Gremilin

Guide to Enterprise
Resiliency Testing

HOW TO FIND AND FIX AVAILABILITY RISKS WITH GREMLIN

Table of contents

4 Intended Audience

5 Introduction

7 What is fault injection?

9 What fault injection methods does Gremlin provide?

11 Use cases: when to use experiments and reliability tests
12 Migrating to a new environment
13 Right-sizing and optimizing your target environment with resource experiments
14 Testing network fault tolerance and dependency resilience with network experiments
15 Testing redundancy with state experiments
16 Preparing for peak traffic events
16 Validating scalability and resource quotas
17 Stress testing using resource experiments
17 Testing your monitoring and alerting systems
18 Optimizing for cost savings
18 Validating that you can autoscale
19 Optimizing the user experience (UX)
19 Ensuring you can fall back to redundant systems
20 Providing a smooth experience for real-time and streaming applications
21 Meeting security and compliance requirements
21 Preparing for Daylight Savings Time (DST) and leap years
22 Ensuring security by testing TLS certificate expiration

22 Preparing for “end of epoch” problems

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING 2

Table of contents

22 Testing clock sync (NTP) between nodes
23 Planning for business continuity and disaster recovery
23 Proactively testing region failover

24 Avoiding large-scale DNS outages

25 How to start running experiments
25 Identify the services you want to test
26 Model failure modes
27 Test failure modes

28 Chaos Engineering Resources

29 Continually improve and track your progress

30 Conclusion

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING

Intended Audience

This ebook is intended for practitioners who will be directly involved in creating and running

experiments within Gremlin. This includes:

e Site reliability engineers (SREs).

e Technical engineers responsible for the reliability of an application, service,

or infrastructure component.

e Any stakeholders involved in running GameDays.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING & TABLE OF CONTENTS

https://www.gremlin.com/gamedays/?utm_medium=content-text&utm_source=whitepaper&utm_campaign=attacks-whitepaper

Introduction

Systems can fail in myriad ways with significant impacts on day-to-day life,

from outages causing flight cancellations to major bank outages

impacting millions of customers. To avoid this, Gremlin provides a range
of tools designed to help proactively identify reliability risks in software
systems and infrastructure. This ebook explains how these tools work,
and how you can most effectively use these tools to improve the

reliability of your own systems.

Gremlin is built on the concept of fault injection, which is intentionally
creating controlled failures in a computing component, such as
consuming CPU on a host or adding latency to a Kubernetes container.
Simply creating failures isn’t enough to improve reliability: you need to be
able to observe the impact these failures have on your system, and use
those observations to make improvements. This process of using fault
injection to answer questions about your infrastructure is called an
experiment. Gremlin gives you full control over your experiments by
letting you fine-tune faults to answer specific questions about your
infrastructure, such as terminating specific processes to test
recoverability, adding packet loss to specific network routes to test

error-handling, and consuming memory in a container to test scalability.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING ¢ TABLE OF CONTENTS

https://www.reuters.com/technology/us-faa-adopts-new-safeguards-after-computer-outage-halted-flights-2023-01-30/
https://www.bleepingcomputer.com/news/technology/major-uk-banks-including-lloyds-halifax-tsb-hit-by-outages/

By reading this ebook, you’ll learn:

What fault injection is.

How to run each of Gremlin’s unique experiments and reliability tests.

What each experiment does, the failure modes it helps identify, and

the resilience mechanisms it helps validate.

When you’d want to use one experiment type over another.

How to interpret the results of an experiment and use this knowledge
to improve reliability.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING ¢ TABLE OF CONTENTS

What is fault injections

Gremlin offers two different (but related) ways to understand reliability risks in complex
architectures: experiments, and reliability tests. While both take a slightly different approach
to testing, they share a single underlying concept called fault injection. Fault injection is a
technique for creating controlled failure in a computing component, such as a host,

container, or service.

Fault injection started as a technique for simulating hardware-level failures, such as shorting
electrical circuits, creating electromagnetic interference, and disrupting power supplies. The
goal was to see how stressors like these affected a device’s operations, find the point where
the device failed, then redesign the hardware to be more resilient. This same concept applies

to software fault injection.

Gremlin provides software fault injection on the infrastructure level using an agent running
on a host. When you initiate an experiment or reliability test in Gremlin, the agent injects
the fault onto the target system(s), tracks and manages the fault for the length of the
experiment, then safely stops it once the experiment is finished (or if you stop the
experiment early). The injected fault is then reverted and the system returns to its

normal state.

