
R E LI A B I L IT Y M A N AG E M E N TR E LI A B I L IT Y M A N AG E M E N T

Preparing for
Large Traffic Events

C H EC K LI S T

A CHECKLIST FOR LOGISTICS, RESOURCES AND PROCESSES

2A CHECKLIST FOR PREPARING FOR LARGE TRAFFIC EVENTS

Summary
When we know there will be a higher-than-usual amount of traffic to our web
application, many of us get nervous, and with good reason. Large failure events
on these days have cost companies large amounts of money, like $11 million
for Costco in 2019 and $700 thousand for J.Crew in 2018.

It’s not enough to set up our systems and hope everything is going to work,
even when we have put significant time and effort and skill into a good
design. We can’t know how our system will react to events like these without
performing some preparation work and testing.

This checklist will help companies prepare for Black Friday, Cyber Monday,
and similar high-traffic events to become one of the success stories, like one
of Gremlin’s customers since 2018, Target, whose site crashed on Cyber
Monday in 2015 along with many other retailers. Target’s site has become
more reliable each year while using techniques like those in this checklist,
including the addition of Reliability Management and Chaos Engineering by
many of their teams since 2017.

https://www.gremlin.com/ecommerce-cost-of-downtime/
https://www.thestreet.com/technology/costco-thanksgiving-day-website-crash-cost-it-nearly-11million-15185344
https://www.businessinsider.com/jcrew-website-crashes-on-black-friday-2018-11
https://www.gremlin.com/blog/lenny-sharpe-and-brian-lee-finding-the-joy-in-chaos-engineering-chaos-conf-2019/
https://techcrunch.com/2015/11/30/target-com-latest-to-crash-from-increased-online-traffic/
https://techcrunch.com/2015/11/30/target-com-latest-to-crash-from-increased-online-traffic/

3A CHECKLIST FOR PREPARING FOR LARGE TRAFFIC EVENTS

Pre-Checklist:
DESIGN/ARCHITECT FOR FAILURE

Is your system designed for reliability? Reliable systems include things like load balancing, autoscaling, and
failovers. Have you found and removed single points of failure? Thought of and implemented all the mitigation
schemes you can think of (or afford)?

Do what you can early on and it will prevent much pain later. Most companies plan to do a soft code freeze
(bug fixes only, no new features) about 8 weeks before a planned big event and a hard code freeze about
2-3 weeks before.

Companies that are unsure about their systems or have less experience and resources may freeze sooner.
Companies with more experience may freeze later. In any case, any preparation and testing must be done
before the hard freeze. When the hard code freeze before a big sales day arrives (or other large traffic events
like online testing days or the Super Bowl or even Valentine’s Day), it is too late for a redesign. You must do
what you can today, so let’s jump in.

4A CHECKLIST FOR PREPARING FOR LARGE TRAFFIC EVENTS

NAME
Define the event. Is it Black Friday and Cyber Monday? Are you selling pizza during the Super Bowl?
Is it time to deliver online tests to students across an entire state?

Logistics
In this part of the checklist, take a close look at the practical details outside of cyberspace to see if you are
prepared. Start by creating a document that includes a minimum of these things. Then, get all assets set up
and ready before the ramp up starts.

TIME
Set a beginning and end date and time that you expect the high traffic event to occur, wide enough to
encompass the entire window. Note: this should start 48-72 hours before the event for ramp up and end
48-72 hours after the event to handle trickle down.

PEOPLE
Identify which team(s) will be on call and make sure everyone on those teams is ready. Communicate to
everyone else to be alert to special needs during that window, even if they are not on call.

COMMS
Set up a war room for the duration of the event. This is where all activity will be coordinated and where all
reports will be sent. The war room includes a physical space, and not everyone involved has to be in the
actual room all the time. This is just the cross-team leadership and for specific team leaders to meet with one
another as needed to coordinate efforts. There should also be virtual war room assets, such as listed below.

Identify the incident manager on-call (IMOC)

Define the on-call rotation

Notify everyone on the on-call team(s)

The physical space can be a conference room which will require plenty of supplies, stable and fast
internet access, water, snacks, and an occasional pizza order.

Create a dedicated instant messaging channel using Slack, Hangouts, Skype, or whatever your company
currently uses. Test and make sure all involved are invited and can access the channel.

Create a dedicated video conference using Zoom, BlueJeans, Webex, or whatever your company
currently uses. Test and make sure everyone involved can access.

