
Closing the

Reliability Gap
Building a Culture of Reliability through
Testing, Scoring, and Automation

RELIABILITY MANAGEMENT ebook

Table of contents

3 Introduction

5 Test for reliability risks

6 Scan configurations to detect common risks

7 Test for specific failure modes with reliability tests

9 Understand systems with custom Chaos Engineering experiments

10 Align around Reliability Scores

11 Why use a Reliability Score?

12 How the score is built

13 Continue and automate testing

15 Conclusion: Bridging the reliability gap demands collaboration

16 Further Reading

Closing the Reliability Gap 2

Introduction

Reliability is more important than ever. Customers expect the services they

use to always be available.

 If customers try to use your service only to find a poor experience or that the service is down altogether,

they’re more likely to move to a competitor. And if your customer is a business, then an outage or incident

can cause real damage, something they’re definitely going to remember when it comes time to renew  

their contract.

And yet, reliability is harder than ever to get right. With the rise of DevOps, microservices, and distributed

infrastructure, applications are growing larger and more complex. Applications are changing more rapidly,

with many teams pushing changes to production several times a day. Our mental models haven’t kept up

with these systems, and it’s less clear what good reliability actually looks like.

That is the reliability gap—the separation between where your reliability is and where you know you  

want it to be.

At its worst, the gap shows up as brand- and revenue-impacting incidents and outages. But it can also show

up as reliability risks that are less obvious and just as expensive as they slow software development, force

your best engineers to fix fundamental infrastructure issues (instead of launching new features), and

overwhelm organizations with manual, time consuming processes.

The problem is that there hasn’t been a standardized way to measure and improve reliability that fits modern

development. Some practices have emerged, such as site reliability engineering, adopting observability and

incident response tools, and running Chaos Engineering experiments. These each play a role, but are

collectively insufficient to close the reliability gap at scale.

Closing the Reliability Gap TABLE OF CONTENTS 3

Where common reliability approaches fall short

Observability - Can't predict what hasn't already been seen

Incident Response - Reactive by definition; can't prevent unplanned incidents

SLOs & SLIs - Measure unreliability; don’t indicate where to improve

Chaos Engineering - Good for exploration and specific risks, but hard to scale

Site Reliability Engineering - Expensive and difficult to scale; dependent on other teams

QA and Performance Testing - Lacks visibility into real-world, less-than-ideal conditions

If you’re going to close the reliability gap, you need to be able to see the current reliability of your

systems, prioritize remediations to fix the reliability risks most likely to impact customers, and track

reliability progress over time.

When you do this, you won’t be forced to wait until something breaks to find out if there’s a

problem. By testing ahead of time and standardizing around core reliability metrics, you’ll be able

find and fix reliability risks before they become incidents.

Closing the Reliability Gap TABLE OF CONTENTS 4

The same is true with reliability risks. Your system may be running fine right now, but these are places where

your system could break. And you can prevent an incident by locating and remediating the cause of the risk

before it causes an outage.

Let’s look at resource scalability as an example. The service may run just fine with a normal amount of traffic,

but a sudden surge may cause its memory or CPU usage to spike. And if it’s not set up correctly, that spike

could bring the service, and everything dependent on it, down.

Unfortunately, our modern, complex architectures often have far more reliability risks than we’d like.

Working closely with our customers, present in nearly every

organization, such as lack of zone redundancy and misconfigured autoscaling. For example, our data shows

26% of Kubernetes deployments had zero zone redundancy and 80% failed to utilize more than two zones

(a best practice recommended in the AWS Well-Architected Framework). These misconfigurations can have

serious impacts on system reliability. In this case, if one zone is unavailable, which is common, a full quarter

of deployments would be offline.

we’ve found critical reliability risks

A combination of scanning for common risks, reliability testing, and custom Chaos Engineering experiments

can help you locate reliability risks. Let’s look at how you can use this combination using Gremlin, a SaaS

solution that helps enterprise organizations find and fix their reliability risks before they turn into incidents.

They’re similar to the idea of security vulnerabilities.  

Having security vulnerabilities doesn’t mean that your

system is automatically compromised, but they are a weak

point where a breach could happen, so the vulnerability

should be addressed before someone exploits it.

Reliability risks are potential points of

failure within your system.

Test for

reliability risks

C lo s i n g t h e R e l i a b i l i t y G a p TABLE OF CONTENTS 5

https://www.gremlin.com/blog/introducing-detected-reliability-risks/

Scan configurations to detect common risks

Like with addressing security vulnerabilities, the first step is to scan

for any common or known risks.

