsletter

• Host of the Serverless Chats podcast

@jeremy_daly#qa-jeremy-daly

Agenda

@jeremy_daly#qa-jeremy-daly

Agenda

• Distributed systems and serverless

@jeremy_daly#qa-jeremy-daly

Agenda

• Distributed systems and serverless

• Writing code FOR the cloud

@jeremy_daly#qa-jeremy-daly

Agenda

• Distributed systems and serverless

• Writing code FOR the cloud

• Failure modes in the cloud

@jeremy_daly#qa-jeremy-daly

Agenda

• Distributed systems and serverless

• Writing code FOR the cloud

• Failure modes in the cloud

• Serverless patterns to deal with failure

@jeremy_daly#qa-jeremy-daly

Distributed Systems are…

@jeremy_daly#qa-jeremy-daly

Distributed Systems are…

Systems whose components are located on
different networked computers, which communicate
and coordinate their actions by passing messages to
one another. ~ Wikipedia

@jeremy_daly#qa-jeremy-daly

Distributed Systems are…

Systems whose components are located on
different networked computers, which communicate
and coordinate their actions by passing messages to
one another. ~ Wikipedia

@jeremy_daly

They’re also really hard!
#qa-jeremy-daly

@jeremy_daly

Werner Vogels
CTO, Amazon.com

#qa-jeremy-daly

@jeremy_daly

EVERYTHING FAILS
ALL THE TIME

Werner Vogels
CTO, Amazon.com

#qa-jeremy-daly

Serverless applications are…

@jeremy_daly#qa-jeremy-daly

Serverless applications are…

Distributed systems on steroids! 💪💪💪

@jeremy_daly#qa-jeremy-daly

Serverless applications are…

Distributed systems on steroids! 💪💪💪

@jeremy_daly

• Smaller, more distributed compute units

#qa-jeremy-daly

Serverless applications are…

Distributed systems on steroids! 💪💪💪

@jeremy_daly

• Smaller, more distributed compute units

• Stateless, requiring network access to state

#qa-jeremy-daly

Serverless applications are…

Distributed systems on steroids! 💪💪💪

@jeremy_daly

• Smaller, more distributed compute units

• Stateless, requiring network access to state

• Uncoordinated, requires buses, queues, pub/sub, state machines

#qa-jeremy-daly

Serverless applications are…

Distributed systems on steroids! 💪💪💪

@jeremy_daly

• Smaller, more distributed compute units

• Stateless, requiring network access to state

• Uncoordinated, requires buses, queues, pub/sub, state machines

• Heavily reliant on other networked cloud services

#qa-jeremy-daly

What does it mean to be Serverless?

@jeremy_daly#qa-jeremy-daly

What does it mean to be Serverless?

• No server management

@jeremy_daly#qa-jeremy-daly

What does it mean to be Serverless?

• No server management

• Flexible scaling

@jeremy_daly#qa-jeremy-daly

What does it mean to be Serverless?

• No server management

• Flexible scaling

• Pay for value / never pay for idle

@jeremy_daly#qa-jeremy-daly

What does it mean to be Serverless?

• No server management

• Flexible scaling

• Pay for value / never pay for idle

• Automated high availability

@jeremy_daly#qa-jeremy-daly

What does it mean to be Serverless?

• No server management

• Flexible scaling

• Pay for value / never pay for idle

• Automated high availability

• LOTS of configuration and knowledge of cloud services

@jeremy_daly#qa-jeremy-daly

What does it mean to be Serverless?

• No server management

• Flexible scaling

• Pay for value / never pay for idle

• Automated high availability

• LOTS of configuration and knowledge of cloud services

• Highly event-driven

@jeremy_daly#qa-jeremy-daly

Lots of services to communicate with!

@jeremy_daly#qa-jeremy-daly

Lots of services to communicate with!

@jeremy_daly

Lambda Cognito Kinesis

S3 DynamoDB SQS

SNS API Gateway

AppSync IoT Comprehend

“Serverless”

EventBridge

#qa-jeremy-daly

Lots of services to communicate with!

@jeremy_daly

ElastiCache

RDS

EMR Amazon ES

Redshift

Fargate

Lambda Cognito Kinesis

S3 DynamoDB SQS

SNS API Gateway

AppSync IoT Comprehend

“Serverless” Managed

DocumentDB
(MongoDB)

Managed Streaming
for KaRa

EventBridge

#qa-jeremy-daly

Lots of services to communicate with!

@jeremy_daly

ElastiCache

RDS

EMR Amazon ES

Redshift

Fargate

Anything “on EC2”Lambda Cognito Kinesis

S3 DynamoDB SQS

SNS API Gateway

AppSync IoT Comprehend

“Serverless” Managed Non-Serverless

DocumentDB
(MongoDB)

Managed Streaming
for Kafka

EventBridge

#qa-jeremy-daly

Reliability or High Availability is…

@jeremy_daly#qa-jeremy-daly

Reliability or High Availability is…

@jeremy_daly

A characteristic of a system, which aims to ensure an

agreed level of operational performance,

usually uptime, for a higher than normal period.

