
i
i

i
i

i
i

i
i

Rendering Surgery Simulation
with Vulkan

Nicholas Milef, Di Qi, and Suvranu De

1.1 Introduction

While surgical simulation requires much of the same rendering functionality
as games, critical differences necessitate simulation-specific optimizations
and engine design decisions that aren’t commonly needed or provided in
rendering engines for games. Given our unique use cases, we take advantage
of the explicitness of the Vulkan API (as compared to OpenGL) to develop a
rendering engine for surgical simulation. In this article, we explain how we
tailored our rendering engine design around surgery simulation including
how higher level design decisions propagate to lower-level usage of Vulkan.
To achieve this goal, our rendering architecture is designed to be flexible,
maintainable and efficient. In surgical use cases, soft tissues are modeled
by deformable meshes which are specially handled by our efficient memory
system. We show how performance scales with our memory system. Later,
we present a case study using our renderer in a virtual cricothyroidotomy
(CCT) 3D simulator.

1.2 Overview

Virtual surgery simulators present some unique computational and develop-
ment challenges that are less common in other applications such as games.
Rendering is particularly important because the appearance of the simu-
lator must be convincingly realistic to properly train surgeons for real-life
surgery scenarios.

General-purpose game engines often have limited soft-body physics and
haptics support. Platforms such as the Software Framework for Multimodal
Interactive Simulation (SoFMIS) [Halic et al. 11], the Simulation Open
Framework Architecture (SOFA) [SOF 18], OpenSurgSim [Ope 17], and
the Interactive Medical Simulation Toolkit (iMSTK) [iMS 18] seek to fill
this gap. Our rendering engine in particular is part of the larger framework
of iMSTK. In addition, newer APIs such as Vulkan [The Khronos Group 18]
provide more capabilities to make better use of computing resources and

1



i
i

i
i

i
i

i
i

2 1. Rendering Surgery Simulation with Vulkan

allow for more predictable performance compared to older graphics APIs
such as OpenGL.

1.2.1 Current Rendering Challenges for Surgery Simulation

One of the main challenges with surgery simulation is the rendering of
difficult materials such as skin, tissue, and organs. Unlike in games, difficult
rendering scenarios cannot be avoided by artwork or level design. It’s
necessary to render intricate details such as marks on organs and skin
while making the rendering look photorealistic so that users can become
familiar with the real surgical procedure.

Another challenge we face is the handling of dynamic meshes to pre-
pare for rendering. Since a major component of useful surgery simulation
is the simulation of the physical deformation of tissue and organs and their
interactions with the virtual environment, the renderer needs to be able to
efficiently and correctly handle the updating of these geometries. Although
soft bodies exist in video games, they often have limited interactions with
other objects (e.g., cloth simulation), so the simulation and rendering can
be often be done exclusively on the GPU. However, surgery simulation also
relies on haptic devices, so forces must be sent to the haptic device drivers.
GPU computation isn’t as desirable option because the computation re-
sults must be send to the haptic devices as soon as possible and many of
the physics computations use serialized constraint solving, making these
algorithms difficult to parallelize for the GPU. In order to render the de-
formable meshes, we needed to develop an architecture to quickly update
data.

Finally, although the Vulkan API is more explicit than OpenGL, many
API usage choices depend on the target hardware. In other words, it’s
not always clear what acceptable parameters are to guarantee satisfactory
performance. Memory management is one of the areas where the optimal
use cases are particularly ambiguous.

In this chapter, we first present our approach towards achieving realistic
rendering with our rendering architecture. Next, we present methods for
handling the computation and transfer of dynamic meshes. Finally, we
share our approach to memory management for our rendering system.

1.3 Render Pass Architecture

Rendering architectures construct their render passes in a way to minimize
rendering artifacts, reach performance goals, and allow for advanced ren-
dering algorithms. For a specific application, it is critical to balance these
tradeoffs. Additionally, the increased complexity of these rendering engines



i
i

i
i

i
i

i
i

1.3. Render Pass Architecture 3

Figure 1.1. the render pass architecture

necessitates more complex shader code, which can be difficult for users and
engine developers to maintain.