At this point, you might think “why should | inject fault into my systems? We have enough
‘chaos’ already!” While fault injection might seem counterintuitive, it’s the best way of testing
and validating a system’s resiliency. When teams build complex systems, it’s impossible to
anticipate all of the various ways these systems can fail in high-stress real-world situations.
This is where fault injection fits in. Teams use fault injection to simulate a wide range of
stressors acting on their systems. This helps catch and uncover vulnerabilities before they
turn into production outages and cause the serious technical and business consequences

shown below.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING ¢ TABLE OF CONTENTS 7

COST OF DOWNTIME

IN REVENUE/MIN

> Walmart: $1,153,000/min
> Amazon: $826,000/min

> Target: $207,300/min

Assuming 99% uptime (~7 hours of downtime per
month), the lost revenue caused by reliability-related
outages costs: $6.1B/year

IMPROVING UPTIME

If downtime costs $200,000/hour, improving uptime

results in the following revenue gains:

> 90% — 99%: $158M gained per year

> 99% — 99.9%: $15.8M gained per year
> 99.9% — 99.99%: $1.7M gained per year

> 90% 99.99% — $194,625,305

Based on 2022 reported retail sales revenue.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING

COST OF RESOLUTION

> Assuming 100 hours of downtime per year (~98%
uptime), $200,000 revenue lost per hour of downtime,
and 10 employees involved in resolution, resolving
reliability-related outages costs: $189.2M/year

IMPACTS ON CUSTOMER EXPERIENCE
> 20%
O of consumers will never shop with a

brand again after encountering just one error.

> 41%
O of customers think it’s not possible for

a company with a poor user experience to deliver a

quality product.

€& TABLE OF CONTENTS

What fault injection methods

does Gremlin provide?

Gremlin provides 11 primary types of fault injection, which power each of Gremlin’s 11 experiments. Gremlin

organizes these experiments into three categories:

STATE

Shutdown: Shuts down
(and optionally reboots)
the host operating system.

Time Travel: Changes the
host’s system time.

Process Killer: Kills the
specified process(es) on
the host.

CPU: Generates high
load for one or more
CPU cores.

111 Memory: Allocates a
specific amount of RAM.

10: Puts read/write
pressure on I/O devices
such as hard disks.

Disk: Fills storage to a
specific percentage by
writing temporary files.

Blackhole: Drops all
matching network traffic.

Latency: Injects latency
into all matching
outbound traffic.

Packet Loss: Induces
packet loss into all
matching outbound traffic.

DNS: Blocks access to
DNS servers.

Each experiment is fully customizable with a wide array of options and parameters. For example:

e Resource experiments let you specify the exact amount of each resource to consume, both in discrete

units and percentages.

e Network experiments let you target specific kinds of traffic based on IP address, hostname, or port.

e Process Killer lets you specify which processes to terminate using their names, IDs, or a range.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING

€& TABLE OF CONTENTS 9

Gremlin also provides reliability tests, which are pre-built experiment workflows designed to test your
services under specific conditions. The key difference between reliability tests and experiments is that
experiments are fully customizable, whereas reliability tests are pre-defined, have a clear pass/fail result,
and are based on Gremlin’s years of experience and expertise implementing reliability best practices at large
organizations. They guide teams who might not be sure where to start, want to make reliability testing
easier, or want to automate their reliability testing.

For example, our Latency experiment lets you drop a customizable percentage of network traffic to a
specific network interface, while our Dependency Latency reliability test increases latency by a specific
amount (100ms) for 5 minutes while monitoring the health of the target service. You could easily recreate
the Latency reliability test using experiments, but the reliability test is already defined and can be run or
scheduled with a single click. Teams will often define their own experiments to test for specific failure

modes, while also using reliability tests to cover more common use cases.

SCALABILITY REDUNDANCY

DEPENDENCY

CPU: Tests that the service Host: Tests resilience to host
scales as expected when CPU failures by immediately
capacity is limited. shutting down a random host

or container.

Memory: Tests that the service Zone: Tests the service’s
scales as expected when availability when a randomly
memory is limited. selected zone is unreachable

from the other zones.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING & TABLE OF CONTENTS

10

Use cases: when to use experiments
and reliability tests

Each experiment and reliability test Gremlin provides can answer a lot of questions about
your systems and processes. When starting, it’s difficult to know which experiment to use to
answer these questions. For this reason, we structured this white paper by use case first,
then by the experiment(s) that best fit the use case. You can view each use case below, or

use the table of contents to find the one that best applies to your needs.

e Migrating to a new environment

e Preparing for peak traffic events

e Optimizing for cost savings

e Optimizing the user experience

e Meeting security and compliance requirements

e Planning for business continuity

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 11

Migrating to a new environment

Moving applications and services to a new environment like the cloud is a major undertaking.