~ Wikipedia

#qa-jeremy-daly

Resiliency is…

@jeremy_daly#qa-jeremy-daly

Resiliency is…

@jeremy_daly

The ability of a software solution to absorb the impact

of a problem in one or more parts of a system, while

continuing to provide an acceptable service level to

the business. ~ IBM

#qa-jeremy-daly

Resiliency is…

@jeremy_daly

The ability of a software solution to absorb the impact

of a problem in one or more parts of a system, while

continuing to provide an acceptable service level to

the business. ~ IBM

IT’S NOT ABOUT PREVENTING FAILURE

#qa-jeremy-daly

Resiliency is…

@jeremy_daly

The ability of a software solution to absorb the impact

of a problem in one or more parts of a system, while

continuing to provide an acceptable service level to

the business. ~ IBM

IT’S NOT ABOUT PREVENTING FAILURE
IT’S UNDERSTANDING HOW TO GRACEFULLY DEAL WITH IT

#qa-jeremy-daly

Writing code FOR the Cloud

Using Lambda for our business logic

@jeremy_daly#qa-jeremy-daly

Using Lambda for our business logic

• Ephemeral compute service

@jeremy_daly#qa-jeremy-daly

Using Lambda for our business logic

• Ephemeral compute service

• Runs your code in response to events

@jeremy_daly#qa-jeremy-daly

Using Lambda for our business logic

• Ephemeral compute service

• Runs your code in response to events

• Automatically manages the runtime,
compute, and scaling

@jeremy_daly#qa-jeremy-daly

Using Lambda for our business logic

• Ephemeral compute service

• Runs your code in response to events

• Automatically manages the runtime,
compute, and scaling

• Single concurrency model

@jeremy_daly#qa-jeremy-daly

Using Lambda for our business logic

• Ephemeral compute service

• Runs your code in response to events

• Automatically manages the runtime,
compute, and scaling

• Single concurrency model

• No sticky-sessions or guaranteed lifespan

@jeremy_daly#qa-jeremy-daly

Traditional Error Handling & Retries

@jeremy_daly#qa-jeremy-daly

Traditional Error Handling & Retries

try {

// Do something important

} catch (err) {

// Do some error handling
// Do some logging
// Maybe retry the operation

}

@jeremy_daly#qa-jeremy-daly

Traditional Error Handling & Retries

try {

// Do something important

} catch (err) {

// Do some error handling
// Do some logging
// Maybe retry the operation

}

@jeremy_daly

What happens to the
original event?

#qa-jeremy-daly

Traditional Error Handling & Retries

try {

// Do something important

} catch (err) {

// Do some error handling
// Do some logging
// Maybe retry the operation

}

@jeremy_daly

What happens to the
original event?

What happens if there is a
network issue?

#qa-jeremy-daly

Traditional Error Handling & Retries

try {

// Do something important

} catch (err) {

// Do some error handling
// Do some logging
// Maybe retry the operation

}

@jeremy_daly

What happens to the
original event?

What happens if the function
container crashes?

What happens if there is a
network issue?

#qa-jeremy-daly

Traditional Error Handling & Retries

try {

// Do something important

} catch (err) {

// Do some error handling
// Do some logging
// Maybe retry the operation

}

@jeremy_daly

What happens to the
original event?

What happens if the function
container crashes?

What happens if there is a
network issue?

What happens if the function
never runs?

#qa-jeremy-daly

Traditional Error Handling & Retries

try {

// Do something important

} catch (err) {

// Do some error handling
// Do some logging
// Maybe retry the operation

}

@jeremy_daly

What happens to the
original event?

What happens if the function
container crashes?

What happens if there is a
network issue?

Losing events is very bad!
What happens if the function
never runs?

#qa-jeremy-daly

Function Error Types

@jeremy_daly#qa-jeremy-daly

Function Error Types

• Unhandled Exception ‼

@jeremy_daly#qa-jeremy-daly

Function Error Types

• Unhandled Exception ‼

• Function Timeouts ⏳

@jeremy_daly#qa-jeremy-daly

Function Error Types

• Unhandled Exception ‼

• Function Timeouts ⏳

• Out-of-Memory Errors 🧠

@jeremy_daly#qa-jeremy-daly

Function Error Types

• Unhandled Exception ‼

• Function Timeouts ⏳

• Out-of-Memory Errors 🧠

• Throttling Errors🚦

@jeremy_daly#qa-jeremy-daly

The cloud is better than you…

@jeremy_daly#qa-jeremy-daly

The cloud is better than you…

…at error handling

@jeremy_daly#qa-jeremy-daly

The cloud is better than you…

…at error handling

…at retrying failures

@jeremy_daly#qa-jeremy-daly

The cloud is better than you…

…at error handling

…at retrying failures

…at understanding network failures

@jeremy_daly#qa-jeremy-daly

The cloud is better than you…

…at error handling

…at retrying failures

…at understanding network failures

…at mapping the network topology

@jeremy_daly#qa-jeremy-daly

The cloud is better than you…

…at error handling

…at retrying failures

…at understanding network failures

…at mapping the network topology

…at handling failover and redundancy

@jeremy_daly#qa-jeremy-daly

The cloud is better than you…

…at error handling

…at retrying failures

…at understanding network failures

…at mapping the network topology

…at handling failover and redundancy

@jeremy_daly

So why not let the
cloud do those
things for you? 🤷

#qa-jeremy-daly

Fail up the stack

@jeremy_daly#qa-jeremy-daly

Fail up the stack

• Don’t swallow errors with try/catch – fail the function

@jeremy_daly#qa-jeremy-daly

Fail up the stack

• Don’t swallow errors with try/catch – fail the function

@jeremy_daly

(sometimes 😉)