1.3.1 Render Pass Stages

Our rendering architecture is divided into individual render passes (Fig-
ure 1.1). Surgical simulation requires the rendering of diverse materials
which some lighting techniques, such as deferred rendering, have difficulty
expressing efficiently since lighting is decoupled from the geometry render-
ing. In deferred rendering, the geometry is rendering to a geometry buffer
(G-buffer) that separate lighting passes read to perform lighting calcula-
tions for each fragment on the screen. Classical deferred renderers can be
more efficient for rendering many lights, but surgery simulation generally
only requires a small amount of lights (usually less than a dozen). While
branching can be used to allow for some material variety [Garawany 16], it
ultimately still limits the number and types of materials.

In contrast, in forward rendering, each material is evaluated indepen-
dently, allowing for completely arbitrary material evaluations in each frag-
ment shader for a material. While we chose forward rendering for this
reason, we still incorporated a thinner G-buffer so that we could later use
its data for post-processing such as screen-space subsurface scattering.

Each render pass is explained in detail in the following sections.

Shadow Mapping In some surgery simulation scenarios, many shadow-casting
lights are necessary for helping users to judge depth perception of their in-
struments in the virtual environment. The first pass of each frame includes
rendering shadows for each directional light into shadow maps, which we
place into a texture array. Rendering shadow maps into texture arrays is a



i
i

i
i

i
i

i
i

4 1. Rendering Surgery Simulation with Vulkan

common approach [Pettineo 15] as it allows for the binding of many shad-
ows maps during a single draw, which is necessary for forward rendering
architectures that evaluate multiple lights in one draw call. We save on ma-
terial permutations by reusing the same shadow pipelines for each shadow
pass (since the render passes are compatible). We pass the index of the
shadow current shadow map to the shadow shader using a push constant
that accesses an array of light inverse matrices.

Depth Prepass and Ambient Occlusion Forward rendering is inefficient for
scenes with significant overdraw. In order to minimize this, we implemented
a depth-prepass as the next pass to minimize the lighting computation. We
follow the depth-prepass with a horizon-based ambient occlusion (HBAO)
pass [Bavoil et al. 08]. By calculating ambient occlusion (AO) before the
lighting passes, the AO becomes available for use in the lighting pass. We
calculate the HBAO at quarter resolution by first downscaling using a min-
depth operator, and then we upscale the AO using a Gaussian-based bi-
lateral depth-aware filter, as opposed to just a 2-pass Gaussian filter, to
prevent AO bleeding.

Physically-Based Rendering (PBR) Lighting The lighting passes for both
opaque geometry and decals follow. During this pass, lighting is calculated
for both specular and diffuse and written into separate accumulation HDR
16-bit buffers (Table 1.1), similar to what was done in CryEngine [Sousa
et al. 12]. In the case of the opaque geometry pass, we populate another
buffer with 4 8-bit color channels for world-space normals and a subsur-
face scattering constant. The light types include both classical computer
graphics light sources such as directional and point lights, and global illu-
mination approximation, which in our case, is image-based lighting (IBL)
with split-sum approximation [Karis 13]. Because we already calculated
the AO, the IBL can be used with both decals and the underlying opaque
geometry. Baked AO textures for rigid objects are read to supplement
the screen-space AO, and the maximum of these two AO values is taken to
determine the total AO. For the lighting pass, we support a roughness/met-
alness workflow for PBR content.

Buffer Type R G B A
Diffuse Accumulation 16-bit per channel color

Specular Accumulation 16-bit per channel color
Normal/SSS x y z SSS strength

Depth 32-bit depth

Table 1.1. G-buffer layout



i
i

i
i

i
i

i
i

1.3. Render Pass Architecture 5

Figure 1.2. (left) a mesh without a decal, (right) a mesh with a decal affected
by subsurface scattering

Deferred Decals Deferred decals are a low-cost yet flexible method for adding
details to underlying geometry. The decal pass differs from the opaque ren-
dering in that it doesn’t write to the normal or subsurface scattering (SSS)
buffer but rather reads from it. One of the benefits of using the underlying
SSS buffer is that it allows the decal to blend in with the surface under-
neath during the SSS render pass, so any marks on the skin for instance will
look more naturally integrated. Since the decals are deferred, they need
a normal, and we chose to use the underlying normal and the underlying
SSS constant (Figure 1.2). Many use cases of the decals such as bleeding or
marking only make small changes to the surface normal, so the underlying
surface normal can provide an acceptable approximation.

