
ENTERPRISE RELIABILITY Ebook

Kubernetes
Reliability

at Scale
How to Improve Uptime with Resiliency Management

Table of contents

Introduction: The Kubernetes Reliability Gap 2

1. How Kubernetes can fail 5

2. Framework for Kubernetes resiliency 10

3. Metrics and reporting 14

4. Risk monitoring and mitigation 22

5. Validating resilience through testing 33

6. Testing in different stages of your SDLC 40

7. Roles and responsibilities 43

Next steps: Your first 30 days of resiliency 48

Kubernetes Reliability at Scale 1

Introduction: The  
Kubernetes Reliability Gap
There’s more pressure than ever to deliver high-availability Kubernetes systems.
Consumers expect applications to be available at all times and have zero patience for
outages or downtime. At the same time, businesses have created intricate webs of APIs
and dependencies that rely on your applications.

Unfortunately, building reliable systems is easier said than done. Every system has
potential points of failure that lead to outages—known as reliability risks. And when  
you’re dealing with the complex, ephemeral nature of Kubernetes, there’s an even higher
possibility that risks will go undetected until they cause incidents.

Kubernetes Reliability at Scale TABLE OF CONTENTS 2

Resiliency 
Management

incident response observability

Kubernetes Reliability

The traditional approach to reliability starts with using observability to instrument your
systems. Any issue or non-optimum spike in your metrics creates an alert, which is then
resolved using your incident response runbook.

This reactive approach can only surface reliability risks after the failure has occurred. This
creates a gap between where you think the reliability of your system is and where you find
out it actually is when there’s an outage.

In order to meet the availability demands of your users, you need to fill in that gap with a
standards-based approach to your system’s resiliency.

By focusing on the resiliency of your Kubernetes redeployment, you can surface reliability
risks proactively and address them before they cause outages and downtime.

Kubernetes Reliability at Scale TABLE OF CONTENTS 3

Working together, these three practices
allow your teams to get visibility into the
performance of their deployments,
proactively detect risks, and quickly
resolve any failures that slip through 
the cracks—raising the reliability and
availability of your system.

This book covers how to build your own
resiliency management practice for
Kubernetes. You’ll learn

 Common Kubernetes reliability risks
and how to identify critical risks

 How to monitor for critical risks and
validate resilience to them

 The key processes, standards, and
roles needed to ensure resiliency
across your organization

 How to integrate resiliency
management smoothly into your
existing processes.

By using the framework and practices in
this book, you’ll be able to improve your
Kubernetes uptime by preventing incidents
and outages, accelerate key IT initiatives by
improving your Kubernetes reliability
posture, and shift-left reliability by
integrating resiliency testing into your
Software Development Lifecycle (SDLC).

Availability vs. Resiliency
vs. Reliability

Customers and leadership often think in
terms of availability, which comes from
efforts to improve the resiliency and
reliability of systems

 Availability - A direct measure of uptime
and downtime. Often measured as a
percentage of uptime (e.g. 99.99%) or
amount of downtime (e.g. 52.60 min/yr
or 4.38 min/mo). This is a customer-
facing metric mathematically computed
by comparing uptime to downtime

 Resiliency - A measure of how well a
system can recover and adapt when
there’s disruptions, increased (or
decreased) errors, network
interruptions, etc. The more resilient  
a system is, the more it can respond
correctly when changes occur

 Reliability - A measure of the ability  
of a workload to perform its intended
function correctly and consistently  
when it’s expected to. The more reliable
your systems, the more you and your
customers can have confidence in them.

Reliability determines the actions your
organization takes to ensure systems
perform as expected, resiliency is how you
improve the ability of your systems to
respond as expected, and availability is  
the result of your efforts.

Kubernetes Reliability at Scale TABLE OF CONTENTS 4

 How Kubernetes can fail

Kubernetes is deployed in a series of distinct layers that are key to its resiliency and
adaptability. The layers of pods, nodes, and clusters provide distinct separation that’s
essential for being able to scale up or down and restart as necessary while maintaining
redundancy and availability.

Node risks

Automatic or unscheduled reboots
Kernel panics
Problems with processes
Network connectivity problems

pod deployment risks

Misconfigured Deployments
Too few (or too many) replicas
Missing of failing container images
Deployment failures due to limited cluster capacity

pod risks

Application crashes
Source Code Errors
Unhandled exceptions
Application version conflicts
Container status (CrashLoopBackOff, etc.)

cluster risks

Misconfigured clusters
Autoscaling problems
Unreliable or insecure network connections
between nodes

Infrastructure R isks

Power outages
Hardware failures
Cloud provider outages

Kubernetes reliability risks

Kubernetes Reliab il ity at Scale TABLE OF CONTENTS 5

Unfortunately, these same layers also increase the potential points of failure. Their
interconnected nature can take a small error, such as a container consuming more  
CPU or memory than expected, then compound it across other nodes and cause a  
wide-scale outage.

The first step in Kubernetes resiliency management is to look at the potential reliability
risks inherent in every Kubernetes deployment. As you build resiliency standards, you’ll
want to account for these reliability risks.

Underlying infrastructure risks

Every software application is dependent on the infrastructure below it for stability, and
Kubernetes is no exception. These include risks like

 Power outage
 Hardware failure
 Cloud provider outages

Architecting to minimize these risks includes multiple Availability Zone redundancy, multi-
region deployments, and other best practices. You’ll need to be able to test whether these
practices are in place for your system to be resilient to these failures.

Cluster risks

Clusters lay out the core policies and configurations for all of the nodes, pods, and
containers deployed within them. When reliability risks occur at the cluster level, these
often become endemic to the entire deployment, including

 Misconfigured control plane node
 Autoscaling problem
 Unreliable or insecure network connections between nodes

Kubernetes Reliability at Scale TABLE OF CONTENTS 6

Detecting and testing for the risks will include looking at your cluster configuration, how it
responds to increases in resource demands, and its response to changing network activity.

Node risks
Any reliability risks in the nodes will immediately inhibit the ability to run pods. While
cloud-hosted Kubernetes providers can automatically restart problem nodes, if there’s
core issues with the control plane, the problem will just be replicated again. These issues
could include

 Automatic or unscheduled reboot
 Kernel panic
 Problems with the kubelet process or other Kubernetes-related proces
 Network connectivity problems

Node-based reliability risks are usually focused around the ability of the node to
communicate with the rest of the cluster, get the resources it needs, and correctly  
manage pods.

Pod deployment risks
The node may be configured correctly, but there can still be issues and risks related
directly to deploying the pods itself within the node, such as

 Misconfigured deployment
 Too few (or too many) replica
 Missing or failing container image
 Deployment failures due to limited cluster capacity

Kubernetes Reliability at Scale TABLE OF CONTENTS 7

These risks are tied directly to the ability (or inability) of nodes to correctly deploy pods
within them, and are often tied to limited resources or finding/communicating with
container images.

Pod risks

Even if everything goes well with pod deployment, there can still be issues that affect the
reliability of the application running within the pods, including

 Application crashe
 Source code error
 Unhandled exception
 Application version conflicts

Many of these “last-mile” risks can be uncovered by monitoring and testing for specific
Kubernetes states, such as CrashLoopBackOff or ImagePullBackOff.