#qa-jeremy-daly

Fail up the stack

• Don’t swallow errors with try/catch – fail the function

• Return errors directly to the invoking service

@jeremy_daly

(sometimes 😉)

#qa-jeremy-daly

Fail up the stack

• Don’t swallow errors with try/catch – fail the function

• Return errors directly to the invoking service

• Configure built-in retry mechanisms to reprocess events

@jeremy_daly

(sometimes 😉)

#qa-jeremy-daly

Fail up the stack

• Don’t swallow errors with try/catch – fail the function

• Return errors directly to the invoking service

• Configure built-in retry mechanisms to reprocess events

• Utilize dead letter queues to capture failed events

@jeremy_daly

(sometimes 😉)

#qa-jeremy-daly

Types of Lambda Functions

@jeremy_daly#qa-jeremy-daly

Types of Lambda Functions

• The Lambdalith

@jeremy_daly#qa-jeremy-daly

Types of Lambda Functions

• The Lambdalith

@jeremy_daly

😬

#qa-jeremy-daly

Types of Lambda Functions

• The Lambdalith

• The Fat Lambda

@jeremy_daly

😬

#qa-jeremy-daly

Types of Lambda Functions

• The Lambdalith

• The Fat Lambda

@jeremy_daly

😬

🤔

#qa-jeremy-daly

Types of Lambda Functions

• The Lambdalith

• The Fat Lambda

• The Single-Purpose Function

@jeremy_daly

😬

🤔

#qa-jeremy-daly

Types of Lambda Functions

• The Lambdalith

• The Fat Lambda

• The Single-Purpose Function

@jeremy_daly

😬

🤔

👍

#qa-jeremy-daly

The Mighty Lambdalith

@jeremy_daly#qa-jeremy-daly

The Mighty Lambdalith

@jeremy_daly#qa-jeremy-daly

The Mighty Lambdalith

• The entire application is in one
Lambda function

@jeremy_daly#qa-jeremy-daly

The Mighty Lambdalith

• The entire application is in one
Lambda function

• Often times these are “lift and
shift” Express.js or Flask apps

@jeremy_daly#qa-jeremy-daly

The Mighty Lambdalith

• The entire application is in one
Lambda function

• Often times these are “lift and
shift” Express.js or Flask apps

• Events are synchronous via API
Gateway or ALB

@jeremy_daly#qa-jeremy-daly

The Mighty Lambdalith

• The entire application is in one
Lambda function

• Often times these are “lift and
shift” Express.js or Flask apps

• Events are synchronous via API
Gateway or ALB

• Partial failures are handled “in the
code”

@jeremy_daly#qa-jeremy-daly

The Fat Lambda

@jeremy_daly#qa-jeremy-daly

The Fat Lambda

• Several related methods are collocated in a single Lambda function

@jeremy_daly#qa-jeremy-daly

The Fat Lambda

• Several related methods are collocated in a single Lambda function

• Generally used to optimize the speed of synchronous operations

@jeremy_daly#qa-jeremy-daly

The Fat Lambda

• Several related methods are collocated in a single Lambda function

• Generally used to optimize the speed of synchronous operations

• Partial failures are still handled “in the code”

@jeremy_daly#qa-jeremy-daly

The Fat Lambda

• Several related methods are collocated in a single Lambda function

• Generally used to optimize the speed of synchronous operations

• Partial failures are still handled “in the code”

• Under the right circumstances, this can be useful

@jeremy_daly#qa-jeremy-daly

The Single-Purpose Function

@jeremy_daly#qa-jeremy-daly

The Single-Purpose Function

• Tightly scoped function that handles a single discrete piece of
business logic

@jeremy_daly#qa-jeremy-daly

The Single-Purpose Function

• Tightly scoped function that handles a single discrete piece of
business logic

• Can be invoked synchronously or asynchronously

@jeremy_daly#qa-jeremy-daly

The Single-Purpose Function

• Tightly scoped function that handles a single discrete piece of
business logic

• Can be invoked synchronously or asynchronously

• Failures are generally “total failures” and are passed back to the
invoking service

@jeremy_daly#qa-jeremy-daly

The Single-Purpose Function

• Tightly scoped function that handles a single discrete piece of
business logic

• Can be invoked synchronously or asynchronously

• Failures are generally “total failures” and are passed back to the
invoking service

• Can be reused as part of other “workflows”, can scale (or throttle)
independently, and can utilize the Principle of Least Privilege