Teams must not only ensure their services are compatible with the new environment, but
also that they’re properly configured for the environment. This doesn’t just mean taking
advantage of the new platform’s capabilities, but understanding the environment’s unique

behaviors and how those behaviors can impact your services.

Migrating to a new environment can include:

e Moving from an on-premises data center to a cloud environment like AWS,
Azure, or GCP.

e Moving from a traditional monolithic architecture to a cloud-native or
service-based architecture like Kubernetes.

e Integrating third-party services—managed databases, cloud-hosted caches, etc.

—into your applications.

The challenges migration teams face include (but aren’t limited to):

e Knowing how to right-size the deployment to balance capacity and scalability
with cost.

e Accounting for latency introduced by a cloud environment, especially between
zones or regions.

e Properly configuring load balancing, redundancy, and replication, so failovers

are automatic and instantaneous.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING & TABLE OF CONTENTS

12

Right-sizing and optimizing your target environment with
resource experiments

In a cloud environment, resource allocation is one of the most important factors as it affects
cost, performance, scalability, and more. With Gremlin’s resource experiments, you can
ensure your new environment has enough capacity to handle your largest workloads, or that

it can scale effectively, without adding significant costs.

CPU experiments are relatively simple: they consume the amount of CPU that you specify
for the length of time specified. This helps you ensure that your applications behave as
expected even when CPU capacity is limited or exhausted. While modern servers have
multiple cores per CPU (or even multiple CPUs), they still have limits, especially when
running multiple concurrent workloads. In cloud environments, especially, these workloads

often compete for CPU time, creating what’s called the “noisy neighbor” problem. In addition

to simulating noisy neighbors, CPU experiments can help test and validate automatic

remediation processes, such as auto-scaling and load balancing.

Memory experiments perform a similar function as CPU experiments, but for memory
(RAM). Memory management is often more strict than CPU management, since memory is
an even more finite resource. Systems that are low on RAM might terminate processes; or, in
the case of containers and serverless workloads, move them to a completely different host.
Also, if you have a workload that requires a significant amount of memory (e.g. a machine
learning model), memory experiments let you simulate that workload so you can proactively

determine the impact on your environment and optimize for capacity.

Disk and I/O experiments do for persistent storage what CPU and memory experiments do
for their respective resources. Disk experiments temporarily consume space on a storage
device like a hard disk, while I/O experiments consume throughput on a device. You can use
/O experiments to simulate lower-throughput storage devices like network-attached storage
(NAS) and spinning disks (HDDs), and use disk experiments to simulate workloads that

require large amounts of persistent storage.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 13

https://www.gremlin.com/blog/secure-chaos-engineering-on-kubernetes-clusters-without-being-a-noisy-neighbor/?utm_medium=content-text&utm_source=whitepaper&utm_campaign=attacks-whitepaper

For example, database or caching services often require lots of storage space and are
constantly reading and writing to storage, requiring high throughput and high capacity. This
can get expensive unless you optimize, and disk and I/O experiments can help find that

middle ground.

Testing network fault tolerance and dependency resilience with
network experiments

Network experiments simulate a wide variety of network conditions, such as low throughput,

dropped connections, and failed routes.

Blackhole experiments drop network connections to and from a service, a host,
or even an entire availability zone or region. This is ideal for testing redundant
systems and automatic failover mechanisms. For example, if we have an Amazon
RDS database that’s configured for replication across two zones, using a blackhole
experiment to drop traffic to one RDS zone should cause traffic to automatically
redirect to another zone. This can be used on-premises or in single-zone
environments to simulate controlled outages and test various fault

tolerance mechanisms.

Latency and packet loss experiments let you shape network traffic regarding how
slow it is, and how much data arrives at its destination. This lets you simulate slow
and unstable network conditions, which is a potential when moving to busy cloud
environments where bandwidth is shared between countless workloads. These
experiments can test whether your services can handle poor network conditions
without timing out, returning errors, or crashing. They’re also valuable for testing
the behaviors of load balancers and other tools that route traffic based on

network quality.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 14

For example, imagine we have multiple AWS Lambda instances running and we’re using

Amazon Elastic Load Balancing (ELB) to automatically distribute incoming traffic across

them. If one of our instances suddenly becomes unresponsive, or is returning errors, or is
dropping packets, we want to know that ELB will redirect traffic to a faster, more reliable
instance. We can run a latency or packet loss experiment to create this unreliable connection
ourselves, then watch our ELB to ensure traffic gets redirected quickly and correctly. Once
we've verified the behavior, we can stop the experiment using Gremlin’s halt button and

immediately revert to normal operations.