How to determine which Kubernetes risks are critical

Unfortunately, there’s never enough time or money to fix every single reliability risk. In the
well-known balance between expense, quality, and speed, the demands of business make it
impossible. Instead, you need to find that balance where you’re addressing the critical
reliability risks that could have the greatest impact and deprioritizing the risks that would
have a minor impact. When you consider the number of moving pieces and potential
reliability risks present in Kubernetes, this kind of prioritization and identification becomes
even more important.

The exact list will change from organization to organization and service to service, but you
can start by looking at some of the core resiliency features in Kubernetes:

Kubernetes Reliability at Scale TABLE OF CONTENTS 8

 Scalability - Can the system quickly respond to changes in demand
 Redundancy - Can applications keep running if part of the cluster fails
 Recoverability - Can Kubernetes recover if something fails
 Consistency/Integrity - Are pods using the same image and running smoothly?

Any issue that interferes with these capabilities poses a critical risk to your Kubernetes
deployment. Resiliency management takes a systematic approach to surfacing these
reliability risks across your organization.

Finding and resolving risks at scale needs  
a standardized approach

Kubernetes and rapid-deployment Software Development Lifecycles (SDLCs) go hand  
in hand. At the same time, the interconnected nature of Kubernetes means that building
reliability requires clear standards and governance to ensure uniform resiliency across all
your various services.

Traditionally, these two practices have been at odds. Governance and heavy testing gates
tend to slow down deployments, while a high-speed DevOps approach stresses a fast rate
of deployment and integration.

If you’re going to bring the two together, you need a different approach, one based on
standards, but with automation and technological capabilities that allow every team to
uncover reliability risks in any Kubernetes deployment with minimal lift.

The approach needs to be able to surface known risks from all layers of a Kubernetes
deployment, as well as uncover unknown, deployment-specific risks. Just as importantly,
this practice needs to include standardized metrics and processes that can be used across
the organization so all Kubernetes deployments are held to the same reliability standards.

Kubernetes Reliability at Scale TABLE OF CONTENTS 9

 Framework for 
Kubernetes resiliency

Any approach for Kubernetes resiliency would have to combine the known possible
reliability risks above with the criteria for critical risk identification and organization- 
wide governance.

When these are paired with the technology of Fault Injection testing, it creates a resiliency
management framework that combines automated validation testing, team-based
exploratory testing, and continuous risk monitoring with the reporting and processes  
to remediate risks once found.

Framework for Kubernetes Resiliency

Organizational Standards Deployment-Specific Standard

Metrics & Reporting

Risk Monitoring & Mitigation

Validation Test Suites

Resource tests Redundancy tests Network tests

Kubernetes Reliability at Scale TABLE OF CONTENTS 10

Resiliency standards

Some reliability risks are common to all Kubernetes deployments. For example, every
Kubernetes deployment should be tested against how it’s going to respond during a surge
in demand for resources, a drop in network communications, or a loss of connection  
to dependencies.

These are recorded under Organizational Standards, which inform the standard set of
reliability risks that every team should test against. While you start with common reliability
risks, this list should expand to include risks unique to your company that are common
across your organization. For example, if every service connects to a specific database,
then you should standardize around testing what happens if there’s latency in  
that connection.

Deployment-Specific Standards are deviations from the core Organizational Standards  
for specific services or deployments. The standards can be stricter or looser than
organizational standards, but either way, they’re exceptions that should be noted. For
example, an internal sales tool might have a higher latency tolerance for connecting to a
database because your team is more willing to wait, while an external checkout service
might be required to move to a replicated copy of the database faster than normal to  
avoid losing sales.

Metrics and reporting

Reliability is often measured by either the binary “Currently up/currently down” status or
the backwards-facing “uptime vs. downtime” metric. But neither of these measurements
will help you see the posture of potential reliability risks before they become outages—and
whether you’ve addressed them or gained more risks over time.

This is why it’s essential to have metrics, reporting, and dashboards that show the results
of your resiliency tests and risk monitoring. These dashboards give the various teams  

Kubernetes Reliability at Scale TABLE OF CONTENTS 11

core data to align around and be accountable for results. By showing how each service
performs on tests built against the defined resiliency standards, you get an accurate view
of your reliability posture that can inform important prioritization conversations.

Risk monitoring and mitigation

Some Kubernetes risks, such as missing memory limits, can be quick and easy to fix, but
can also cause massive outages if unaddressed. The complexity of Kubernetes can make it
easy to miss these issues, along with other known reliability risks common across all
Kubernetes deployments, which means you can operationalize their detections.

Many of these critical risks can be located by scanning configuration files and container
statuses. These scans should run continuously on Kubernetes deployments so these risks
can be surfaced and addressed quickly.

Kubernetes Reliability at Scale TABLE OF CONTENTS 12

Validation testing using
standardized test suites

Utilizing Fault Injection, resiliency testing
safely creates fault conditions in your
deployment so you can verify that your
systems respond the way you expect them
to, such as a spike in CPU demand or  
a drop in network connectivity to  
key dependencies.

Using the standards from the first part of
the framework, suites of reliability tests
can be created and run automatically.  
This validation testing approach uncovers
places where your systems aren’t meeting
standards, and the pass/fail data can be
used to create metrics that show your
changing reliability posture over time.

Validation testing vs.
exploratory testing

Fault Injection testing is commonly used in
one of two ways

 Validation testing - You have a
standard, state, or policy that you’re
testing against to validate that your
system meets the specific requirements.
For example, if a pod reaches its CPU
limit, is a new pod spun up to take the
extra load? In this case, you inject the
fault and verify that your system reacts
the way it’s supposed to

 Exploratory testing - You want to
uncover specific unknown failures, such
as what happens if an init container is
unavailable for 5 minutes. Does the pod
load without it, or does it crash?
Exploratory testing should be done by
someone trained in how to safely define
the experiment to minimize the impact.

Learn more about the difference between
them in
blog post.

The two kinds of failure testing  

Kubernetes Reliability at Scale TABLE OF CONTENTS 13

https://www.gremlin.com/blog/the-two-kinds-of-failure-testing

 Metrics and reporting

Framework for Kubernetes Resiliency

Organizational Standards Deployment-Specific Standard

Metrics & Reporting
Organization-wide metrics showing the reliability posture against resiliency standards

Risk Monitoring & Mitigation

Validation Test Suites

Resource tests Redundancy tests Network tests

Why it’s important to track reliability

Ask the executives and engineers at any organization and they’ll all agree that reliability
could be improved. But when you ask them how, that’s usually where the discussion  
breaks down.

Kubernetes Reliability at Scale TABLE OF CONTENTS 14

Identify risks that need to be addressed

Most organizations lack a consistent, agreed-upon method for identifying reliability risks
that can be shared and understood across their teams. It’s not that the information isn’t
out there—almost every engineer knows the common ways their service will fail—it’s  
that there’s no centralized way for all reliability risks and potential failure points to be
cataloged, tested for, and compared between services.

Tracking resilience tests gives you that central alignment. When you track the results over
time, individual teams can show exactly what risks are and aren’t present in their services,
taking that knowledge out of the engineer’s heads and putting it into a place where the
entire organization can benefit from it.

Prove the results of engineering efforts

Reliability tracking also provides a framework to prove the effectiveness of a team’s
efforts. Without a framework, a well-intentioned engineer could spend hours addressing
an issue that they know could lead to an outage, but end up with little to no recognition or
acknowledgement of their efforts. This is because they’re attempting to prove a negative.
Yes, they prevented an outage, but how can they show that they stopped an outage that
didn’t happen or fixed an issue that’s no longer there?