@jeremy_daly#qa-jeremy-daly

Failure Modes in the Cloud

Failure Modes in the Cloud
WARNING: Firehose of overly-technical content ahead 👩🚒

Understanding retries…

@jeremy_daly#qa-jeremy-daly

Understanding retries…

• Retries are a vital part of distributed systems

@jeremy_daly#qa-jeremy-daly

Understanding retries…

• Retries are a vital part of distributed systems

• Most cloud services guarantee “at least once” delivery

@jeremy_daly#qa-jeremy-daly

Understanding retries…

• Retries are a vital part of distributed systems

• Most cloud services guarantee “at least once” delivery

• It is possible for the same event to be received more than once

@jeremy_daly#qa-jeremy-daly

Understanding retries…

• Retries are a vital part of distributed systems

• Most cloud services guarantee “at least once” delivery

• It is possible for the same event to be received more than once

• Retried operations should be idempotent

@jeremy_daly#qa-jeremy-daly

Idempotent means that…

@jeremy_daly#qa-jeremy-daly

Idempotent means that…

An operation can be repeated multiple times and
always provide the same result, with no side effects
to other objects in the system. ~ Computer Hope

@jeremy_daly#qa-jeremy-daly

Idempotent means that…

An operation can be repeated multiple times and
always provide the same result, with no side effects
to other objects in the system. ~ Computer Hope

@jeremy_daly

Idempotent operations:

#qa-jeremy-daly

Idempotent means that…

An operation can be repeated multiple times and
always provide the same result, with no side effects
to other objects in the system. ~ Computer Hope

@jeremy_daly

Idempotent operations:
• Update a database record

#qa-jeremy-daly

Idempotent means that…

An operation can be repeated multiple times and
always provide the same result, with no side effects
to other objects in the system. ~ Computer Hope

@jeremy_daly

Idempotent operations:
• Update a database record
• Authenticate a user

#qa-jeremy-daly

Idempotent means that…

An operation can be repeated multiple times and
always provide the same result, with no side effects
to other objects in the system. ~ Computer Hope

@jeremy_daly

Idempotent operations:
• Update a database record
• Authenticate a user
• Check if a record exists and create if not

#qa-jeremy-daly

Idempotent means that…

An operation can be repeated multiple times and
always provide the same result, with no side effects
to other objects in the system. ~ Computer Hope

@jeremy_daly

Idempotent operations:
• Update a database record
• Authenticate a user
• Check if a record exists and create if not

There are lots of
strategies to ensure
idempotency!

#qa-jeremy-daly

Dead Letter Queues (DLQs)

@jeremy_daly#qa-jeremy-daly

Dead Letter Queues (DLQs)

• Capture messages/events that fail to process or are skipped

@jeremy_daly#qa-jeremy-daly

Dead Letter Queues (DLQs)

• Capture messages/events that fail to process or are skipped

• Allows for alarming, inspection, and potential replay

@jeremy_daly#qa-jeremy-daly

Dead Letter Queues (DLQs)

• Capture messages/events that fail to process or are skipped

• Allows for alarming, inspection, and potential replay

• Can be added to SQS queues, SNS subscriptions, Lambda functions

@jeremy_daly#qa-jeremy-daly

Lambda Invocation Types

@jeremy_daly#qa-jeremy-daly

Lambda Invocation Types

• Synchronous – request/response model

@jeremy_daly#qa-jeremy-daly

Lambda Invocation Types

• Synchronous – request/response model

• Asynchronous – set it and forget it

@jeremy_daly#qa-jeremy-daly

Lambda Invocation Types

• Synchronous – request/response model

• Asynchronous – set it and forget it

• Stream-based – push

@jeremy_daly#qa-jeremy-daly

Lambda Invocation Types

• Synchronous – request/response model

• Asynchronous – set it and forget it

• Stream-based – push

• Poller-based – pull

@jeremy_daly#qa-jeremy-daly

Synchronous Lambda Retry Behavior

@jeremy_daly#qa-jeremy-daly

Synchronous Lambda Retry Behavior

• Functions are invoked directly using request/response method

@jeremy_daly#qa-jeremy-daly

Synchronous Lambda Retry Behavior

• Functions are invoked directly using request/response method

• Failures are returned to the invoker

@jeremy_daly#qa-jeremy-daly

Synchronous Lambda Retry Behavior

• Functions are invoked directly using request/response method

• Failures are returned to the invoker

• Retries are delegated to the invoking application

@jeremy_daly#qa-jeremy-daly

Synchronous Lambda Retry Behavior

• Functions are invoked directly using request/response method

• Failures are returned to the invoker

• Retries are delegated to the invoking application

• Some AWS services automatically retry (e.g. Alexa & Cognito)

@jeremy_daly#qa-jeremy-daly

Synchronous Lambda Retry Behavior

• Functions are invoked directly using request/response method

• Failures are returned to the invoker

• Retries are delegated to the invoking application

• Some AWS services automatically retry (e.g. Alexa & Cognito)

• Other services do not retry (e.g. API Gateway, ALB, Step Functions)