Post Processing Surgery simulations include organic geometry such as skin
and organs, which requires subsurface scattering (SSS) to display accu-
rately (Figure 1.3). We chose to implement a screen-space SSS as opposed
to a texture-space implementation for several reasons. First, screen-space
avoids overdraw which becomes a problem when inside the body. Although
a depth prepass mitigates this, there’s still the need to perform extra tex-
ture lookups as compared to screen space methods. Secondly, the diffusion
profile is relatively similar since most of the materials have blood and/or
fat under the surface. Third, it samples across different draw calls. This
becomes particularly important when a mesh is split into smaller meshes in
order to avoid unnecessary physics computations. For example, if a section
of an organ undergoes operation, then it must be deformable, but the sur-
rounding organ can be rigid. With screen-space SSS, the SSS can sample
from across both meshes, creating a seamless rendering.

After the lighting pass, separable screen-space SSS [Jimenez et al. 15]
is applied to only the diffuse buffer. We keep a pool of 3 HDR buffers (one



i
i

i
i

i
i

i
i

6 1. Rendering Surgery Simulation with Vulkan

Figure 1.3. a rendering of a polyp with subsurface scattering

for the specular render target, one for the diffuse, and one free) in order
to ping-pong the diffuse buffer during the two passes. After the SSS, the
specular buffer and diffuse buffer are composited into the free buffer. These
buffers are reused for later passes.

Bloom is then calculated in two passes at quarter resolution and then
composited with the previous result. A filmic tone mapping pass [Hable 10]
follows the bloom pass to map down to a 32-bit sRGB buffer. In the
early stages of implementing SSS, we found that using a non-filmic tone
mapper such as Reinhard [Reinhard et al. 02] hide the effect of the SSS by
desaturating the effect of the diffusion profile.

1.3.2 Uber-Shader Approach and Material System

One of the challenges with forward rendering is the possible combinatorial
explosion of different shader options.

In Vulkan, all draw state is compiled into a single VkPipeline object. We
build materials for each object; each material contains a VkPipeline object
and associated descriptor sets. A single object may have multiple materials
(and thus VkPipeline objects) to account for multiple render passes. For
example, a single object could have a material for shadow map passes and
another one for the lighting pass.

One of the challenges with forward rendering is the need for software
developers to maintain a large number of possible shader permutations.
This becomes especially problematic in our framework because we allow



i
i

i
i

i
i

i
i

1.4. Handling Deformable Meshes 7

arbitrary combinations of textures to be attached to a material as well as
different draw modes such as for debug rendering. We chose to use an
Uber-shader approach to reduce maintenance; we use a large shader that
contains all possible shader code combinations and block out irrelevant
parts during the shader compilation process. This generally works well for
our applications since our applications are made to be photorealistic, so
the shaders generally try to model lighting physics rather closely. Separate
shader code paths can be made available for different lighting conditions
such as debug rendering without introducing branching.

Shaders are compiled as a build step for compilation of the C++ code,
so only SPIR-V binary files are read into the engine at runtime. This
creates some problems with texture resource management, however, since
each material can provide a different number texture resources. We solve
this problem by creating small placeholder textures, but the lookup of
these textures are restricted by specialization constants. Specialization
constants allow the driver’s shader compiler to optimize away shader code
that gets set during pipeline creation. Other expensive operations, such as
PBR lighting code, can be optimized away for situations that don’t require
it. One drawback of using specialization is that the pipeline objects can
become incompatible for similar materials. In this case, they cannot be
shared across draw calls.

1.4 Handling Deformable Meshes

Deformable meshes, which we define as meshes that include per frame
vertex and index updates, require data transfer to the GPU, mesh recom-
putation, and efficient memory usage.