Testing redundancy with state experiments

In an on-premises environment, organizations have full control over their environments.
However, cloud environments shift that control to the provider. This means the cloud
provider can migrate workloads, terminate hosts, and change functionality on their terms.

Providers will work to maintain service while this is happening, but sometimes these

changes can result in outages, so it’s best to be prepared.

State experiments like shutdown and process killer can reproduce these kinds
of unexpected infrastructure changes. The most well-known is the shutdown
experiment, which shuts down or restarts a host or container. This is the

mechanism behind Chaos Monkey, a popular early Chaos Engineering tool that

randomly shuts down a host. While Gremlin’s shutdown experiment supports
randomized targets, we recommend intentionally choosing a host to target so the
test is more controlled.

Shutdown experiments are also useful for container-based workloads like Kubernetes. In
Kubernetes, containers constantly start, stop, restart, and move between hosts as resource
requirements and container counts change. Shutdown lets you verify that your hosts and
containers can automatically recover if they’re deliberately or accidentally shut down or

restarted, without interrupting service.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 15

https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/message/12721/
https://aws.amazon.com/message/12721/
https://www.gremlin.com/chaos-monkey/

Preparing for peak traffic events

Peak traffic events like Black Friday and Cyber Monday can push any organization’s infrastructure to its limits.
It’s difficult enough to build large-scale applications that are stable during day-to-day usage, and while some
peak traffic events can be anticipated (like sales holidays), some can be completely unpredictable (like a
sudden endorsement from a celebrity). Operations teams must strike a balance between having enough

capacity to handle surprise peaks, while not spending too much money on leftover unused infrastructure.

Validating scalability and resource quotas

CPU, memory, and disk experiments are ideal for testing system scalability. Cloud
computing has made it much easier to automatically scale systems up or down based
on changes in demand. However, this process isn’t instantaneous, and it’s not
configured out of the box. After you enable and configure autoscaling, use resource
experiments to trigger your scaling thresholds and track your services to see how
quickly and how effectively they scale. You might find that the scaling process isn’t as
fast as expected, or that scaling didn’t address the problem. You might also find that
your systems don’t scale back down once the experiment is finished, resulting in

wasted resources.

Equally important are resource quotas, which are limits set in place to prevent services from
using too many resources. This is especially common in container-based and serverless
environments like AWS Lambda, Amazon ECS, and Kubernetes. In these environments,
individual workloads can have limits on the resources they can consume, and the platform
enforces those limits by rescheduling the workloads to higher capacity nodes, adding replicas
to spread out the work, or simply stopping the workloads. We can use resource experiments
to make sure these processes work as expected, so we don’t have to worry about
unexpected behaviors when running these environments in production. This also helps with

capacity planning and identifying noisy neighbors.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 16

Stress testing using resource experiments

Resource experiments can recreate the effects of increased demand on a system.
As more users access your system, resource usage is more likely to increase. While
simulating real users typically falls under load testing, resource experiments
reproduce the impact of this load: high CPU usage, low memory, saturated

networks, etc. Experiments and reliability tests can be combined with load tests

to better simulate production environments. This lets you determine how resilient

your systems are when under load and with limited resources.

Testing your monitoring and alerting systems

This ebook focuses primarily on your application infrastructure, but it’s important to
remember the ancillary systems that support these workloads, especially observability
systems. Observability is how engineering teams identify and address problems with the
environment, and if you don’t have visibility into your systems, troubleshooting and fixing

issues will be much harder.

As you run experiments on your services, make sure your monitoring solution is detecting
changes in resource usage and availability. If you have alerts set up to notify you, e.g., when a
host becomes unavailable or CPU usage passes a certain threshold, run experiments to make
sure they trigger when those thresholds are reached and that the notifications are

successfully sent.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING €< TABLE OF CONTENTS 17

https://www.gremlin.com/blog/how-reliability-testing-and-load-testing-are-complementary/

Optimizing for cost savings

Cloud costs increase based on usage, creating a need for engineers to optimize their
applications to run as efficiently as possible. However, there’s a balance. Allocating too many
resources results in paying for resources you’re not using, but allocating too few resources
can lead to poor performance and instability. Engineering teams must strike a balance

between capacity and cost, and the best time to do this is before our customers notice.

Validating that you can autoscale

Modern architectures like Kubernetes and serverless platforms are designed to scale.
Kubernetes supports both horizontal autoscaling (deploying multiple replicas of a container
across several nodes) and vertical autoscaling (deploying new nodes to increase total cluster
capacity). This works in both directions: we should be able to add new nodes and container
replicas as needed to handle increased demand, but we must also be able to remove these as

demand slows, without impacting our workloads.

Since scaling is predominantly based on resource consumption, resource experiments like
CPU, memory, and disk are essential for testing scalability. As an example, you can

configure the Kubernetes horizontal Pod autoscaler (HPA) to scale on a metric such as

CPU or memory. If we want to scale a specific container deployment once it consumes a

certain percentage of its available CPU—say, 50%—we could run this command:

kubectl autoscale deployment frontend --cpu-percent=50 --min=1 --max=10

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 18

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/#support-for-resource-metrics

This creates a policy for a deployment named “frontend” to add a new instance if the
deployment as a whole is using more than 50% of its available capacity, up to a maximum of
10 replicas. We can now run a CPU experiment to increase the deployment’s CPU usage to
51%, monitor our deployment to make sure it scales successfully, and also monitor our
application to see how it behaves during this process. Likewise, when the experiment ends
and CPU usage returns to normal, we should watch to make sure our application can tolerate
losing replicas. This is less about making sure the HPA feature works, and more about making
sure we can deploy new replicas on-demand quickly and without impacting our application’s
stability or operations.

> Learn how to validate horizontal Pod autoscaling on EKS using Gremlin.

Optimizing the user experience (UX)

Modern users have come to expect services to be fast, stable, and always available. When
services become slow or fail, even temporarily, customers become frustrated and are more

likely to abandon you for a competitor. It’s important to avoid outages, since those are the

most visible kinds of failures, but other issues can impact the user experience, including:

e Slow application response times.
e High latency or packet loss resulting in timeouts and invalid data.

e Poor quality of service (QoS) for streaming applications.

Ensuring you can fall back to redundant systems
Having redundant systems in place can ensure that you can keep providing service to your

users, even when you have a host, zone, or region outage. Redundancy is difficult to set up,

since teams must consider how to replicate systems, services, and data, while also creating a

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 19

https://www.gremlin.com/community/tutorials/validating-horizontal-pod-autoscaling-on-eks-with-gremlin/
https://www.business.com/articles/website-page-speed-affects-behavior/

mechanism to fail over from their primary systems to the replicas. This requires several
different processes that work together to ensure a smooth and seamless transition from one

system to another, without any loss in data or availability.

For example, imagine you have an Amazon EC2 instance in one zone, and a replica in another
zone. There’s a load balancer in front of these two instances that checks to see if the primary
is responsive, and if it’s not, automatically fails over to the replica. Using a blackhole

experiment, you could drop all network traffic to the primary instance to ensure this failover

process works as expected.

Of course, not all failures are a binary “on” or “off.” A network might not fail entirely, but
might perform more slowly than before. What happens if you run a latency experiment and
add 100ms of latency to the primary? Is this enough to trigger the load balancer to redirect
traffic to the replica? If not, how does this impact the user experience? The infrastructure is

technically working correctly, but the outcome is less than ideal.

Providing a smooth experience for real-time and
streaming applications

Applications like multiplayer gaming, music streaming, and voice and videoconferencing
demand high throughput and fast network access. If a network becomes slow or saturated,
these applications can experience higher latency or dropped packets. Quality of Service
(QoS) policies can prevent this by prioritizing certain types of traffic when bandwidth
becomes limited, but it’s up to engineers to make sure their applications can remain

responsive even when network conditions are poor.

Packet loss and latency experiments can simulate these saturated conditions to help you
validate and fine-tune your QoS policies. While you can’t always prevent networks from

degrading, you can use techniques like content buffering, in-app notifications, or fallback

networks to work around the issue.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 20

https://www.pcmag.com/encyclopedia/term/buffering

Meeting security and compliance requirements

For organizations in industries with strict security and compliance requirements, fault
injection is an additional way of checking adherence. Organizations in finance, healthcare,
government, and similar industries face strict requirements for availability, performance, and

data integrity.

A core part of both security and compliance is accurate time tracking. If a system’s clock
becomes desynchronized, it can have a significant impact on system stability and usability,
especially when that system must communicate with others. Encryption, data integrity

checking, and cluster management are all dependent on a universal time, synchronized via

the Network Time Protocol (NTP). Gremlin’s time travel experiment works by
temporarily changing the target’s system time while simultaneously blocking NTP network

traffic. This is valuable for testing time-based scenarios like:

How systems behave during the transition to or from Daylight Savings Time (DST).

How applications handle leap years.

Whether your systems are prepared for “end of epoch” problems like the
Year 2038 problem.

How databases handle timestamp discrepancies in data, and whether this impacts

replication between primary and secondary database nodes.