Gremlin’s Detected Risks helps you find and fix the most common causes of infrastructure outages without

running Chaos Engineering experiments or reliability tests

gremlin-support-api 0/6

gremlin-event-worker 0/6

datadog-agent 3/6

gremlin-control-plane-apl-segment 0/6

gremlin-alfi-api 0/6

gremlin-control-plane-agent-segment 0/6

datadog-cluster-agent 4/6

Total Risks Kubernetes Memory 
Request

Availability Zone 
Redundancy

Kubernetes Memory 
Limit

Kubernetes Liveness 
Probe

Application Version 
Uniformity

Kubernetes CPU 
Request

Detected Risks are high-priority reliability concerns that Gremlin automatically identified in any environment

where the Gremlin agent is installed. These risks can include misconfigurations, bad default values, or reliability

anti-patterns. Gremlin prioritizes these risks based on severity and impact for each of your services. This gives

you near-instantaneous feedback on risks and action items to improve the reliability and stability of your

services.

Closing the Reliability Gap TABLE OF CONTENTS 6

C lo s i n g t h e R e l i a b i l i t y G a p TA B L E O F CO N T E N T S 7

The goal with Detected Risks is to quickly give you actionable data that you can use to uncover and

remediate the most common reliability risks.

These risks can include:

CPU Requests Memory Requests

Liveness Probes Memory Limits

Availability Zone Redundancy

And more...

Application Version Uniformity

Gremlin provides several pre-built tests designed to proactively validate

against common reliability issues.

These tests use Fault Injection to stress systems while watching the monitors you’ve set in your observability

tool. If your systems can run the test without triggering an alert, you pass. If not, tests are halted and

marked as a fail—there is work to do to remediate this risk.

Test for specific failure modes with reliability tests

These include tests under three broad categories:

Scalability 

Tests if your service behaves as expected when system resources (such as CPU or memory) are

limited or exhausted.

Redundancy 

Tests whether your service is reliable when one of your hosts, zones, or regions is unavailable.

Dependencies 

Dependencies are any independently maintained software component used by a service to provide

features or functionality. Dependencies can be hard (required) or soft (not required), and this

test checks whether your service performs as expected when a dependency is slow, unavailable, or

has an expiring security certificate—a surprisingly common cause of incidents.

While Gremlin includes comprehensive tests out of the box, many organizations modify these tests or add

their own to set the standard for reliability consistently across the organization or meet external compliance

requirements. For example, Gremlin’s Zone Redundancy test runs for five minutes, but many banks need to

provide evidence to regulators that they can withstand the loss of a zone for three hours. Gremlin makes it

simple to adjust the parameters and test for this.

Closing the Reliability Gap TABLE OF CONTENTS 8

Modern software environments are complex and distributed with countless moving parts, and testing could

be done at many layers. However, reliability testing is best approached on a per-service basis. Services (or

microservices), are independently deployable units of functionality that provide a single function within a

broader application, like a checkout service or authentication service. Gremlin uses services as the main unit

of reliability measurement and improvement.

When you first start testing, you may want to run reliability tests in a non-production environment that

closely mirrors production, but the ultimate goal is to run and pass tests in production. Because tests

are designed to simulate real-world scenarios, it’s best to validate that services can withstand these

issues in real-world environments. Gremlin includes a number of safeguards to make testing in

production safe and secure.

Understand systems with custom Chaos Engineering
experiments

Chaos Engineering experiments are incredibly effective

for finding unknown risks.

The practice of Chaos Engineering originated with

Netflix in the late 2000s. At the time, Netflix was

transitioning from local servers to the cloud, which

is, by its nature, much more ephemeral.  

To help train their engineers, they introduced

Chaos Monkey, which would turn off and replace

servers randomly in an effort to replicate the

“chaos” of the cloud.

As a practice, Chaos Engineering has come a long

way since those humble roots. Using technology

like Fault Injection, Chaos Engineering is still an

incredibly effective practice for finding specific

risks, validating resilience to certain failure modes,

and understanding how your application behaves

under less-than-ideal conditions.

Between Detected Risks scanning for the most

common risks and reliability tests verifying services

against the most common failure modes, the

majority of potential failures are covered. But every

system and architecture is unique, and Chaos

Engineering fills in the rest of the gaps so you can

confidently test your entire system.

With Gremlin, you can build custom experiments

using a wide variety of targeting and experiments

types, then save them as custom scenarios that you

can add to your automated testing set up.

Designed to run anywhere your services are, it can

be used to test failure modes on anything from on-

prem to cloud to kubernetes to serverless.

Between those three, you’ll be able to get a

complete, accurate picture of the reliability posture

of your systems. But then what do you do with it?

Simulates a full data center outage by shutting
down an increasing number of nodes

Descr ipt ion

Data Center Outage SimulationScenar io

Blackhole: 10 minutes 1 host

Blackhole: 10 minutes 2 hosts

Blackhole: 10 minutes 3 hosts

After enacting our disaster recovery plan, we will
restore full service within 5 minutes

Hypothesis

Design

Closing the Reliability Gap TABLE OF CONTENTS 9

Align around Reliability Scores

Once you've found your reliability risks, the next step is remediation.  