By tracking reliability risks over time, engineers and operators can show the effectiveness
of their efforts by pointing to the test that previously failed but now passes, proving that
the risk is no longer present.

Create a common reliability metric across the organization

Finally, tracking reliability risks creates a metric that can be used to track reliability over
time across the organization. This is where standards and testing come together to
produce actionable organizational alignment.

Kubernetes Reliability at Scale TABLE OF CONTENTS 15

By laying out the standardized test suites everyone should follow, you create a list of
reliability risks everyone should track.

Over time, this creates a metric where the entire team can align around common 
reliability metrics and get an accurate picture of the reliability posture of their entire
Kubernetes system.

Reliability scores and dashboards

Tracking the results of resiliency tests makes it possible for each Kubernetes service to be
given a reliability score. These scores, in turn, can create dashboards where the scores of
all Kubernetes services are rolled up for review and alignment, thus creating a view of the
entire deployment’s reliability posture.

How reliability scoring works

The current status of every resiliency test falls into one of three results:

1 Passed
The deployment performed as expected and no reliability risk exists.

2 Failed
The deployment did not perform as expected, and a reliability risk is known to exist.

3 Not run
The test hasn’t been run recently enough to be certain of the result. A known
reliability risk may or may not exist—which is, in itself, a reliability risk.

Kubernetes Reliability at Scale TABLE OF CONTENTS 16

When you’re looking at a service’s reliability posture, you’re only concerned about  
whether a reliability risk is present. If a risk is present, then you need to evaluate whether
engineering time and effort should be spent resolving the risk. If not, then you can count
on your system to be resilient in that area without further engineering effort.

By looking at it this way, test results can be pooled into a binary state where a point is
scored for any passed tests (no reliability risk present) and a zero is scored for a failed or
not-run test (known or possible reliability risk present).

Example of how scores can be computed in Gremlin

When we compile the results of an entire suite of tests, a score is created.

Kubernetes Reliability at Scale TABLE OF CONTENTS 17

How regular testing creates a metric of scores

When you run a series of tests to build a reliability score, this creates a numeric data point
that shows the reliability posture of your Kubernetes deployment at a specific time.

By regularly running resiliency test suites, you create a metric of your reliability posture
over time. Like any metric, this can be plotted to show trends, then each data point can be
drilled down to the individual test results.

Example of how scores can be computed in Gremlin

Every organization will have different requirements, and your standards owner should  
set your specific testing cadence, but a good goal is to work towards weekly testing of
production systems. A weekly cadence gives you an accurate view that will always be
recent enough to be considered current, and by testing in production, you’ll be getting  
an accurate view of your actual Kubernetes deployment under real-world conditions

Kubernetes Reliability at Scale TABLE OF CONTENTS 18

Create dashboards for alignment and reporting

By combining reliability scores with regular testing, you create reliability metrics. So the
next step is to create a system for reporting those metrics with dashboards.

Example of a dashboard for multiple services in Gremlin

Kubernetes Reliability at Scale TABLE OF CONTENTS 19

These dashboards should be used in regular reliability alignment meetings (or as part  
of existing engineering review meetings) for the entire team—including leadership—to
review the current reliability posture of your Kubernetes deployment.

The goal with these dashboards isn’t to assign blame or point out failures. Instead, they
should be used to plan engineering work and applaud successes. For example, if a team
shipped a new feature and their reliability score decreased, this might be expected with
the large amount of new code added to the system. The decrease in score then shows the
team that time should be spent ensuring reliability of the new feature before moving onto
the next one. At the same time, if they come back two weeks later and the score has
increased, then they should be celebrated for how much they improved the new  
feature’s reliability.

Tracking detected Kubernetes reliability risks
The nature of Kubernetes cluster and node configurations make it possible to continuously
scan and monitor for known critical reliability risks, such as misconfigurations that would
disable autoscaling. These risks and how to monitor for them are discussed in more detail
below, but these also create their own reliability metric unique to Kubernetes.

A sample team risk report from Gremlin

Kubernetes Reliability at Scale TABLE OF CONTENTS 20

As with reliability scores, these detected
risks can be broken down into a binary
metric: either the risk is present or it isn’t.
And just like with reliability scores, tracking
the detection of these risks over time
creates a reliability metric. Like with
reliability metrics gained from testing,
these scanned reliability metrics should be
reviewed in regular alignment meetings,
then be used to show when teams have
successfully addressed the risks to make
the systems more reliable.

Further reading:

By tracking reliability metrics, you enable
your organization to operate on a whole  
new level of reliability, one where they have
the processes and tooling in place to find
reliability risks, prioritize which risks need
the most attention, and then report back  
the results to the greater business.

Find out more in these resources  
from Gremlin

 whitepape

  
on-demand webinar

Navigating the Reliability Minefield: 
Find and Fix Your Hidden Reliability 
Risks
More Reliability, Less Firefighting: How
to Build a Proactive Reliability Program

Kubernetes Reliability at Scale TABLE OF CONTENTS 21

https://www.gremlin.com/whitepapers/reliability-tracker-whitepaper
https://www.gremlin.com/whitepapers/reliability-tracker-whitepaper
https://www.gremlin.com/whitepapers/reliability-tracker-whitepaper
https://www.gremlin.com/webinars/more-reliability-less-firefighting
https://www.gremlin.com/webinars/more-reliability-less-firefighting

 Risk monitoring  
and mitigation

Framework for Kubernetes Resiliency

Organizational Standards Deployment-Specific Standard

Metrics & Reporting

Risk Monitoring & Mitigation
Common critical risks surfaced by automatic continuous monitoring and detection

Validation Test Suites

Resource tests Redundancy tests Network tests

While resiliency testing is necessary for uncovering some reliability risks, the nature of
Kubernetes makes it possible to scan for key misconfigurations, bad default values, or anti-
patterns that create reliability risks within the cluster. You can deploy a tool across your
cluster to detect Kubernetes resources and analyze configurations across the deployment.
This makes it possible to automatically detect key reliability risks and surface them before
they start causing behavior that could lead to an outage.

Kubernetes Reliability at Scale TABLE OF CONTENTS 22

This kind of automated risk monitoring is different than observability or resiliency testing.
With observability, these risks will present themselves when they create unexpected
behavior in your systems. Instead of finding out about the risk ahead of time, you’re
reacting after it’s already caused an incident or outage. Resiliency testing, on the other
hand, artificially injects faults that would trigger the risk. This allows you to uncover the
risk proactively before it causes problems, but the tests themselves have to be run.

Kubernetes risk monitoring uses the cluster, node, and pod data to uncover critical
reliability risks automatically without testing or waiting for an observability alert. Many of
these are caused by configuration issues or require small changes to images that can be
relatively quick to address. By setting up a system to monitor for these key risks, you can
proactively surface them without the delay of other methods.

The nature of Kubernetes and the complexity of deployments has the potential to create  
a large number of risks, but there’s a core group of ten that should be included in any risk
monitoring practice. These are the most common critical risks that could cause major
outages if left unaddressed. When building out your Kubernetes reliability tooling and
standards, start by making sure these ten reliability risks are being detected and covered.
From there, you can add other reliability risks to your monitoring list.

Resource risks

Running out of resources directly impacts system stability. If your nodes don’t have
enough CPU or RAM available, they may start slowing down, locking up, or terminating
resource-intensive pods to make room.