Preparing for Daylight Savings Time (DST) and leap years

Clock changes caused by Daylight Savings Time and leap years can cause communication
problems between systems and applications, resulting in discarded messages or incorrect
timestamps. These events often aren’t thoroughly tested due to their infrequency, but can

nonetheless have significant effects on time-sensitive systems. You can use a Time Travel

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 21

https://en.wikipedia.org/wiki/Network_Time_Protocol
https://www.gremlin.com/blog/avoiding-problems-when-the-clocks-change/?utm_medium=content-text&utm_source=whitepaper&utm_campaign=attacks-whitepaper
https://en.wikipedia.org/wiki/Year_2038_problem
https://www.gremlin.com/blog/avoiding-problems-when-the-clocks-change/?utm_medium=content-text&utm_source=whitepaper&utm_campaign=attacks-whitepaper
https://www.usatoday.com/story/news/health/2018/11/03/daylight-saving-time-hospital-electronic-medical-records-emergency-fall-back/1864579002/

experiment to move the system clock forward or backward one hour, test your application,

and verify the integrity of your data.

Ensuring security by testing TLS certificate expiration

TLS certificates are a cornerstone of modern Internet security and depend on accurate

timekeeping. Certificates expire after a certain amount of time and must be renewed and
replaced, or else communication will be disrupted. Time Travel experiments let you test the
impact of skewed system clocks on encryption and make sure that you stay ahead of expiring

certificates by testing notifications and automatic renewal processes.

Preparing for “end of epoch” problems

The systems that computers use to track time can have their own unexpected behaviors. For

example, the Year 2000 problem (Y2K) was caused by computers storing the current year

as a two-digit number, which meant that they couldn’t differentiate between January 1,
2000, and January 1, 1900, as they were both stored as “00.” A similar problem—called the
2038 problem—is caused by a limitation of how 32-bit Unix-based systems store date and
time values. On January 19, 2038, this value will overflow and roll the date back to December
13, 1901. If you’re not sure whether your systems are protected, you can use the Time Travel
experiment to test them by moving the system clock forward past the 2038 date and

checking your system’s clocks to see what they display. You can use this same strategy to

prepare for similar “end of epoch” events.

Testing clock sync (NTP) between nodes

Systems that share data often require synchronized system clocks, which are best managed
using a service like NTP. Mismatched timestamps can lead to problems like discarded
messages and data conflicts. It’s possible that NTP may be unavailable and your clocks will
drift. Using Time Travel lets you simulate clock drift and NTP outages simultaneously so that

you can proactively prepare for an outage.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 22

https://www.gremlin.com/blog/how-to-test-for-expired-tls-ssl-certificates-using-gremlin/?utm_medium=content-text&utm_source=whitepaper&utm_campaign=attacks-whitepaper
https://en.wikipedia.org/wiki/Year_2000_problem
https://en.wikipedia.org/wiki/Year_2038_problem
https://en.wikipedia.org/wiki/Epoch_(computing)#Problems_with_epoch-based_computer_time_representation
https://www.gremlin.com/community/tutorials/what-i-learned-running-the-chaos-lab-kafka-breaks/#testing-the-message-queue-cluster?utm_medium=content-text&utm_source=whitepaper&utm_campaign=attacks-whitepaper

Planning for business continuity and disaster recovery

Businesses must be prepared for sudden, unexpected losses in infrastructure. Systems fail,
datacenters experience outages, and even the largest cloud providers can’t keep their
systems running 100% of the time. When your customers demand high availability,

replication and redundancy must become a priority.

The best approach to testing replication and redundancy is by simulating sudden
infrastructure failures. This means using network experiments like blackhole and DNS
failure. Blackhole experiments are commonly used to simulate a sudden loss of a system or
service. They offer a controlled way of simulating infrastructure-wide outages, without
causing infrastructure to fail. This lets teams practice their incident response and recovery

plans without the added stress of a real-world disaster.

Proactively testing region failover

Many network gateway and load balancing tools can automatically reroute traffic between

nodes based on latency. For example, Amazon Route 53 can route individual DNS queries to

the AWS Region that gives a user the lowest latency. You can ensure this is configured
correctly by running a Latency attack on a specific node, availability zone, or even an entire

region, and validating that traffic is rerouted to a faster resource.

For example, imagine that you have a Kubernetes cluster running in one region (e.g. New
York) and a replica cluster running in another region (e.g. California). The New York cluster
is your primary cluster that handles most traffic, while the California cluster is a secondary
cluster that handles some or no user traffic. If a major incident like a power outage takes
your New York cluster offline, you want to ensure that you can automatically failover to the
California cluster. Using a blackhole experiment, you can test this by dropping all network

traffic to your New York cluster and monitoring your application to ensure the failover

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 23

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html#routing-policy-latency

process works as expected. Likewise, you can drop all traffic to the California cluster to

ensure you don’t have a misconfiguration or dependency that impacts availability.