Data is critical.

82 Redundancy +22

Scalibility +27

Dependencies +33

Competing priorities and high-velocity organizations can make it hard to get the time and resources needed

to remediate the issue. And if you do get the time to fix the issue, it can be hard to prove the value of your

efforts by pointing to the damaging outage that didn’t happen.

This is where reliability metrics come in. Most organizations track reliability by using backward-facing metrics

like downtime, MTTR, or the number of incidents and outages. All of these are important metrics, but

they’re also all negative metrics, where progress is built around decreasing them, or having less of a bad

thing—which can only get you so far. When metrics improve, it begs the question: are we actually reducing

risk, or just getting lucky?

In order to make consistent, scalable, repeatable improvements to reliability, you need metrics that show the

current reliability posture of your systems—and can show when you’ve improved that reliability posture.

Gremlin uses Reliability Scores to give you that metric.

Reliability Scores are a standardized measure of reliability based on the results of Reliability Tests and

specified custom scenarios. Scores provide a clear indication of how well teams are meeting their reliability

objectives and can be used throughout the organization to systematically manage and improve reliability.

If you’re just getting started with reliability testing, Gremlin provides a score based on a suite of common

tests that are already defined for you. If you want to meet specific requirements for your organization or

industry, or ensure compliance with external regulators, you can create a score based on custom scenarios

as part of the test suite you define for your organization.

Closing the Reliability Gap TABLE OF CONTENTS 10

Closing the Reliability Gap TABLE OF CONTENTS 11

Consistent, standardized measure of reliability across services, teams, and infrastructure.1

Proactive indicator of reliability strengths and risks that doesn’t rely on incidents  

or on-call heroes.
2

Proves resiliency against common causes of failure with clear pass/fail indicators3

Reliability Scores give your team a clear metric for reliability to align

around. They give your team:

With Reliability Scores, you change the reliability discussion with concrete

metrics that everyone can align around to make informed decisions about

how they prioritize risks.

For IT executives and centralized reliability functions: scores provide a quick view of the organization’s

overall reliability posture, including recent changes, strengths, and risks. If scores are low, especially for

critical services, leaders know where to direct their teams to focus on improving reliability.

For application and service owners: scores provide an ongoing level of confidence that the service is

meeting reliability standards of the organization. If there is a drop in the service’s score due, teams can

quickly find and address the cause to maintain reliability.

For SRE, DevOps, Performance, and QA teams: scores provide the ability to set clear expectations of

what service reliability looks like. Teams can prove they are making their service more reliable, without

waiting for incidents to reflect in backward-facing metrics. Paired with an automated test suite to

generate the score, these teams can improve reliability test coverage across the organization to free up

time for more valuable work.

Why use a Reliability Score?

Using a score

Say you have a critical shopping cart service that you always want to have a score of 90 or higher. And if it

drops to 80, engineering cycles need to be devoted to keep it up and running. But at the same time, you

might have an internal environment setup service that has a threshold of 50. It might be inconvenient for

engineers to wait for an extra 10 minutes for an environment to get set up, but it isn’t nearly as critical.

How the score is built

The score is based on the number of passed tests compared to the number

of failed or unfinished tests.

Account 75

CPU Scalability:

Memory Scalability:

Zone Redundancy:

Host Redundancy:

Dependency Latency:

Dependency Loss:

Security Certificates:

Ledger DB 45

CPU Scalability:

Memory Scalability:

Zone Redundancy:

Host Redundancy:

Dependency Latency:

Dependency Loss:

Security Certificates:

Ledger DB 75

CPU Scalability:

Memory Scalability:

Zone Redundancy:

Host Redundancy:

Dependency Latency:

Dependency Loss:

Security Certificates:

For the purposes of scoring, a test that wasn’t performed (or hasn’t been performed recently) counts the

same as a failed test. This is based on the concept of, “If you can’t measure it, then it didn’t happen.” When

you don’t know the results of a test, it’s just as much of a reliability risk as a failed test because you have no

idea whether your service will perform as expected.

To determine whether a service passes or fails a Reliability Test, Gremlin looks at its Health Checks by deeply

integrating with your existing monitoring and observability tools. These metrics, such as latency, traffic,

error rate, and resource saturation, are probably already used today, and are whatever you define as

representative of system health from your end user’s perspective.

If any check becomes unhealthy during a test, this indicates the service isn’t resilient to that test. Gremlin

automatically stops the test, rolls back to the previous state, and marks the test as a fail. If the signals remain

healthy during the duration of the test, you’ve validated your systems are resilient to that failure mode and

the test is marked as a pass.