Setting requests is the first step towards preventing this, because they specify the
minimum resources needed to run a pod. Limits are somewhat the opposite and set an
upper cap on how much RAM a pod can use, preventing a memory leak from taking all of  
a node’s resources.

Kubernetes Reliability at Scale TABLE OF CONTENTS 23

Missing CPU requests

A common risk is deploying pods without
setting a CPU request. While it may seem
like a low-impact, low-severity issue, not
using CPU requests can have a big impact,
including preventing your pod  
from running.

Further reading

Find out how to detect missing CPU
requests and how to resolve the reliability
risk: How to ensure your Kubernetes Pods
have enough CPU

Requests serve two key purposes:

1 They tell Kubernetes the minimum amount of the resource to allocate to a pod.  
This helps Kubernetes determine which node to schedule the pod on and how to
schedule it relative to other pods.

2 They protect your nodes from resource shortages by preventing over-allocating
pods on a single node.

Without this, Kubernetes might schedule a pod onto a node that doesn't have enough
capacity for it. Even if the pod uses a small amount of CPU at first, that amount could
increase over time, leading to CPU exhaustion.

Missing memory requests

A memory request specifies how much RAM should be reserved for a pod's container.
When you deploy a pod that needs a minimum amount of memory, such as 512 MB or  
1 GB, you can define that in your pod's manifest. Kubernetes then uses that information  
to determine where to deploy the pod so it has at least the amount of memory requested.

When deploying a pod without a memory request, Kubernetes has to make a best-guess
decision about where to deploy the pod.

Kubernetes Reliability at Scale TABLE OF CONTENTS 24

https://www.gremlin.com/blog/how-to-set-cpu-requests-kubernetes-pods
https://www.gremlin.com/blog/how-to-set-cpu-requests-kubernetes-pods

If the pod gets deployed to a node with a
limited amount of free memory remaining,
and the pod gradually consumes more
memory over time, it could trigger an out
of memory (OOM) event that terminates
the pod. This could even make the pod
unschedulable, which manifests as the
CrashLoopBackOff status.

Further reading

Learn more about finding and resolving
memory request risks: How to ensure your
Kubernetes Pods have enough memory

Missing memory limits

A memory limit is a cap on how much RAM a pod is allowed to consume over its lifetime.
When you deploy a pod without memory limits, it can consume as much RAM as it wants,
just like any other process. If it continually uses more and more RAM without freeing any
(known as a memory leak), eventually the host it's running on will run out of RAM.

At that point, a kernel process called the OOMKiller jumps in and terminates the process
before the entire system becomes unstable.

While the OOMKiller should be able to  
find and stop the appropriate pod, it's not
always guaranteed to be successful. If it
doesn't free enough memory, the entire
system could lock up, or it could kill
unrelated processes to try and free  
up enough memory.

Further reading

Find out how to set memory limits and
prevent memory leaks: How to detect and
prevent memory leaks in Kubernetes
applications

Setting a limit and a request creates a range of memory that the pod could consume,
making it easier for both you and Kubernetes to determine how much memory the pod  
will use on deployment.

Kubernetes Reliability at Scale TABLE OF CONTENTS 25

https://www.gremlin.com/blog/how-to-set-memory-requests-kubernetes-pods
https://www.gremlin.com/blog/how-to-set-memory-requests-kubernetes-pods
https://www.gremlin.com/blog/how-to-prevent-memory-leaks-kubernetes-applications
https://www.gremlin.com/blog/how-to-prevent-memory-leaks-kubernetes-applications
https://www.gremlin.com/blog/how-to-prevent-memory-leaks-kubernetes-applications

Redundancy risks

Unfortunately, containers often crash, terminate, or restart with little warning. Even
before that point, they can have less visible problems like memory leaks, network latency,
and disconnections. Liveness probes allow you to detect these problems, then terminate
and restart the pod.

On the node level, you should set up Kubernetes in multiple availability zones (AZs) for
high availability. When these risks are remediated, your system will be able to detect pod
failures and failover nodes if there’s an AZ failure.

These two reliability risks directly affect your deployment’s ability to have the redundancy
necessary to be resilient to pod, node, cluster, or AZ failure.

Missing liveness probes

A liveness probe is essentially a health
check that periodically sends an HTTP
request (or sends a command) to a
container and waits for a response. If the
response doesn't arrive, or the container
returns a failure, the probe triggers a
restart of the container.

Further reading

Learn how to detect missing liveness probes
and make sure they’re defined: How to keep
your Kubernetes Pods up and running with
liveness probes

The power of liveness probes is in their ability to detect container failures and
automatically restart failed containers. This recovery mechanism is built into Kubernetes
itself without the need for a third-party tool. Service owners can define liveness probes as
part of their deployment manifests, and their containers will always be deployed with
liveness probes.

Kubernetes Reliability at Scale TABLE OF CONTENTS 26

https://www.gremlin.com/blog/how-to-set-kubernetes-liveness-probes
https://www.gremlin.com/blog/how-to-set-kubernetes-liveness-probes
https://www.gremlin.com/blog/how-to-set-kubernetes-liveness-probes

In theory, the only time a service owner should have to manually check their containers  
is if the liveness probe fails to restart a container (like the dreaded CrashLoopBackOff
state). But in order to restart the container, a liveness probe has to be defined in the
container’s manifest.

No Availability Zone redundancy

By default, many Kubernetes cloud providers provision new clusters within a single
Availability Zone (AZ). Because these AZs are isolated, one AZ can experience an incident
or outage without affecting other AZs, creating redundancy—but only if your application is
set up in multiple AZs.

If a cluster is set up in a single AZ and that AZ fails, the entire cluster will also fail along
with any applications and services running on it. This is why the AWS Well-Architected
Framework recommends having at least two redundant AZs for High Availability.

Kubernetes natively supports deploying across multiple AZs, both in its control plane (the
systems responsible for running the cluster) and worker nodes (the systems responsible
for running your application pods).

Setting up a cluster for AZ redundancy
usually requires additional setup on the
user's side and leads to higher cloud
hosting costs, but for critical services,  
the benefits far outweigh the risk of an
incident or outage.

Further reading

Find out how to set up Availability Zone
redundancy and scan for missing
redundancy: How to deploy a multi-
availability zone Kubernetes cluster for 
High Availability

Kubernetes Reliability at Scale TABLE OF CONTENTS 27

https://www.gremlin.com/blog/how-to-deploy-ha-kubernetes-across-availability-zones
https://www.gremlin.com/blog/how-to-deploy-ha-kubernetes-across-availability-zones
https://www.gremlin.com/blog/how-to-deploy-ha-kubernetes-across-availability-zones

Container deployment risks

If a container crashes, Kubernetes waits for a short delay and restarts the pod.  
Kubernetes will retry a few times before eventually giving up and giving the container a
CrashLoopBackOff status. Similarly, when Kubernetes fails to pull the container image,  
it will retry for a few minutes until it gives up, then give the container a status of
ImagePullBackOff.  

There are also times when a pod simply can’t be scheduled to run. Commonly, this
happens because the cluster doesn’t have the resources, or your pod requires a persistent
volume that isn’t available.

Containers in these states should be able to be restarted when a failure occurs, but are
unable to, creating a risk to the resiliency of your deployment.