1.4.1 Efficient Data Transfer to the GPU

Deformable meshes require frequent and large-scale updates to the whole
mesh, and transferring this to the GPU can be complex due to needed
synchronization and slow if the data is large enough. Unlike OpenGL,
Vulkan gives explicit control over the location of data, but the correct
locations (e.g., which meshes should be on the GPU) are often difficult to
assess for a given use case. Furthermore, different hardware vendors even
have different recommended memory types that aren’t universally available.

We specifically chose a solution that could work on a wider range of
hardware and, through experimentation, gave acceptable results. We tested
on NVidia’s GTX 1080 GPU. We chose to use a single queue, the same
queue used for rendering, to do the transfer operations required to update
the meshes to avoid the need for inter-queue synchronization. Although



i
i

i
i

i
i

i
i

8 1. Rendering Surgery Simulation with Vulkan

some graphics drivers expose transfer-only queues that could potentially
allow for higher bandwidth, this is not universally available across all major
vendors [Willems 18].

With using a single queue, there are two effective ways to update data
for rendering: 1) using a CPU-accessible staging buffer with a mirrored
GPU buffer and running transfer operations or 2) using a CPU-accessible
buffer. In comparing these two approaches, we found that for large meshes
(i.e., larger than 100k triangles), the differences in performance were neg-
ligible between the two methods. Even with multiple render passes for
the same mesh data that could cause redundant PCI-E bus usage, the
performance was similar. On the other hand, using system memory (CPU-
accessible buffer) allows us to avoid managing memory barriers to ensure
the data is uploaded to the GPU in time.

Multi-Buffering Our renderer includes a pool of command buffers for geom-
etry passes, and each frame, a command buffer is recycled and rewritten
to. When we finish writing to a command buffer, we submit it to the
driver, and start recording another command buffer. The command buffer
will run asynchronously to our render loop. We needed to avoid read-write
hazards but didn’t want to stall the render loop, so we implemented multi-
buffering for vertex and index buffers (Figure 1.4). We buffer the data the
same amount as the number of back buffers presented in the swap chain; if
the application renders with triple-buffering, then the mesh data also uses
triple-buffering. This makes tracking the region to update simple as the
remainder of the frame number can just be passed to the update functions.

Our multi-buffering implementation is similar to unsynchronized multi-
buffering in OpenGL with persistent data mapping [Hrabcak and Masser-
ann 12], but we have more control over the memory management and syn-
chronization.

Figure 1.4. an example of dynamic mesh updating using double-buffering



i
i

i
i

i
i

i
i

1.5. Memory Management System 9

1.4.2 Normal Calculations per Frame with Smoothing Groups

Because the deformable meshes can have both topology changes and indi-
vidual vertex displacements, the normals and tangents must be able to be
recomputed each frame. Additionally, many of the geometries in surgery
simulation tend to have organic shapes, leading to vertex seams along the
edges of the UV maps. These seams cause lighting discontinuities which
make surfaces incorrectly appear to have hard edges.

To handle these problems, on file import, we create a mapping on ver-
tices that belong to the same smoothing group. With recomputation of the
normals, these mappings are preserved. The final normal for each vertex in
the group is calculated from each neighboring triangle’s normal and each
vertex that belongs to the group. The tangents are calculated separately,
however, because they are aligned to each vertex’s UV coordinate, which
differs for each vertex in the group.

One problem with this approach is that the tangents can diverge from
the normals since tangents depend on the UV coordinates which are likely
unique to each vertex, whereas normals can be shared across vertices. This
produced shading artifacts that were highlighted by our BRDFs, but a
simple fix was to orthogonalize the tangent-bitangent-normal basis in the
vertex shader through the Gram-Schmidt process.

1.5 Memory Management System

Unlike OpenGL, Vulkan gives users explicit control on where they can
store data, but the correct locations are often difficult to assess. In ad-
dition, memory backings for resources such as images and buffers are not
automatically allocated. In contrast, behind the scenes, OpenGL drivers
do additional work such as memory defragmentation and suballocation.
OpenGL abstracts the physically locations of all resources (such as in sys-
tem RAM or VRAM), although this hides differences between different
GPUs and drivers. While this requires less development from the applica-
tion side, this can lead to inconsistent performance across platforms. In
order to fill this gap lying in the Vulkan API, we implemented our own
memory allocator.