@jeremy_daly#qa-jeremy-daly

Synchronous Lambda Retry Behavior

• Functions are invoked directly using request/response method

• Failures are returned to the invoker

• Retries are delegated to the invoking application

• Some AWS services automatically retry (e.g. Alexa & Cognito)

• Other services do not retry (e.g. API Gateway, ALB, Step Functions)

• API Gateway and ALB can return errors to the client for retry

@jeremy_daly#qa-jeremy-daly

Asynchronous Lambda Retry Behavior

@jeremy_daly#qa-jeremy-daly

Asynchronous Lambda Retry Behavior

• The Lambda Service accepts requests and adds them to a queue

@jeremy_daly#qa-jeremy-daly

Asynchronous Lambda Retry Behavior

• The Lambda Service accepts requests and adds them to a queue

• The invoker receives a 202 status code and disconnects

@jeremy_daly#qa-jeremy-daly

Asynchronous Lambda Retry Behavior

• The Lambda Service accepts requests and adds them to a queue

• The invoker receives a 202 status code and disconnects

• The Lambda Service will attempt to reprocess failed events up to
2 times, configured using the MaximumRetryAttempts setting

@jeremy_daly#qa-jeremy-daly

Asynchronous Lambda Retry Behavior

• The Lambda Service accepts requests and adds them to a queue

• The invoker receives a 202 status code and disconnects

• The Lambda Service will attempt to reprocess failed events up to
2 times, configured using the MaximumRetryAttempts setting

• If the Lambda function is throttled, the event will be retried for up to
6 hours, configured using MaximumEventAgeInSeconds

@jeremy_daly#qa-jeremy-daly

Asynchronous Lambda Retry Behavior

• The Lambda Service accepts requests and adds them to a queue

• The invoker receives a 202 status code and disconnects

• The Lambda Service will attempt to reprocess failed events up to
2 times, configured using the MaximumRetryAttempts setting

• If the Lambda function is throttled, the event will be retried for up to
6 hours, configured using MaximumEventAgeInSeconds

• Failed and expired events can be sent to a Dead Letter Queue (DLQ)
or an on-failure destination

@jeremy_daly#qa-jeremy-daly

Stream-based Lambda Retry Behavior

@jeremy_daly#qa-jeremy-daly

Stream-based Lambda Retry Behavior

• Records are pushed synchronously to Lambda from Kinesis or
DynamoDB streams in batches (10k and 1k limits per batch)

@jeremy_daly#qa-jeremy-daly

Stream-based Lambda Retry Behavior

• Records are pushed synchronously to Lambda from Kinesis or
DynamoDB streams in batches (10k and 1k limits per batch)

• MaximumRetryAttempts: number of retry attempts for batches
before they can be skipped (up to 10,000)

@jeremy_daly#qa-jeremy-daly

Stream-based Lambda Retry Behavior

• Records are pushed synchronously to Lambda from Kinesis or
DynamoDB streams in batches (10k and 1k limits per batch)

• MaximumRetryAttempts: number of retry attempts for batches
before they can be skipped (up to 10,000)

• MaximumRecordAgeInSeconds: store records up to 7 days

@jeremy_daly#qa-jeremy-daly

Stream-based Lambda Retry Behavior

• Records are pushed synchronously to Lambda from Kinesis or
DynamoDB streams in batches (10k and 1k limits per batch)

• MaximumRetryAttempts: number of retry attempts for batches
before they can be skipped (up to 10,000)

• MaximumRecordAgeInSeconds: store records up to 7 days

• BisectBatchOnFunctionError: recursively split failed batches
(poison pill)

@jeremy_daly#qa-jeremy-daly

Stream-based Lambda Retry Behavior

• Records are pushed synchronously to Lambda from Kinesis or
DynamoDB streams in batches (10k and 1k limits per batch)

• MaximumRetryAttempts: number of retry attempts for batches
before they can be skipped (up to 10,000)

• MaximumRecordAgeInSeconds: store records up to 7 days

• BisectBatchOnFunctionError: recursively split failed batches
(poison pill)

• Skipped records are sent to an On-failure Destination (SQS or SNS)

@jeremy_daly#qa-jeremy-daly

Poller-based Lambda Retry Behavior

@jeremy_daly#qa-jeremy-daly

Poller-based Lambda Retry Behavior

• The Lambda Poller pulls records synchronously from SQS in
batches (up to 10)

@jeremy_daly#qa-jeremy-daly

Poller-based Lambda Retry Behavior

• The Lambda Poller pulls records synchronously from SQS in
batches (up to 10)

• Errors fail the entire batch

@jeremy_daly#qa-jeremy-daly

Poller-based Lambda Retry Behavior

• The Lambda Poller pulls records synchronously from SQS in
batches (up to 10)

• Errors fail the entire batch

• MaxReceiveCount: number of times messages can be returned to
the queue before being sent to the DLQ (up to 1,000)

@jeremy_daly#qa-jeremy-daly

Poller-based Lambda Retry Behavior

• The Lambda Poller pulls records synchronously from SQS in
batches (up to 10)

• Errors fail the entire batch

• MaxReceiveCount: number of times messages can be returned to
the queue before being sent to the DLQ (up to 1,000)