Pods in CrashLoopBackOff

CrashLoopBackOff is the state that a pod
enters after repeatedly terminating due to
an error. Normally, if a container crashes,
Kubernetes waits for a short delay and
restarts the pod.

Further reading

Get tips for CrashLoopBackOff
troubleshooting, detecting it, and verifying
your fixes: How to fix and prevent
CrashLoopBackOff events in Kubernetes

The time between when a pod crashes and when it restarts is called the delay. On each
restart, Kubernetes exponentially increases the length of the delay, starting at 10 seconds,
then 20 seconds, then 40 seconds, continuing in that pattern up to 5 minutes. If
Kubernetes reaches the max delay time of 5 minutes and the pod still fails to run,
Kubernetes will stop trying to deploy the pod and gives it the status CrashLoopBackOff.

CrashLoopBackOff can have several causes, including:

Kubernetes Reliability at Scale TABLE OF CONTENTS 28

https://www.gremlin.com/blog/how-to-fix-kubernetes-crashloopbackoff
https://www.gremlin.com/blog/how-to-fix-kubernetes-crashloopbackoff

 Application errors that cause the process to crash
 Problems connecting to third-party services or dependencies
 Trying to allocate unavailable resources to the container, like ports that are already in

use or more memory than what's available
 A failed liveness probe.

There are many more reasons why a CrashLoopBackOff can happen, and this is why it's
one of the most common issues that even experienced Kubernetes developers run into.

Images in ImagePullBackOff

Before Kubernetes can create a container, it first needs an image to use as the basis for the
container. An image is a static, compressed folder containing all of the files and executable
code needed to run the software embedded within the image.

Normally, Kubernetes downloads images  
as needed (i.e. when you deploy a
manifest). Kubernetes uses the container
specification to determine which image to
use, where to retrieve it from, and which
version to pull.

Further reading

Learn about detecting and troubleshooting
ImagePullBackOff, then verifying your fixes:
How to fix and prevent ImagePullBackOff
events in Kubernetes

If Kubernetes can't pull the image for any reason (such as an invalid image name, poor
network connection, or trying to download from a private repository), it will retry after a
set amount of time. Like a CrashLoopBackOff, it will exponentially increase the amount of
time it waits before retrying, up to a maximum of 5 minutes. If it still can't pull the image
after 5 minutes, it will stop trying and set the container's status to ImagePullBackOff.

Kubernetes Reliability at Scale TABLE OF CONTENTS 29

https://www.gremlin.com/blog/how-to-fix-kubernetes-imagepullbackoff
https://www.gremlin.com/blog/how-to-fix-kubernetes-imagepullbackoff

Unschedulable pod errors

A pod is unschedulable when it's been put into Kubernetes' scheduling queue, but can't be
deployed to a node. This can be for a number of reasons, including

 The cluster not having enough CPU or RAM available to meet the pod's requirements
 Pod affinity or anti-affinity rules preventing it from being deployed to available nodes
 Nodes being cordoned due to updates or restarts
 The pod requires a persistent volume that's unavailable, or bound to an  

unavailable node.

Although the reasons vary, an unschedulable pod is almost always a symptom of a larger
problem. The pod itself may be fine, but the cluster isn't operating the way it should,
which makes resolving the issue even more critical.

Unfortunately, there is no easy direct way
to query for unschedulable pods. Pods
waiting to be scheduled are held in the
"Pending" status, but if the pod can't be
scheduled, it will remain in this state.
However, pods that are being deployed
normally are also marked as "Pending."
The difference comes down to how long  
a pod remains in "Pending."

Further reading

Find out how to detect and resolve
unschedulable pod issues:  
How to troubleshoot unschedulable 
Pods in Kubernetes

Kubernetes Reliability at Scale TABLE OF CONTENTS 30

https://www.gremlin.com/blog/how-to-fix-kubernetes-unschedulable-pods
https://www.gremlin.com/blog/how-to-fix-kubernetes-unschedulable-pods

Application risks

Whenever you update your application, there are hidden reliability risks. Updates typically
roll out gradually, not all at once. What happens if your team releases another update
before the first rollout finishes? What happens if you push a release while Kubernetes is
upgrading itself? You might end up with two different versions running side-by-side.

Another common application risk is introduced by using init containers. These are handy
for preparing an environment for the main container, but introduce a potential point of
failure where the init container can’t run and causes the main container to fail.

Both of these risks occur at the application level, which means infrastructure or cluster-
level detection could miss them.

Application version non-uniformity

Version uniformity refers to the image
version used when declaring pods. When
you define a pod or deployment in a
Kubernetes manifest, you can specify
which version of the container image  
to use in one of two ways:

Further reading

Learn more about version non-uniformity
and how to resolve it: How to ensure
consistent Kubernetes container versions

 Tags, which are created by the image's creator to identify a single version of a
container. Multiple container versions can have the same tag, meaning a single tag
could refer to multiple different container versions over time

 Digests, which are the result of running the image through a hashing function  
(usually SHA256). Each digest identifies one single version of a container. 
Changing the container in any way also changes the digest.

Tags are easier to read than digests, but they come with a catch: a single tag could refer to
multiple image versions. The most infamous example is latest, which always points to

Kubernetes Reliability at Scale TABLE OF CONTENTS 31

https://www.gremlin.com/blog/kubernetes-container-image-version-uniformity
https://www.gremlin.com/blog/kubernetes-container-image-version-uniformity

the most recently released version of a container image. If you deploy a pod using the
latest tag today, then deploy another pod tomorrow, you could end up with two
completely different versions of the same pod running side-by-side.

Init container errors

An init container is a container that runs before the main container in a pod. They're often
used to prepare the environment so the main container has everything it needs to run.

For example, imagine you want to deploy a large language model (LLM) in a pod. LLMs
require datasets that can be several GB. You can create an init container that downloads
these datasets to the node so that when the LLM container starts, it immediately has
access to the data it needs.

Init containers are incredibly useful for setting up a pod before handing it off to the main
container, but they introduce an additional point of failure.

Init containers run during the pod's initialization process and must finish running before
the main container starts. To add to this, if you have multiple init containers defined,
they'll all run sequentially until they've either completed successfully or failed.

If an init container fails and the pod's
restartPolicy is not set to Never, the pod
will repeatedly restart until it succeeds.
Otherwise, Kubernetes marks the entire
pod as failed with the status
Init:CrashLoopBackOff.

Further reading

Find out more about init container errors,
how to detect them, and how to
troubleshoot them: How to fix Kubernetes
init container errors

Kubernetes Reliability at Scale TABLE OF CONTENTS 32

https://www.gremlin.com/blog/how-to-fix-kubernetes-init-container-errors
https://www.gremlin.com/blog/how-to-fix-kubernetes-init-container-errors

 Validating resilience  
through testing

Framework for Kubernetes Resiliency

Organizational Standards Deployment-Specific Standard

Metrics & Reporting

Risk Monitoring & Mitigation

Validation Test Suites
Common critical risks surfaced by automatic continuous monitoring and detection

Resource tests

CPU 
Memory 
Disk I/O

Redundancy tests

Availability Zones 
Region 

Pod replica 
Autoscaling

Network tests

Dependencies 
I/O 

DNS 
Latency

Kubernetes Reliability at Scale TABLE OF CONTENTS 33

This is done by using Fault Injection testing. Fault Injection works by creating controlled
failure in a computing component, such as a host, container, or service. By observing how
their components respond to failure, engineering teams can take action to make their
services more resilient. It can be used in experiments to uncover new reliability risks and
failure modes, or it can be used in standardized groups, known as test suites, to validate
workload behavior.