1.5.1 Custom Memory Allocator

The performance implications of different allocation strategies are not al-
ways obvious and can differ depending on the vendor. Furthermore, certain
allocations strategies can be tailored to specific applications. For instance,
in surgery simulation, it’s uncommon for new geometry and resources to
be added during the simulation. It is generally known beforehand what



i
i

i
i

i
i

i
i

10 1. Rendering Surgery Simulation with Vulkan

Figure 1.5. an overview of the memory manager

resources are needed for a specific application. This allows us to avoid
implementing performance-sensitive features such as memory defragmen-
tation.

Our memory manager separates different resources into different mem-
ory allocations (Figure 1.5). For instance, uniform buffers occupy a dif-
ferent memory allocation than textures. The advantage of this approach
is that the certain resource types need to be in certain areas of memory
for optimal performance. For instance, staging buffers need to be in host
visible memory, whereas images (e.g., textures) need to stay on the GPU,
so they reside in device-local memory.

Certain resources such as images, uniform buffers, and storage buffers
have alignment requirements. This allows mesh data to be more compact,
which is useful since mesh data might need to be transferred each frame
for dynamic objects.

With the exception of uniform buffers, a single VkBuffer occupies the
whole underlying memory allocation. Internally, our memory manager
uses lightweight abstract buffer objects that point to regions within the
VkBuffer object. With uniform buffers and VkImages, however, multiple
uniform buffers and images can fill a single allocation. Uniform buffers are
treated this way since the minimum uniform buffer size guaranteed by the
specification is 64 KiB.

The initial allocation size we chose was 16 MiB, and this allocation is
used until it runs out of space and then a new allocation is made. For images
and buffers larger than the allocation size, the allocation is expanded to



i
i

i
i

i
i

i
i

1.6. Performance and results 11

Figure 1.6. a buffer layout allowing for per-frame updates

account for these, so very large resources can potentially have their own
allocation.

Mesh Data Mesh data is handled differently from the other resource types.
Deformable meshes reside in host visible memory, whereas other meshes
(e.g., rigid objects) are in device local memory through staging. Other
game engines such as Source 2 have followed a similar approach for stat-
ic/dynamic resources [McDonald 16].

Deformable meshes also take up more space than rigid meshes need as
they are multi-buffered. When the mesh is initially allocated, this extra
buffering space is also allocated in the same location. For host visible
memory, this works out well since the transfer to the GPU is implicitly
done, avoided overhead in calling transfer functions.

In some operations, such as mesh cutting operations, additional trian-
gles or vertices can be added or removed to the mesh. Adding new vertices
or triangles would require more buffer space. Because operations such as
cutting are a high-frequency operation, we needed a way to expand ge-
ometry all of the time without allocating new memory and deallocating
old memory, which could be costly and cause memory fragmentation. To
solve this problem, we allow users to specify a load factor that sets a max-
imum size of the geometry relative to the original mesh size. We allocate
additional space within each buffer subsection for each frame (Figure 1.6).

1.6 Performance and results

To analyze the performance of our memory management system within our
renderer, we devised a benchmark that tests the role of different default
memory allocation sizes. A size of zero MB represents a naive approach of



i
i

i
i

i
i

i
i

12 1. Rendering Surgery Simulation with Vulkan

Figure 1.7. 10,000 meshes, each made up of 100 lines

[H]

Figure 1.8. 10,000 meshes, each made up of 100 lines



i
i

i
i

i
i

i
i

1.7. Case Study: CCT 13

creating one memory allocation per vertex and index buffer. We found two
areas that showed improvement based on our test scenario: application load
time (Figure 1.7) and frame time (Figure 1.8). We tested on a Windows
computer with an Intel i7 6850k CPU and an NVidia GTX 1080.

There are optimal allocation sizes that meet both of these metrics. For
example, larger allocations (such as 256 MiB) have slightly longer load
times while they have comparable performance to smaller allocations (4
MiB). Different default allocation sizes have been proposed by vendors such
as 8MB for mesh data and 128 MB for textures [McDonald 16] or 256 MiB
[Sawicki 18]. This depends on the hardware and application resources sizes
to some extent, but there should be a fairly large range of acceptable default
allocation sizes, as demonstrated by our data. Unless very large resources
are used (e.g. 10s of MB per resource), there’s a point of diminishing
returns for runtime performance with larger buffer sizes. However, larger
allocation sizes slightly increase load time and will waste more memory in
cases when they aren’t saturated.