• Polling frequency is tied to function concurrency

@jeremy_daly#qa-jeremy-daly

Poller-based Lambda Retry Behavior

• The Lambda Poller pulls records synchronously from SQS in
batches (up to 10)

• Errors fail the entire batch

• MaxReceiveCount: number of times messages can be returned to
the queue before being sent to the DLQ (up to 1,000)

• Polling frequency is tied to function concurrency

• Visibility Timeout should be set to at least 6 times the timeout
configured on your consuming function

@jeremy_daly#qa-jeremy-daly

Lambda Destinations

@jeremy_daly#qa-jeremy-daly

Lambda Destinations

• Only for asynchronous invocations

@jeremy_daly#qa-jeremy-daly

Lambda Destinations

• Only for asynchronous invocations

• Routing based on SUCCESS and/or FAILURE

@jeremy_daly#qa-jeremy-daly

Lambda Destinations

• Only for asynchronous invocations

• Routing based on SUCCESS and/or FAILURE

• OnFailure should be favored over a standard DLQ

@jeremy_daly#qa-jeremy-daly

Lambda Destinations

• Only for asynchronous invocations

• Routing based on SUCCESS and/or FAILURE

• OnFailure should be favored over a standard DLQ

• Destinations can be an SQS queue, SNS topic,
Lambda function, or EventBridge event bus

@jeremy_daly#qa-jeremy-daly

Lambda Destinations (continued)

@jeremy_daly#qa-jeremy-daly

Lambda Destinations (continued)

Destination-specific JSON format

@jeremy_daly#qa-jeremy-daly

Lambda Destinations (continued)

Destination-specific JSON format

• SQS/SNS: JSON object is passed as the Message

@jeremy_daly#qa-jeremy-daly

Lambda Destinations (continued)

Destination-specific JSON format

• SQS/SNS: JSON object is passed as the Message

• Lambda: JSON is passed as the payload to the function

@jeremy_daly#qa-jeremy-daly

Lambda Destinations (continued)

Destination-specific JSON format

• SQS/SNS: JSON object is passed as the Message

• Lambda: JSON is passed as the payload to the function

• EventBridge: JSON is passed as the Detail in the PutEvents call

@jeremy_daly#qa-jeremy-daly

Lambda Destinations (continued)

Destination-specific JSON format

• SQS/SNS: JSON object is passed as the Message

• Lambda: JSON is passed as the payload to the function

• EventBridge: JSON is passed as the Detail in the PutEvents call
• Source is ”lambda”
• Detail Type is “Lambda Function Invocation Result – Success/Failure”
• Resource fields contain the function and destination ARNs

@jeremy_daly#qa-jeremy-daly

SQS Redrive Policies

@jeremy_daly#qa-jeremy-daly

SQS Redrive Policies

• Only supports another SQS queue as the DLQ

@jeremy_daly#qa-jeremy-daly

SQS Redrive Policies

• Only supports another SQS queue as the DLQ

• Messages are sent to the DLQ if the Maximum Receives value is
exceeded

@jeremy_daly#qa-jeremy-daly

SNS Redrive Policies

@jeremy_daly#qa-jeremy-daly

SNS Redrive Policies

• Dead Letter Queues are attached to Subscriptions, not Topics

@jeremy_daly#qa-jeremy-daly

SNS Redrive Policies

• Dead Letter Queues are attached to Subscriptions, not Topics

• Only supports SQS queues as the DLQ

@jeremy_daly#qa-jeremy-daly

SNS Redrive Policies

• Dead Letter Queues are attached to Subscriptions, not Topics

• Only supports SQS queues as the DLQ

• Client-side errors (e.g. Lambda doesn’t exist) do no retry

@jeremy_daly#qa-jeremy-daly

SNS Redrive Policies

• Dead Letter Queues are attached to Subscriptions, not Topics

• Only supports SQS queues as the DLQ

• Client-side errors (e.g. Lambda doesn’t exist) do no retry

• Messages to SQS or Lambda are retried 100,015 times over 23 days

@jeremy_daly#qa-jeremy-daly

SNS Redrive Policies

• Dead Letter Queues are attached to Subscriptions, not Topics

• Only supports SQS queues as the DLQ

• Client-side errors (e.g. Lambda doesn’t exist) do no retry

• Messages to SQS or Lambda are retried 100,015 times over 23 days

• Messages to SMTP, SMS, and Mobile retry 50 times over 6 hours

@jeremy_daly#qa-jeremy-daly

SNS Redrive Policies

• Dead Letter Queues are attached to Subscriptions, not Topics

• Only supports SQS queues as the DLQ

• Client-side errors (e.g. Lambda doesn’t exist) do no retry

• Messages to SQS or Lambda are retried 100,015 times over 23 days

• Messages to SMTP, SMS, and Mobile retry 50 times over 6 hours

• HTTP endpoints support customer-defined retry policies
(number of retries, delays, and backoff strategy)