When to test in your SDLC and which exact tests to run will vary depending on your
individual organization’s standards and the maturity of your resilience practice. But there
is a core set of resiliency tests that should be run for every Kubernetes deployment, as  
well as best practices to help determine when in your SDLC your teams should run  
resiliency tests.

Exploratory testing
Exploratory testing is used to better understand your systems and suss out the unknowns
in how it responds to external pressures. Many of the experiments performed under the
practice of Chaos Engineering make use of exploratory tests to find unknown points of
potential failure.

To minimize the impact on your systems, exploratory tests should always be done in a
controlled manner. While a trustworthy Fault Injection tool will contain safeguards like
automatic rollback in case of problems, the injection of faults can potentially cause
disruption when doing exploratory tests. Be sure to follow Chaos Engineering best
practices like limiting the blast radius and carefully defining the boundaries of the
experiment. Ideally, these tests should start with individual services, then expand broader
into the organization as you become more confident in the results and impact of the test.

For example, a common type of exploratory test is making sure your Kubernetes
deployments scale properly in response to high demand. You can set up a Horizontal Pod
Autoscaling (HPA) rule on your deployment to increase the number of pods when CPU

Kubernetes Reliability at Scale TABLE OF CONTENTS 34

usage exceeds a certain percentage. Then,
you can use a Fault Injection tool to apply
CPU pressure directly to the deployment,
while monitoring the number of pods.

If Kubernetes deploys an additional pod,
then you know your system will scale
properly under similar conditions in
production. If not, tweak your HPA  
rules and repeat the test until the system
behaves the way you expect. Then  
those HPA rules can become part of your
resilience standards, and future tests  
will be used to validate that the rules  
are in place.

Further reading

Chaos Engineering has come a long way over
the years. Use these resources to find out
more about the history of Chaos
Engineering, its uses, and how to get
certified so you can start designing your 
own exploratory testing experiments

Chaos Engineering: the history,
principles, and practic
What is Chaos Engineering
Gremlin Enterprise Chaos  
Engineering certification

Validation testing

Once you have a standardized set of known failures and reliability risks, you can test  
your resilience to them with validation testing. Using Fault Injection, validation tests  
inject specific failure conditions into your systems to verify resilience to failures. Unlike
exploratory testing, which is done manually, validation testing works best when it can be
automated on a schedule. Ideally, they should be tested weekly, but many organizations
will start with monthly testing, then gradually increase the frequency as they become  
more comfortable with the testing process.

Kubernetes Reliability at Scale TABLE OF CONTENTS 35

https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice
https://www.gremlin.com/community/tutorials/chaos-engineering-the-history-principles-and-practice
https://www.gremlin.com/chaos-engineering
https://www.gremlin.com/certification
https://www.gremlin.com/certification

Based on the standards defined earlier in the framework, you should have a list of known
failures and reliability risks. By collecting validation tests that correspond to these failures,
you can create a standardized set of test suites that can be run across your organization.
As discussed above, the results of these testing suites can be collected over time to create
metrics, then charted to create dashboards that can be used to align and prioritize
reliability risk remediation efforts.

Standardized test suites for every Kubernetes deployment

There are certain resiliency tests that should be run for every Kubernetes deployment.
Based on the key traits in common with any Kubernetes cluster, these should form the
core of your resiliency test standards. These core tests fall under three groups.

Resource tests

Any Kubernetes deployment needs to be resilient to sudden spikes in traffic, demand,  
or resource needs. These two tests will verify that your services are resilient to sudden
resource spikes. Depending on your architecture, you may also want to add a Disk I/O
scalability test to this mix.

 CPU Scalability: Test that your service scales as expected when CPU capacity is
limited. This should be done in three stages of 50%, 75%, and 90% CPU consumption.

Estimated test length: 15 minutes

 Memory Scalability: Test that your service scales as expected when memory is limited.
Memory consumption should be done in three stages: 50%, 75%, and 90% capacity.

Estimated test length: 15 minutes

Kubernetes Reliability at Scale TABLE OF CONTENTS 36

Redundancy tests

Make sure that your deployments are resilient to infrastructure failures. These tests  
shut down a host or access to an availability zone to verify that your deployment has the
redundancy in place to stay up when a host or zone goes down. If your standards call for
multi-region redundancy, then you should add tests that make regions unavailable.

 Host Redundancy: Test resilience to host failures by immediately shutting down  
a randomly selected host or container.

Estimated test length: 5 minutes

 Zone Redundancy: Test your service's availability when a randomly selected zone is
unreachable from the other zones.

Estimated test length: 5 minutes

Dependency and network tests

The microservices nature of Kubernetes architectures can create a web of dependencies.
These tests help you verify that your deployments will respond correctly when
dependencies have failed, network issues are delaying communications, or have expiring
certificates that make them unavailable. If you have a more complex architecture, you  
may want to periodically run dependency discovery tests to uncover any  
unknown dependencies.

 Dependency Failure: Test your service’s ability to tolerate unavailable dependencies by
dropping all network traffic to a specific dependency.

Estimated test length: 5 minutes

 Dependency Latency: Test your service’s ability to tolerate slow dependencies by
delaying all network traffic to this dependency by 100ms.

Estimated test length: 5 minutes

Kubernetes Reliability at Scale TABLE OF CONTENTS 37

 Certificate Expiry: Test your service’s dependencies for expired or expiring TLS
certificates by opening a secure connection to your dependency, retrieving the
certificate chain, and validating that no certificates expire in the next 30 days. A lack  
of a secure connection would also pass the test, since that would mean there are  
no certificates.

Estimated test length: 1 minute

Customizing suites to fit your organization

While you should start with the standardized test suites above, there are situations  
where you should make adjustments to better fit your organization and its reliability goals.
These changes could be adding new tests designed to fit specific failures, or tweaking the
parameters of existing tests, such as adjusting the allowed latency depending on a service.

When customizing suites, you should do it based off data from sources like

 Incidents - When there’s an outage, it’s a good practice to set up tests to detect  
and prevent the same incident from happening in the future. For example, if you
experienced a DNS-based outage, then you may want to set up weekly tests to make
sure you can failover to a fallback DNS service

 Observability alerts - There’s plenty of application behavior that doesn’t directly
create an outage, but is still a definite warning sign. Perhaps a service owner has
noticed that compute resource spikes that take up 85% of compute capacity don’t  
take the system down, but still create a situation where a spike in traffic would cause
an outage. In this case, you’d want to add tests that simulate compute resource usage
at 85% capacity to ensure resilience to this potential failure

 Exploratory testing - As covered above, it’s important to work directly with service
operators to adjust testing parameters and fit the needs of specific services. Using
exploratory testing, operators can determine exactly what the failures are so you can
design tests against them. Critical services, for example, should have higher resilience
standards than internal services, and the test suite should be customized to fit  
these standards.

Kubernetes Reliability at Scale TABLE OF CONTENTS 38

 Industry models - There are many architecture models, such as the AWS Well-
Architected Framework, that have specific best practices to improve reliability. If
you’re using these architecture standards, then you can adjust your testing suites to
verify compliance with those standards

 Industry compliance requirements - Highly regulated industries, such as finance, can
often have resilience and reliability standards unique to their industry. Often these can
be much more strict than common best practices, and you should adjust test suites
accordingly to fit these compliance requirements.