Avoiding large-scale DNS outages

DNS errors are also a common cause of large-scale outages. The Domain Name System
(DNS) is a system for associating domain names with IP addresses so you can refer to
computers and services by name rather than address. For example, in July 2021, an

Akamai outage caused many top websites to go down across airlines, retail, finance,

and other industries.

DNS experiments simulate a DNS outage by blocking network access to DNS servers. This
helps prepare for DNS failure, test fallback DNS servers, and validate DNS resolver

configurations, which answers questions such as:

e Do you have a secondary DNS server and do your services fallback automatically
to it?

e Do you gracefully reroute calls back to the primary once it’s back online?

e How do your services behave during a major DNS outage, such as the DynDNS

or Akamai outages?

> Learn how you can test your disaster recovery procedures using Gremlin.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 24

https://www.reuters.com/technology/websites-airlines-banks-tech-companies-down-widespread-outage-2021-07-22/
https://www.gremlin.com/community/tutorials/testing-disaster-recovery-with-chaos-engineering/
https://www.dynstatus.com/incidents/nlr4yrr162t8
https://techcrunch.com/2021/07/22/a-dns-outage-just-took-down-a-good-chunk-of-the-internet/

How to start running experiments

Now that you understand the different experiment types and the use cases they help solve,
you can start thinking about how to apply them to your own systems. However, this process
is slightly more involved than just running an experiment, waiting for it to finish, and seeing if

anything happens.

We’ve outlined much of this process in our webinar: Navigating the reliability minefield:

Finding and fixing your hidden reliability risks. To summarize, there’s a process teams

should follow when reliability testing their systems. At a high level, it involves:

L Identifying the services to test.

2 Modeling failure modes.

3 Performing experiments.

4 Using the results to make improvements.

Identify the services you want to test

The first step is determining what to test. We recommend starting by breaking down your
infrastructure into discrete, standalone units that can be tested independently of each other.
For the sake of simplicity, we use the term “service” to describe these systems and software.

A service is the specific functionality provided by one or more systems within an

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 25

https://www.gremlin.com/webinars/find-and-track-reliability-risks/
https://www.gremlin.com/webinars/find-and-track-reliability-risks/

environment, such as a checkout service or authentication service. They typically have clear
interfaces and can be deployed independently of each other. They can include microservices,
cron jobs, daemons, and monolithic applications. Testing services is important because it’s
easier to isolate reliability problems to individual services, and engineering teams are often

already structured around services.

Teams often manage many services at a time, so start by prioritizing the ones you want to
test first. If you want to have a big impact from your efforts, start with the services closest to
the customer, such as APIs or front end services. These are the services that’ll have the
greatest business impact if they fail. But if you'd prefer to take a more cautious approach to
testing, you could start with lower risk, less critical services, prove your results, then move

on to business-critical services.

Model failure modes

Once you've identified the services you want to test, identify their failure modes. Failure
modes are the way that a service can fail or produce an unexpected outcome. This originates
from Failure Modes and Effects Analysis (FMEA), a decades-old method for identifying all
possible failures in a design, manufacturing, or assembly process, product, or service (learn

more in our blog post Achieving FMEA goals faster with Chaos Engineering).

Trying to list every single individual failure mode in a complex system is extremely difficult,

which is why we recommend starting with broad categories:

e Scalability: How well does your service behave when resources (such as CPU or
memory) are limited or exhausted?

e Redundancy: How well does your service respond to losing a host or zone?

e Dependencies: How well does your service handle losing access to other services
that it depends on?

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS 26

https://www.gremlin.com/blog/achieving-fmea-goals-faster-with-chaos-engineering/

We can further break these categories down into individual test cases, such as:

e If lincrease CPU consumption, does my service scale as expected? Does the same
happen for RAM?

e |f my service loses connection to a host, will it continue operating? Does the same
happen when it loses connection to an entire zone?

e Does my service keep running if it has a slow or dropped connection to a soft (not
required) dependency? What about a hard (required) dependency?

Test failure modes

Once you've identified your use cases, your services to test, and their failure modes, you can
start testing them. This is where fault injection comes in. With fault injection tools, you can
create these failure modes in a controlled manner instead of waiting for them to happen in
the real-world. This process of using fault injection to test your systems’ reliability is called

Chaos Engineering.

At Gremlin, we categorize fault injections into three categories:

Resource experiments: Tests against sudden changes in consumption of computing

resources, such as CPU or Memory.