For our tests, we compared rigid mesh data with deformable meshes.
Rigid meshes require two buffers, a staging (CPU) and a device local (GPU)
buffer. Meanwhile, the deformable meshes require larger buffers to account
for multi-buffering, but they remain on the CPU, resulting in much lower
the allocation times, particularly for more allocations. We experienced a
larger decrease in load time performance when using the naive allocation
strategy for rigid meshes as compared to deformable meshes, which indi-
cates that making many GPU allocations can be much slower than CPU
allocations. For the runtimes, the dynamic meshes require rewriting of the
data and transfer to the GPU, which slows down performance compared
to rigid meshes.

1.7 Case Study: CCT

Surgeons perform the cricothyroidotomy (CCT) procedure as an emergency
procedure when patients have a restricted airway. The steps involved in
the procedure are as follows:

1. Palpating the neck region to identify the locations of the thyroid and
cricoid cartilages which are the landmarks anatomies in this proce-
dure.

2. Making an incision along the midline of the neck through the skin
and the fat tissue to uncover the cricothyroid membrane underneath.

3. Making an incision along the membrane to open an entrance to the
trachea.



i
i

i
i

i
i

i
i

14 1. Rendering Surgery Simulation with Vulkan

4. Inserting an endotracheal tube inside the trachea through the new
incision.

There are two main problems with the CCT simulation from a rendering
perspective: efficiently updating the large geometric models representing
the fat and membrane tissues and rendering the surface of each cut.

1.7.1 Dynamic Mesh Update

The CCT procedure requires at least two incisions to allow for intubation.
This is accomplished on the CPU side through a mesh cutting algorithm
which causes the mesh to regenerate in order to incorporate topological
changes. In addition, the mesh is deformed during each physics step, which
causes the vertex positions to be displaced and the normals and tangents
to be recalculated. All of this data must be reuploaded to the GPU each
frame.

Initially, we had difficulty with transfer speeds for this use case as we
used staging and GPU buffers to handle all transfers. We wrote to a host
visible buffer and performed a transfer operation, and we operated on a
single queue. We quickly found this actually substantially sped up perfor-
mance, so we switched to using host-visible memory.

1.7.2 Surface Cut Rendering

The rendering of the cut mesh introduced a few challenges with our current
framework. First, the outer surface, the skin for example, must be rendered
with a different material than the inner surface, which in our case is the fat
tissue. On top of this, the UV coordinates are generated during runtime
as the new surface mesh is recreated.

We wanted to reduce the number of surface meshes to be updated each
frame, but our renderer doesn’t currently support multiple materials per
mesh. Both the skin and the fat tissue use the same shading logic, but
they differ in texture sets. In order to circumvent our single material per
mesh limitation, we project the sides of the mesh onto different regions of
a texture atlas.

When performing the cut, we needed a visual cue (e.g., bleeding) for
the progress of the cut. We opted to use a pool of blood decals to display
the cutting path while it was being performed by the user. The decals
automatically recycle after the pool hits a certain maximum number so
they can be reused for multiple cuts.



i
i

i
i

i
i

i
i

1.8. Conclusion and Future Work 15

Figure 1.9. the CCT case study demonstrating cutting

1.8 Conclusion and Future Work

Rendering for surgery simulation is critical for creating a realistic immersive
experience for training surgeons. The Vulkan API provided more flexibility,
but also some challenges with determining the optimal implementation
strategies given our use cases.

We were able to create a rendering architecture that reduced the amount
of shader maintenance needed in the future and would give us more accurate
visualization. Our handling of deformable meshes allows us to efficiently
render the output of various CPU-based algorithms. Finally, our memory
management system allows us to scale our applications without worrying
about introducing substantial overhead, and it can easily be extended sup-
port new types of resources.