Kubernetes Reliability at Scale TABLE OF CONTENTS 39

 Testing in different stages  
of your SDLC

The goal of validation testing is to provide an accurate picture of your current system's
resiliency. As such, testing should, when possible, be done in production environments.
However, resiliency testing with Fault Injection is not without its risks. These can be
mitigated with the right tool, setup, and experience with testing, but for this reason, many
organizations earlier in their resilience testing journey may wish to build more confidence
by testing in staging first. Additionally, there are benefits to testing in pre-production
stages to catch risks before release.

Tradeoffs for Each Automation Strategy

st r at e gy P R O S co n s

Gating Release  
Candidates on  
running tests

Catches some resilience risks before
production

Fits into existing QA/performance
testing cycles

Expensive and difficult to
run production-like test
environments

Can miss infrastructure
and network-level risks

Can lead to false
confidence without also  
testing in production

Slows down QA process

Running  
tests after
production
deployments

Runs in production, so it can capture
software, infrastructure, and  
network risks

Fast cycle time between deployment  
and risk identification

Slows down deployment
process if deploying faster
than test cycle length

Requires strong
monitoring

Misses risks introduced
through out-of-band
infrastructure and
network-level changes

Some risks will make it to
production but should  
be mitigated quickly

Scheduling
tests at regular
intervals

Runs in production, so it can capture
software, infrastructure,  
and network risks

Decoupled from software release cycle;  
no impact on time to deployment

Requires strong
monitoring

Some risks will make it to
production but should be
mitigated quickly

Kube r n e t e s R eliabilit y at S c ale TABLE OF CONTENTS 40

Ultimately, the choice comes down to your individual organization and its familiarity with
resilience testing. Consider the pros and cons of each choice before you decide on  
a strategy.

Testing in staging

Testing in a staging environment prevents any potential downtime caused by testing from
impacting customers. However, perfectly duplicating a staging environment with the same
workloads, resources, and traffic as production environments is cost-prohibitive and  
time intensive. Additionally, there are changes outside your control, such as network
topography, that can’t be accounted for in staging environments.

Ultimately, while testing in staging can catch key reliability risks, it can’t give you an
accurate view of the reliability of your system in production.

Testing as part of release automation

Like other kinds of testing, validation resilient testing can be done as part of a release
pipeline process, such as CI/CD. But the best choice for your organization will depend on
your release schedule.

Due to the nature of Fault Injection testing, a full battery of tests could take several hours.
If you’re releasing on a weekly or monthly schedule, holding up a deployment to run these
tests could be worth it for the reliability risks you uncover. However, if you’re set up for
multiple releases a day, then the time spent on the tests prevents them from being used as
a gating mechanism. In this case, you should consider testing in production, either post-
deployment or on a regular schedule.

Remember, the goal of resiliency testing is to uncover reliability risks in production. While
some of these can be uncovered before deployment, you should fit testing into your SDLC
where it makes the most sense and can be the most effective at uncovering reliability risks
in production before they impact customers.

Kubernetes Reliability at Scale TABLE OF CONTENTS 41

Automating on a schedule

Kubernetes systems are constantly changing with new deployments, resource changes,
network topography shifts, and more. A service that had very few reliability risks two
weeks ago could suddenly have a much more vulnerable reliability posture due to new
releases, changes in dependency services, or network shifts.

The only way to catch these changes is
through regular, automated validation
testing using test suites. Ideally, you should
aim to have weekly scheduled tests in
production, though many organizations
work up to this point.

It’s best to schedule these tests during a
time when engineers are present and
available to address any issues. You should
also schedule them to run shortly before
your prioritization and resourcing
meetings. This will allow your teams to
move quickly to address any critical
reliability risks the tests uncover.

Further reading

Find out more about the questions you
should be asking and the trade-offs you
should be weighing regarding testing 
across your SDLC with these resources 
from Gremlin

 The two kinds of failure testin
 The case for Fault Injection 

testing in Productio
 Fault Injection in your 

release automation

Kubernetes Reliability at Scale TABLE OF CONTENTS 42

https://www.gremlin.com/blog/the-two-kinds-of-failure-testing
https://www.gremlin.com/blog/the-case-for-fault-injection-testing-in-production
https://www.gremlin.com/blog/the-case-for-fault-injection-testing-in-production
https://www.gremlin.com/blog/fault-injection-in-your-release-automation
https://www.gremlin.com/blog/fault-injection-in-your-release-automation

 Roles and responsibilities
Any Kubernetes resilience effort requires contributions from three key roles if it’s going to
be successful. Everyone working on resiliency falls into one of these three roles, which are
sorted by their responsibilities within the framework:

1 Leadership roles create prioritization and allocate resources to  
resiliency management.

2 Standards roles set standards, manage tooling, and oversee the execution of 
the framework.

3 Operations roles perform tests on services and remediate reliability risks.

Resiliency Roles

Shared reliability  
mandate

Aligned goals  
& metrics

Reduced incidents  
and outages

Define common resilience patterns  
to test broadly
Manage tooling for testing & reporting

Drive reliability posture reviews

standards

Perform regular resilience tests

Remediate reliability risks

Operat ions

Prioritize reliability
Dedicate resources
Drive accountability

Leadership

Kubernetes Reliability at Scale TABLE OF CONTENTS 43

The roles aren’t tied to specific titles, and it’s common for one person or team to take on
two of the roles: for example, performance engineering teams or centralized SRE teams
often take on both setting the standards and performing tests and mitigations—at least
initially. But without someone stepping in to take on the requirements of each role, teams
often struggle to make progress.

Leadership role

The leadership role is the one responsible for setting the priorities of engineering teams
and allocating resources. In some companies this is held by someone in the C-suite, while
in others it’s held by Vice Presidents or Directors. The defining factor is that anyone in this
role has the authority to make organization-wide priorities and direct resources  
towards them.

Core Responsibilities:

Dedicate resources to reliability

Most reliability efforts fail due to a lack of prioritization from the organization. For your
resilience practice to be effective, leadership roles need to allocate resources to it.

Ensure standards create business value

Work with those in the standards roles to make sure resiliency standards and goals tie directly
back to business value. Try to find the balance where the time, money, and effort spent finding
and mitigating reliability risks is creating far more value than it takes in resources.

Drive accountability and review metrics dashboards

When leadership is visibly engaged in reviewing reliability metrics, it lends importance to the
efforts, which, in turn drives action. Leadership should hold operators accountable for
improving resiliency—and applaud them when they do.

Kubernetes Reliability at Scale TABLE OF CONTENTS 44

Standards role

The Standards role is responsible for driving the Kubernetes resilience efforts across the
organization. They own the standards, tooling, and organizational processes for executing
the framework. In some organizations, this role is in centers of excellence, such as SRE or
Platform Engineering teams, while in others this role is added to an existing role like
Kubernetes architects.

Core Responsibilities:

Define reliability standards
Reliability standards should be based on a combination of universal best practices,
organizational reliability goals, and unique deployment reliability risks. These should be
consistent across the organization, with any service-specific deviations (such as those
discovered through exploratory testing) documented.

Manage tooling for testing & reporting
By centralizing testing and reporting tooling with the standards role, tests can be automated
to minimize the lift by individual teams and metrics can be compiled to make it easier to align
around reliability and prioritize fixes.