C lo s i n g t h e R e l i a b i l i t y G a p TA B L E O F CO N T E N T S 1 2

Continue and automate testing

Systems change over time. New infrastructure gets provisioned, code

changes get deployed, and a service that passed a reliability test could

now fail it.

Any reliability tests that have passed at least once

Any reliability tests that have been run at least once

Autoschedule eligible Reliability Tests in this Service

Window Start Hour
Window Length04:00 AM
4 hours

Sun Mon Tue Wed Thu Fri Sat

Time Zone

UTC

Testing regularly in an automated fashion is a path to continuously validate system reliability and get notified

when things change.

Ideally, we’d run a full suite of tests for every change to production, but this can be time-consuming. As a

balance, Gremlin recommends testing at least once per week and will automatically flag test results over a

week old as “expired.” This is to remind teams to run tests regularly or to use the built-in auto-scheduling

service to automate testing at least weekly.

Teams can also automate reliability practices into their software delivery lifecycle by pulling scores into

their existing tools. For example, you can use the Gremlin API to retrieve a service’s test results and

reliability score during the CI/CD process. This way, you can catch and revert unreliable code before it can

impact our customers.

Automated testing also creates a crucial map of your reliability posture over time. By tracking the Reliability

Scores for each service, you can judge the effectiveness of your reliability efforts, the impact of code

changes (such as if a score drops from 80 to 50 after a deploy), and get an idea of the accrual rate of

technical debt in the form of remediations that need to be addressed. Some organizations allow teams with

a high enough score to be exempted from the manual quarterly or annual testing, since this work is already

running in the background.

Closing the Reliability Gap TABLE OF CONTENTS 13

Closing the Reliability Gap TABLE OF CONTENTS 14

The path to reliability automation

1. Test - Determine reliability posture of each service with reliability testing

2. Report - Use dashboards to share the results with leadership and service owners

3. Remediate - Identify, prioritize, and implement reliability improvements.

4. Automate/Repeat - Maintain standards with continuous testing and scoring

C lo s i n g t h e R e l i a b i l i t y G a p TA B L E O F CO N T E N T S 1 5

Conclusion: Bridging the reliability gap
demands collaboration

When you get right down to it, reliability is the responsibility of

everyone in the technology organization.

Technology leaders need to make it a priority, be able to see the current status, and track the

results of their investment. Engineers and service owners need actionable data they can use to

drive remediation efforts. And reliability owners (like Site Reliability Engineering teams) need to

define methodology to measure, track, and align reliability efforts.

These are all created by the combination of reliability testing, Reliability Scores, and continued

automation to create a visible system of record focused on making real reliability improvements

Because with the right shift of your approach, tools, and cultural mindset, it’s possible to finally

close the reliability gap.

Further reading:

Ready to start closing the reliability gap? Check out these resources to help you take the next step on your

reliability journey:

RELIABILITY MANAGEMENT WHITEPAPER

Navigating the
Reliability Minefield
Finding and Fixing Your Hidden Reliability Risks

1

1

1

3

11

1

2

1

1

2

1

1 1 1

1

1

2

1

Navigating the Reliability Minefield: 

Find and Fix Your Hidden Reliability Risks 

Get the processes and tools to avoid outages before they happen with this

whitepaper. Learn how to identify and track reliability risks, prioritize fixes,

and prove your results to your organization. Includes a free spreadsheet

template to help you build your own reliability tracker.  

Learn more

Mastering reliability Tool Guide

Guide to Enterprise
Resiliency Testing
How to find and fix availability risks with Gremlin

Guide to Enterprise Resiliency Testing: 

How to Find and Fix Availability Risks with Gremlin 

Reliability testing might look daunting, but it doesn’t have to be. 

This guide explains how to use Gremlin’s comprehensive reliability

experiments to solve real-world use cases. Improve your systems’ fault

tolerance, redundancy, scalability, and more with this whitepaper.  

Learn more

Checklist: How to
Build a Best-in-Class
Reliability Program

WORKBOOK

Checklist: How to Build a Best-in-Class Reliability Program 

Based on work with reliability leaders at Fortune 100 companies, Gremlin

identified four pillars and 18 traits common in successful reliability

programs to align organizations, get crucial buy-in, and measurably

improve their reliability. 

Use this checklist to make sure your reliability program checks all the right

boxes to make it successful.  

Learn more

Closing the Reliability Gap TABLE OF CONTENTS 16

https://www.gremlin.com/reliability-tracker-whitepaper/
https://www.gremlin.com/guide-to-enterprise-resiliency-testing/
https://www.gremlin.com/reliability-program-checklist/

Gremlin is the Enterprise Reliability Platform that helps teams

proactively test their systems, build and enforce reliability and

resiliency standards, and automate their reliability practices

organization-wide. 

Learn more at .gremlin.com

http://gremlin.com/