In the future, we hope to expand these subsystems to further improve
performance and rendering capabilities. One area we would like to explore
is using asynchronous buffer transfers with multiple queues for mesh up-
dates, as this could potentially decrease the transfer times by using more
bandwidth. Another area that could see performance improvements would
be the normal/tangents recalculations, possibly through compute shaders
as this takes a considerable amount of time each frame depending on the
topology and number of triangles of the mesh. Finally, we would like to
expand our material system to allow for more complex and expressive ma-
terials.



i
i

i
i

i
i

i
i

16 1. Rendering Surgery Simulation with Vulkan

Figure 1.10. a rendering of an internal organ using our renderer

1.9 Source Code

The source code is available as part of iMSTK: https://www.imstk.org

1.10 Acknowledgements

Research reported in this publication was supported by the National In-
stitute of Biomedical Imaging and Bioengineering (NIBIB) of the Na-
tional Institutes of Health (NIH) under Award Number 2R01EB005807,
5R01EB010037, 1R01EB009362, 1R01EB014305; National Heart, Lung,
and Blood Institute (NHLBI) of NIH under Award Number 5R01HL119248;
National Cancer Institute (NCI) of NIH under Award Number 1R01CA197491
and NIH under Award Number R44OD018334.



i
i

i
i

i
i

i
i

BIBLIOGRAPHY 17

Bibliography

[Bavoil et al. 08] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov.
“Image-space horizon-based ambient occlusion.” In ACM SIGGRAPH
2008 talks, p. 22. ACM, 2008.

[Garawany 16] Ramy El Garawany. “Deferred Lighting in Uncharted 4.”
In Advances in Real-Time Rendering in Games: Part I. ACM, 2016.

[Hable 10] John Hable. “Uncharted 2: HDR lighting.” In Game Developers
Conference, 2010.

[Halic et al. 11] Tansel Halic, Sreekanth A Venkata, Ganesh Sankara-
narayanan, Zhonghua Lu, Woojin Ahn, and Suvranu De. “A soft-
ware framework for multimodal interactive simulations (SoFMIS).”
In MMVR, pp. 213–217, 2011.

[Hrabcak and Masserann 12] Ladislav Hrabcak and Arnaud Masserann.
Asynchronous Buffer Transfer. CRC Press, 2012.

[iMS 18] “iMSTK.” http://www.imstk.org/, 2018.

[Jimenez et al. 15] Jorge Jimenez, Károly Zsolnai, Adrian Jarabo, Chris-
tian Freude, Thomas Auzinger, Xian-Chun Wu, Javier von der Pahlen,
Michael Wimmer, and Diego Gutierrez. “Separable Subsurface Scat-
tering.” Computer Graphics Forum 34:6 (2015), 188–197.

[Karis 13] Brian Karis. “Real shading in Unreal Engine 4.” In Proc. Phys-
ically Based Shading Theory Practice, pp. 621–635, 2013.

[McDonald 16] John McDonald. “High Performance Vulkan: Lessons
Learned from Source 2.” In GPU Technology Conference 2016 (GTC),
2016.

[Ope 17] “OpenSurgSim.” https://www.sofa-framework.org/, 2017.

[Pettineo 15] Matt Pettineo. “Rendering the alternate history in The Order
1886.” In Advances in Real-Time Rendering in Games: Part II. ACM,
2015.

[Reinhard et al. 02] Erik Reinhard, Michael Stark, Peter Shirley, and
James Ferwerda. “Photographic tone reproduction for digital images.”
ACM transactions on graphics (TOG) 21:3 (2002), 267–276.

[Sawicki 18] Adam Sawicki. “Memory Management in Vulkan DX12.” In
Game Developers Conference, 2018.

[SOF 18] “SOFA.” https://www.sofa-framework.org/, 2018.



i
i

i
i

i
i

i
i

18 BIBLIOGRAPHY

[Sousa et al. 12] Tiago Sousa, Nickolay Kasyan, and Nicolas Schulz.
CryENGINE 3: Three Years of Work in Review. CRC Press, 2012.

[The Khronos Group 18] The Khronos Group. “Vulkan R© 1.1.81 - A Spec-
ification.”, 2018.

[Willems 18] Sascha Willems. “GPUInfo.” https://www.gpuinfo.org/,
2018. Accessed: 2018-07-18.