Determine standardized validation test suites
Reliability test suites are a powerful tool for creating a baseline of resiliency across your
organization. The standards role should define these, then integrate them into tooling so
teams can automate running them.

Owning operationalization processes
Metrics should be regularly reported and reviewed in meetings where the reliability posture is
reviewed, then any fixes are prioritized. Whether these are standalone meetings or integrated
into existing meetings, the standards role should own and run these review processes.

Kubernetes Reliability at Scale TABLE OF CONTENTS 45

Operator role

This role could have a wide variety of titles, but the defining characteristics are that they’re
responsible for the resiliency of specific services. They make sure the tests are run, report
the results, and make sure any prioritized risks are addressed.

Core Responsibilities:

Run tests and report on results

Once the initial agents or setup is done, testing should be automated to make this a lighter lift.
As part of the prioritization and review meetings, operators will need to make sure the test
results are reported and speak to any discussion about them.

Respond to risks detected by monitoring

Risks detected by monitoring can often be fixed with a change to the configuration or other
lighter-lift fixes. In these cases, operators should be empowered to quickly address these risks
to maintain Kubernetes resiliency.

Address and mitigate reliability risks

Once reliability risks have been prioritized, operators are responsible for making sure the risk
is fixed. They may not be the person to perform the actual work, but they should be
responsible for making sure any risks are addressed, then testing again to verify the fixes.

Kubernetes Reliability at Scale TABLE OF CONTENTS 46

What makes a 
best-in-class 
reliability practice?

A best-in-class reliability practice extends
across teams to improve the resiliency
and availability of your systems. At the
same time, it enables engineering teams
to spend less time fighting fires and
resolving incidents so they can focus on
vital work like new features or
innovations.

Gremlin has worked with reliability
program leaders at Fortune 100
companies to identify the traits of
successful programs. Reliability programs
built around these four pillars and 18
traits align organizations, get crucial buy-
in, and achieve real, measurable
improvements to the reliability of  
their systems.

Find out what it takes to build an
effective reliability effort with the  

 checklist.
How to Build a Best-in-Class Reliability
Program

Kubernetes Reliability at Scale TABLE OF CONTENTS 47

https://www.gremlin.com/whitepapers/reliability-program-checklist
https://www.gremlin.com/whitepapers/reliability-program-checklist

Next steps:  
Your first 30 days of resiliency

Your Kubernetes resiliency management practice will mature, grow, and change over  
time, but it doesn’t have to take months to start creating results. In fact, you can start
uncovering reliability risks and having a demonstrable impact on your Kubernetes
reliability with this roadmap for your first 30 days.

1. Choose the services for your proof of concept

Leadership and teams can be hesitant to roll out new programs across the entire
organization, and understandably so. Many resiliency efforts start with a few services to
show its efficacy before it can be more widely adopted.

You can speed the process along by getting alignment on a specific group of services being
used for the pilot. These are your early-adoptor services, and the more you have everyone
involved on board, the better results you’re going to get.

In fact, having a small group of teams who are invested and focused can often be more
effective than trying with a wider, more hesitant group right out of the gate. Once you
start proving results with early adopters, then you’ll get less resistance as you roll the
program out more broadly.

When choosing these services, you should start with ones that are important to your
business to provide the greatest immediate value. Dependencies are a common source of
reliability risks, so a good choice is to start with central services that have fully-connected
dependencies. You could also select services that are fully loaded with production data and

Kubernetes Reliability at Scale TABLE OF CONTENTS 48

dependencies, but aren’t launched yet, such as services during a migration or about to be
launched. The last common choice is services that are already having reliability issues, thus
allowing you to prove your effectiveness and address an area of concern at the same time.

2. Set up your systems for risk monitoring and testing
Fault Injection requires a tool to be integrated into your Kubernetes deployment.  
If you’re building your own tool, this can be pretty complicated, but a reliability platform
like Gremlin streamlines the process of installing agents and setting up permissions.

Once the agent is set up, you’ll want to define your risk monitoring parameters and core
validation test suites. A good place to start is with the critical risks from Chapter 4 and  
the test suites from Chapter 5. (Gremlin has these set up as default test suites for 
any service.)

Generally, these core risks and test suites are a good place to start, then you can adjust
them as you become more comfortable with testing. But you can also alter these test
suites to fit unique standards for your organization or to include a test that validates
resilience to specific issues, such as ones that recently caused an outage.

3. Use risk monitoring to detect Kubernetes risks
Almost every Kubernetes system has at least one of the critical risks above. Since risk
monitoring uses continuous detection and scanning rather than active Fault Injection
testing, it’s a faster, easier way to uncover active critical reliability risks.

Follow these steps to quickly find risks, fix them, and prove the results:

1 Install the agent or tool in your Kubernetes cluster.

2 The scan will return a list of reliability risks, along with a mitigation status.

Kubernetes Reliability at Scale TABLE OF CONTENTS 49

3 Work with the team behind the service to address unmitigated risks. Most of these,
such as missing memory limits, can be a relatively light lift to fix.

4 Deploy the fix and go back to the monitoring dashboard. Any risk you addressed should
be shown as mitigated.

5 Congratulations! You’ve made your Kubernetes deployment more reliable.

Since risk monitoring is automated and non-invasive, this is also an easier way to spur
adoption of resiliency management with other teams. Show those teams the results you
were able to create, then help them to set up their own risk monitoring.

4. Use validation testing for a baseline reliability  
 posture report

Now that you’ve addressed some of the more pressing reliability risks, it’s time to start
running Fault Injection tests. Run the validation test suites you set up to get a baseline
report for the reliability posture of your early-adopter services.

These first results will usually return a lot of existing reliability risks, which can be a good
thing. It means your resiliency testing is effectively uncovering reliability risks before they
cause outages.

Now that you’ve addressed some of the more pressing reliability risks, it’s time to start
running Fault Injection tests. Run the validation test suites you set up to get a baseline
report for the reliability posture of your early-adopter services.

These first results will usually return a lot of existing reliability risks, which can be a good
thing. It means your resiliency testing is effectively uncovering reliability risks before they
cause outages.

Kubernetes Reliability at Scale TABLE OF CONTENTS 50

5. Address high-priority risks, then verify your fixes

After the operators have had a chance to address the issues, run the same test suites
again to see if the fixes were successful. Once you’ve verified the fixes, gather up the
results and review them with the rest of your team.

You should have a list of critical Kubernetes risks that you’ve addressed, and by looking
at the before and after results from risk monitoring and validation tests, you’ll be able
to show the effectiveness of your resiliency efforts—and show exactly how you’ve
improved the reliability of your Kubernetes deployment.

Do it all with a 30-day trial from Gremlin

Gremlin offers a free trial that includes all of the capabilities you need to take the actions above.
Over the course of four weeks, you’ll be able to stretch your resiliency wings, prove the
effectiveness of your efforts, and have a lasting impact on the reliability of your Kubernetes
deployment.

Start your free 30-day Gremlin trial

Kubernetes Reliability at Scale TABLE OF CONTENTS 51

https://www.gremlin.com/trial

Gremlin is the Enterprise Reliability Platform that helps teams
proactively test their systems, build and enforce reliability and
resiliency standards, and automate their reliability practices
organization-wide.

Hundreds of enterprise finance, retail, and technology companies
around the world trust Gremlin with the reliability of their systems.  

Learn more at .gremlin.com

http://gremlin.com/