@jeremy_daly#qa-jeremy-daly

EventBridge Retry Behavior

@jeremy_daly#qa-jeremy-daly

EventBridge Retry Behavior

• Will attempt to deliver events for up to 24 hours with backoff

@jeremy_daly#qa-jeremy-daly

EventBridge Retry Behavior

• Will attempt to deliver events for up to 24 hours with backoff

• Failed events are lost (this is very unlikely)

@jeremy_daly#qa-jeremy-daly

EventBridge Retry Behavior

• Will attempt to deliver events for up to 24 hours with backoff

• Failed events are lost (this is very unlikely)

• Once events are accepted by the target service, failure modes of
those services are used

@jeremy_daly#qa-jeremy-daly

EventBridge Retry Behavior

• Will attempt to deliver events for up to 24 hours with backoff

• Failed events are lost (this is very unlikely)

• Once events are accepted by the target service, failure modes of
those services are used

• Lambda functions are invoked asynchronously

@jeremy_daly#qa-jeremy-daly

Step Functions

@jeremy_daly#qa-jeremy-daly

Step Functions
• State Machines: Orchestration workflows

@jeremy_daly#qa-jeremy-daly

Step Functions
• State Machines: Orchestration workflows

@jeremy_daly

Complex Error Handling Pattern

Credit: Yan Cui

#qa-jeremy-daly

Step Functions
• State Machines: Orchestration workflows

• Lambdas are invoked synchronously

@jeremy_daly

Complex Error Handling Pattern

Credit: Yan Cui

#qa-jeremy-daly

Step Functions
• State Machines: Orchestration workflows

• Lambdas are invoked synchronously

• Retriers and Catchers allow for complex
error handling patterns

@jeremy_daly

Complex Error Handling Pattern

Credit: Yan Cui

#qa-jeremy-daly

Step Functions
• State Machines: Orchestration workflows

• Lambdas are invoked synchronously

• Retriers and Catchers allow for complex
error handling patterns

• Use “error names” with ErrorEquals for
condition error handling (States.*)

@jeremy_daly

Complex Error Handling Pattern

Credit: Yan Cui

#qa-jeremy-daly

Step Functions
• State Machines: Orchestration workflows

• Lambdas are invoked synchronously

• Retriers and Catchers allow for complex
error handling patterns

• Use “error names” with ErrorEquals for
condition error handling (States.*)

• Control retry policies with IntervalSeconds,
MaxAttempts, BackoffRate

@jeremy_daly

Complex Error Handling Pattern

Credit: Yan Cui

#qa-jeremy-daly

AWS SDK Retries

@jeremy_daly#qa-jeremy-daly

AWS SDK Retries

• Automatic retries and exponential backoff

@jeremy_daly#qa-jeremy-daly

AWS SDK Retries

• Automatic retries and exponential backoff

@jeremy_daly

AWS SDK
Maximum retry

count
Connection

timeout
Socket timeout

Python (Boto 3) depends on service 60 seconds 60 seconds

Node.js depends on service N/A 120 seconds

Java 3 10 seconds 50 seconds

.NET 4 100 seconds 300 seconds

Go 3 N/A N/A

#qa-jeremy-daly

Error Handling Patterns

Buffer events for throttling and durability

@jeremy_daly#qa-jeremy-daly

Buffer events for throttling and durability

Client API Gateway Lambda

@jeremy_daly#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway Lambda

@jeremy_daly#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

QueueLambda

@jeremy_daly#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

QueueLambda

“Asynchronous”
Request

@jeremy_daly#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

QueueLambda

ack

“Asynchronous”
Request

@jeremy_daly#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

QueueLambda

ack

“Asynchronous”
Request

@jeremy_daly#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

QueueLambda Lambda
(throttled)

ack

“Asynchronous”
Request

@jeremy_daly#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

QueueLambda Lambda
(throttled)

ack

“Asynchronous”
Request

@jeremy_daly

Limit the
concurrency to match

RDS throughput

#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

QueueLambda Lambda
(throttled)

ack

“Asynchronous”
Request

@jeremy_daly

Limit the
concurrency to match

RDS throughput

#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

QueueLambda Lambda
(throttled)

ack

“Asynchronous”
Request

Synchronous
Request

@jeremy_daly

Limit the
concurrency to match

RDS throughput

#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

QueueLambda Lambda
(throttled)

ack

“Asynchronous”
Request

Synchronous
Request

@jeremy_daly

Limit the
concurrency to match

RDS throughput

#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

QueueLambda Lambda
(throttled)

ack

“Asynchronous”
Request

Synchronous
Request

@jeremy_daly

Limit the
concurrency to match

RDS throughput

#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

QueueLambda Lambda
(throttled)

ack

“Asynchronous”
Request

Synchronous
Request

@jeremy_daly

Limit the
concurrency to match

RDS throughput

#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

Queue

SQS
(DLQ)

Lambda Lambda
(throttled)

ack

“Asynchronous”
Request

Synchronous
Request

@jeremy_daly

Limit the
concurrency to match

RDS throughput

#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

Queue

SQS
(DLQ)

Lambda Lambda
(throttled)

ack

“Asynchronous”
Request

Synchronous
Request

@jeremy_daly

Key Points:

• SQS adds durability
Limit the

concurrency to match
RDS throughput

#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

Queue

SQS
(DLQ)

Lambda Lambda
(throttled)

ack

“Asynchronous”
Request

Synchronous
Request

@jeremy_daly

Key Points:

• SQS adds durability

• Throttled Lambdas reduce downstream pressure

Limit the
concurrency to match

RDS throughput

#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

Queue

SQS
(DLQ)

Lambda Lambda
(throttled)

ack

“Asynchronous”
Request

Synchronous
Request

@jeremy_daly

Key Points:

• SQS adds durability

• Throttled Lambdas reduce downstream pressure

• Failed events are stored for further inspection/replay

Limit the
concurrency to match

RDS throughput

#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

Queue

SQS
(DLQ)

Lambda Lambda
(throttled)

ack

“Asynchronous”
Request

Synchronous
Request

@jeremy_daly

Key Points:

• SQS adds durability

• Throttled Lambdas reduce downstream pressure

• Failed events are stored for further inspection/replay

Limit the
concurrency to match

RDS throughput

x
#qa-jeremy-daly

RDS

Buffer events for throttling and durability

Client API Gateway
SQS

Queue

SQS
(DLQ)

Lambda Lambda
(throttled)

ack

“Asynchronous”
Request

Synchronous
Request

@jeremy_daly

Key Points:

• SQS adds durability

• Throttled Lambdas reduce downstream pressure

• Failed events are stored for further inspection/replay

Limit the
concurrency to match

RDS throughput

x
Utilize Service

Integrations

#qa-jeremy-daly

The Circuit Breaker

@jeremy_daly#qa-jeremy-daly

The Circuit Breaker

Client API Gateway Lambda

@jeremy_daly#qa-jeremy-daly

Stripe API

The Circuit Breaker

Client API Gateway Lambda

@jeremy_daly#qa-jeremy-daly

Stripe API

The Circuit Breaker

Client API Gateway Lambda

@jeremy_daly#qa-jeremy-daly

Stripe API

The Circuit Breaker

Client API Gateway Lambda

@jeremy_daly#qa-jeremy-daly

Stripe API

The Circuit Breaker

Client API Gateway Lambda

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

🔥
🔥

🔥

🔥

🔥

#qa-jeremy-daly

Stripe API

The Circuit Breaker

Client API Gateway Lambda

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly#qa-jeremy-daly

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check CLOSED

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check CLOSED

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check CLOSED

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check CLOSED

Increment Failure Count

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check CLOSED

Increment Failure Count

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

OPEN

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

OPEN

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

HALF OPEN

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

HALF OPEN

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

HALF OPEN

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

HALF OPEN

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check

HALF OPEN

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Status
Check CLOSED

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Key Points:

• Cache your cache with warm functions

Status
Check CLOSED

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Key Points:

• Cache your cache with warm functions

• Use a reasonable failure count

Status
Check CLOSED

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

DynamoDB

Stripe API

The Circuit Breaker

Client API Gateway Lambda

Key Points:

• Cache your cache with warm functions

• Use a reasonable failure count

• Understand idempotency!

Status
Check CLOSED

“Everything fails all the time.”
~ Werner Vogels

@jeremy_daly

Elasticache

or

#qa-jeremy-daly

Key Takeaways

@jeremy_daly#qa-jeremy-daly

Key Takeaways

• Be prepared for failure – everything fails all the time!

@jeremy_daly#qa-jeremy-daly

Key Takeaways

• Be prepared for failure – everything fails all the time!

• Utilize the built in retry mechanisms of the cloud

@jeremy_daly#qa-jeremy-daly

Key Takeaways

• Be prepared for failure – everything fails all the time!

• Utilize the built in retry mechanisms of the cloud

• Understand failure modes to protect against data loss

@jeremy_daly#qa-jeremy-daly

Key Takeaways

• Be prepared for failure – everything fails all the time!

• Utilize the built in retry mechanisms of the cloud

• Understand failure modes to protect against data loss

• Buffer and throttle events to distributed systems

@jeremy_daly#qa-jeremy-daly

Key Takeaways

• Be prepared for failure – everything fails all the time!

• Utilize the built in retry mechanisms of the cloud

• Understand failure modes to protect against data loss

• Buffer and throttle events to distributed systems

• Embrace asynchronous processes to decouple components

@jeremy_daly#qa-jeremy-daly

Thank You!
Blog: JeremyDaly.com

Podcast: ServerlessChats.com

Newsletter: Ofynone.io

DDB Toolbox: DynamoDBToolbox.com

Lambda API: LambdaAPI.com

GitHub: github.com/jeremydaly

Twitter: @jeremy_daly

@jeremy_daly#qa-jeremy-daly

Thank You!
Blog: JeremyDaly.com

Podcast: ServerlessChats.com

Newsletter: Ofynone.io

DDB Toolbox: DynamoDBToolbox.com

Lambda API: LambdaAPI.com

GitHub: github.com/jeremydaly

Twitter: @jeremy_daly

@jeremy_daly#qa-jeremy-daly