Network experiments: Test against unreliable network conditions, such as ones that

might make dependencies unavailable.
State experiments: Test against unexpected changes in your environment such as

3 power outages, node failures, clock drift, or application crashes that might make hosts,

zones, or dependencies unavailable.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING & TABLE OF CONTENTS 27

Within these categories, there’s a variety of different experiment types that can be
customized to fit dozens of different environments and cover almost every scenario youre
going to run into (Gremlin has these tests pre-built and ready to run on your services).
Ideally, you'd get to a point where you’re testing every one of your services against every
potential failure mode. To start, identify your most important services and their failure
modes using the use cases mentioned in this ebook and start there. You can use our free

reliability tracker tool to help with identifying and prioritizing which service/failure mode

combinations to start with.

Chaos Engineering Resources
Chaos Engineering includes a lot more than we’re covering in this whitepaper.

Share these resources with your team to learn more about Chaos Engineering and
start testing your services:

e What Is Chaos Engineering?

e Chaos Engineering: The History, Principles, and Practice

e Chaos Engineering Adoption Guide

If youre not sure which tool to use, you can also check out The Guide to Chaos
Engineering Tools.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING & TABLE OF CONTENTS 28

https://www.gremlin.com/webinars/find-and-track-reliability-risks/
https://www.gremlin.com/chaos-engineering/
https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice/
https://www.gremlin.com/community/tutorials/chaos-engineering-adoption-guide/
https://www.gremlin.com/chaos-engineering-buyers-guide/
https://www.gremlin.com/chaos-engineering-buyers-guide/

Continually improve and track your progress

Once you've developed a reliability testing process, automate it as part of your day-to-day
engineering operations. Run regular (e.g. weekly) reliability tests, document and discuss
newly discovered failure modes with your team, and track fixes made to your service(s). This
demonstrates to the organization that your reliability efforts are paying off and contributing
value to the business, especially if you can demonstrate that your work prevented a

potentially large outage on a critical service.

Gremlin provides many different tools for automating and tracking reliability. For one,
Gremlin keeps track of each reliability test performed, along with the outcome. You simply:

Define your services in Gremlin.

2 Link Gremlin to each service’s most important monitors and alerts using Health Checks.

3 Run Gremlin’s suite of pre-built reliability tests.

For each service you test, Gremlin generates a reliability score ranging from 0 to 100.

This score is an objective measure of a service’s reliability. You can see how each service’s
score changes over time, identify the exact cause of a failure, and generate reports for

your managers.

For more fine-grained testing, Gremlin also gives you access to its full suite of fault injection

tools. You can fully customize and run individual faults on your systems, orchestrate multiple

Gremilin GUIDE TO ENTERPRISE RESILIENCY TESTING < TABLE OF CONTENTS | 29

https://www.gremlin.com/docs/reliability-management/reliability-score/
https://www.gremlin.com/docs/reliability-management/services/
https://www.gremlin.com/docs/platform/health-checks/
https://www.gremlin.com/docs/reliability-management/reliability-tests/

attacks as part of a Scenario, and even execute large-scale GameDays with your team. By
first showing a baseline of reliability, then improvements to reliability, you can demonstrate
to leadership that your work has had a positive impact. And if they dig deeper, you have
clear, demonstrable impacts that you can show them by tying specific tests to specific failure

modes on specific services.

In the end, you're not only able to show leadership that your work has had clear results, but

you’re also creating real, demonstrable value for the business by preventing costly outages

and downtime.

Conclusion

Gremlin’s various fault injection and experiment types intentionally cover a broad range of
potential failure modes. As software systems become larger and more complex, engineers
must consider the many ways these systems can fail, and how practices like Chaos
Engineering and fault injection help address those failures. Fault injection isn’t about creating
chaos or intentionally causing failure, but to verify the resilience of our systems and making
sure they behave the way we expect them to. Each failure mode, reliability test, and
experiment type tests a wide range of behaviors, and by using each one effectively, we can

gain a comprehensive and thorough understanding of how resilient our systems really are.

Now that you’ve seen how each of these tests can be applied to your systems, consider how
they can help you achieve your technical and business initiatives. Start designing experiments
that make use of each attack type, and plan a time to execute them. Not only will this
maximize the value you get out of Gremlin, but it will help your technology, people, and

processes become more reliable.

Gremlin GUIDE TO ENTERPRISE RESILIENCY TESTING ¢ TABLE OF CONTENTS 30

https://www.gremlin.com/docs/fault-injection/scenarios/
https://www.gremlin.com/gameday/

Gremlin

Gremlin is the Enterprise Reliability Platform that helps teams
proactively test their systems, build and enforce reliability and
resiliency standards, and automate their reliability practices

organization-wide.

Learn more at gremlin.com.

Copyright © Gremlin, Inc. 2023

http://gremlin.com/