5A CHECKLIST FOR PREPARING FOR LARGE TRAFFIC EVENTS

IDENTIF Y ALL INFR A STRUCTURE
RESOURCES INVOLVED

Resources

CRE ATE RELE VANT DA SHBOARDS AND ALERTS
Do this for each of the most meaningful statistics you monitor. Some example metrics include:

CRE ATE /RE- ITER ATE APPLICATION
AND INFR A STRUCTURE ARCHITECTURE

Where is the data center (DC)? The region? The availability zone (AZ)? The failover/backup/etc.?
Know and document every part of the system. A tool like Gremlin can help identify critical services,
dependencies, and the underlying infrastructure.

App groups?

Any other resources (image store, database, etc.?)

Request volume (client and server) and
success rate, maybe requests by source

Response time for requests

CPU/memory/storage utilization

Database/storage responsiveness

Dependency failures

Malware/DDoS assessment

In the E-Commerce space, orders per
second/minute/hour

Kubernetes pod or Docker container
status or virtual machine (VM) health
(up, running, etc.)

Pods/containers per node/host

Pods/containers ready vs needed
vs unavailable

Service/microservice instances status,
endpoint availability, etc.

API status (especially Third Parties you’re relying on)

Usage (total running sessions and total unique
sessions, Real User Monitoring tools are very helpful)

CAPACIT Y PL ANNING

Pre-warm the front door (scale up Edge, API Gateway, Webservers, etc.)

Check/exercise scaling policies (if you don’t test them, you don’t actually know if they will work as designed!)

Identify how traffic is handled at every app layer: Kubernetes, integrations, clusters, technologies
and dependencies, application services, load balancing and failover systems
(Application Performance Monitoring tools & Distributed Tracing are super helpful here)

6A CHECKLIST FOR PREPARING FOR LARGE TRAFFIC EVENTS

HAVE A MA STER RUNBOOK
for each team set up with its location communicated team-wide. Don’t put it in the war room, because that
location is intended for coordinating across multiple teams, if needed; put it wherever the team usually works,
including the possibility of it being in a clearly-communicated online location for remote teams.

Processes:

VERIF Y YOUR DISA STER RECOVERY (DR) PL AN

TEST IN PRODUCTION
Ultimately, there’s no way to know how your systems will perform when it matters most unless you’re
testing where your customers live: in a real-world environment.

This testing can be done safely and securely with a Reliability Management Platform such as Gremlin.
Based on reliability best practices and Chaos Engineering principles, Reliability Management helps teams
orchestrate pre-defined tests to validate against common reliability risks and proactively understand their
overall reliability posture.

Companies like Backcountry and Target test their entire system using Gremlin throughout the year,
using the results of testing to enhance system reliability and prioritize improvements. They also test their
systems in specific, prioritized ways in advance of known events like those described here, looking at specific
functionality like add-to-cart to see how it will hold up to increased load.

Validate recovery mechanisms (such as DC failovers, and app mitigation paths like circuit breakers)

Check dependencies, implement paths to mitigate single points of failure, or escalation/oncall path

Test the escalation path

https://www.gremlin.com/product
https://www.gremlin.com/blog/four-reliability-tests/
https://www.gremlin.com/blog/jose-esquivel-a-roadmap-towards-chaos-engineering-chaos-conf-2019/

Gremlin’s Reliability Management Platform enables high-velocity
engineering teams to standardize and automate reliability across
their organizations without slowing down software delivery.
Gremlin’s Reliability Score sets the standard for reliability so there’s
no guesswork, and an automated suite of Reliability Management
tools makes it easy to integrate reliability throughout the software
lifecycle so there’s no slowdown.

	Button 2:
	Button 1:
	Button 3:
	Button 4:
	Button 5:
	Button 6:
	Button 7:
	Button 8:
	Button 9:
	Button 10:
	Button 11:
	Button 12:
	Button 13:
	Button 14:
	Button 15:
	Button 16:
	Button 21:
	Button 22:
	Button 23:
	Button 24:
	Button 83:
	Button 84:
	Button 85:
	Button 86:
	Button 127:
	Button 128:
	Button 87:
	Button 88:
	Button 89:
	Button 90:
	Button 91:
	Button 92:
	Button 93:
	Button 94:
	Button 105:
	Button 106:
	Button 107:
	Button 108:
	Button 109:
	Button 110:
	Button 111:
	Button 112:
	Button 113:
	Button 114:
	Button 119:
	Button 120:
	Button 1010:
	Button 1011:
	Button 1012:
	Button 1013:
	Button 1014:
	Button 121:
	Button 122:
	Button 123:
	Button 124:
	Button 125:
	Button 1015:
	Button 126:
	Button 129:
	Button 130:
	Button 131:
	Button 132:
	Button 133:
	Button 134:
	Button 135:
	Button 136:
	Button 25:
	Button 26:
	Button 29:
	Button 30:
	Button 31:
	Button 32:
	Button 33:
	Button 34:
	Button 35:
	Button 36:
	Button 37:
	Button 38:

